Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T07:52:13.627Z Has data issue: false hasContentIssue false

7 - Incentive Motivation

The Missing Piece between Learning and Behavior

from Part II - Rewards, Incentives, and Choice

Published online by Cambridge University Press:  15 February 2019

K. Ann Renninger
Affiliation:
Swarthmore College, Pennsylvania
Suzanne E. Hidi
Affiliation:
University of Toronto
Get access

Summary

In the behavioral sciences, it is common to explain behavior in terms of what was learned in a task, as if any subsequent change in performance had to denote a change in learning. However, learning alone cannot account for variability in performance. Instead, incentive motivation plays a direct role (and is more effective) in controlling moment-to-moment changes in an individual's responses than the learning process. After briefly introducing the history of the study of incentive motivation, we explain that incentive motivation consists of a dopamine-dependent process that does not require consciousness to influence responding to a task. We analyze two Pavlovian situations in which incentive motivation can modulate performance, irrespective of additional learning: the instant transformation of disgust into attraction for salt and the invigoration of responses under reward uncertainty. Finally, we consider drug addiction as an example of motivational dysregulation rather than as a consequence of the habit to consume substances of abuse.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anselme, P. (2013). Dopamine, motivation, and the evolutionary significance of gambling-like behaviour. Behavioural Brain Research, 256 C, 14. doi: 10.1016/j.bbr.2013.07.039.CrossRefGoogle ScholarPubMed
Anselme, P. (2015). Incentive salience attribution under reward uncertainty: A Pavlovian model. Behavioural Processes, 111, 618. doi: 10.1016/j.beproc.2014.10.016.Google Scholar
Anselme, P. (2016). Motivational control of sign-tracking behaviour: A theoretical framework. Neuroscience and Biobehavioral Reviews, 65, 120. doi: 10.1016/j.neubiorev.2016.03.014.Google Scholar
Anselme, P., Robinson, M. J. F., & Berridge, K. C. (2013). Reward uncertainty enhances incentive salience attribution as sign-tracking. Behavioural Brain Research, 238, 5361. doi: 10.1016/j.bbr.2012.10.006.Google Scholar
Archer, J. (1988). The behavioural biology of aggression. Cambridge University Press Archive.Google Scholar
Avena, N. M. & Hoebel, B. G. (2003a). A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience, 122(1), 1720.Google Scholar
Avena, N. M. & Hoebel, B. G. (2003b). Amphetamine-sensitized rats show sugar-induced hyperactivity (cross-sensitization) and sugar hyperphagia. Pharmacology, Biochemistry, and Behavior, 74(3), 635–9.Google Scholar
Baillargeon, R. (1987). Object permanence in 3½- and 4½-month-old infants. Developmental Psychology, 23(5), 655–64.CrossRefGoogle Scholar
Bartlett, E., Hallin, A., Chapman, B., & Angrist, B. (1997). Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability? Neuropsychopharmacology, 16(1), 7782. doi: 10.1016/S0893-133X(96)00164-9.CrossRefGoogle Scholar
Belayachi, S., Majerus, S., Gendolla, G., Salmon, E., Peters, F., & Van der Linden, M. (2015). Are the carrot and the stick the two sides of same coin? A neural examination of approach/avoidance motivation during cognitive performance. Behavioural Brain Research, 293, 217–26. doi: 10.1016/j.bbr.2015.07.042.Google Scholar
Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81(2), 179209. doi: 10.1016/j.physbeh.2004.02.004.Google Scholar
Berridge, K. C. (2007). The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology, 191(3), 391431. doi: 10.1007/s00213-006-0578-x.Google Scholar
Berridge, K. C. (2012). From prediction error to incentive salience: mesolimbic computation of reward motivation. European Journal of Neuroscience, 35(7), 1124–43. doi: 10.1111/j.1460-9568.2012.07990.x.Google Scholar
Berridge, K. C. & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309–69.Google Scholar
Bindra, D. (1976). A theory of intelligent behavior. Oxford: Wiley-Interscience.Google Scholar
Bodor, J. N., Rice, J. C., Farley, T. A., Swalm, C. M., & Rose, D. (2010). The association between obesity and urban food environments. Journal of Urban Health, 87(5), 771–81. doi: 10.1007/s11524-010-9460-6.Google Scholar
Boileau, I., Payer, D., Chugani, B., Lobo, D. S., Houle, S., Wilson, A. A., ... Zack, M. (2013). In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: A positron emission tomography study with [11C]-(+)-PHNO. Molecular Psychiatry, 19(12), 1305–13. doi: 10.1038/mp.2013.163.Google Scholar
Bolles, R. C. (1972). Reinforcement, expectancy, and learning. Psychological Review, 79(5), 394409.Google Scholar
Burns, M. & Domjan, M. (1996). Sign tracking versus goal tracking in the sexual conditioning of male Japanese quail (Coturnix japonica). Journal of Experimental Psychology Animal Behavior Processes, 22(3), 297306. doi: 10.1037/0097-7403.22.3.297.Google Scholar
Cannon, C. M. & Bseikri, M. R. (2004). Is dopamine required for natural reward? Physiology & Behavior, 81(5), 741–8. doi: 10.1016/j.physbeh.2004.04.020.Google Scholar
Chase, H. W. & Clark, L. (2010). Gambling severity predicts midbrain response to near miss outcomes. Journal of Neuroscience, 30(18), 6180–7. doi: 10.1523/JNEUROSCI.5758-09.2010.Google Scholar
Clark, L., Lawrence, A. J., Astley-Jones, F., & Gray, N. (2009). Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron, 61(3), 481–90. doi: 10.1016/j.neuron.2008.12.031.Google Scholar
Collins, L. & Pearce, J. M. (1985). Predictive accuracy and the effects of partial reinforcement on serial autoshaping. Journal of Experimental Psychology: Animal Behavior Processes, 11, 548–64.Google Scholar
Collins, L., Young, D. B., Davies, K., & Pearce, J. M. (1983). The influence of partial reinforcement on serial autoshaping with pigeons. The Quarterly Journal of Experimental Psychology B, Comparative and Physiological Psychology, 35(4), 275–90. doi: 10.1080/14640748308400893.Google Scholar
Costikyan, G. (2013). Uncertainty in games. Cambridge: MIT Press.Google Scholar
Cousins, M. S., Sokolowski, J. D., & Salamone, J. D. (1993). Different effects of nucleus accumbens and ventrolateral striatal dopamine depletions on instrumental response selection in the rat. Pharmacology, Biochemistry, and Behavior, 46(4), 943–51.Google Scholar
Crespi, L. P. (1942). Quantitative variation of incentive and performance in the white rat. The American Journal of Psychology, 55(4), 467517. doi: 10.2307/1417120?ref=search-gateway:18b91fd28dc7c135471d0d97bddee0b1.CrossRefGoogle Scholar
Cresswell, W. (2003). Testing the mass-dependent predation hypothesis: In European blackbirds poor foragers have higher overwinter body reserves. Animal Behaviour, 65, 1035–44.Google Scholar
D'Souza, M. S. & Duvauchelle, C. L. (2008). Certain or uncertain cocaine expectations influence accumbens dopamine responses to self-administered cocaine and non-rewarded operant behavior. European Neuropsychopharmacology, 18(9), 628–38. doi: 10.1016/j.euroneuro.2008.04.005.Google Scholar
de Lafuente, V. & Romo, R. (2011). Dopamine neurons code subjective sensory experience and uncertainty of perceptual decisions. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19767–71. doi: 10.1073/pnas.1117636108.Google Scholar
Dodd, M. L., Klos, K. J., Bower, J. H., Geda, Y. E., Josephs, K. A., & Ahlskog, J. E., (2005). Pathological gambling caused by drugs used to treat Parkinson disease. Archives of Neurology, 62(9), 1377–81. doi: 10.1001/archneur.62.9.noc50009.Google Scholar
Domjan, M., O'Vary, D., & Greene, P. (1988). Conditioning of appetitive and consummatory sexual behavior in male Japanese quail. Journal of the Experimental Analysis of Behavior, 50(3), 505–19. doi: 10.1901/jeab.1988.50-505.Google Scholar
Dreher, J.-C., Kohn, P., & Berman, K. F. (2006). Neural coding of distinct statistical properties of reward information in humans. Cerebral Cortex, 16(4), 561–73. doi: 10.1093/cercor/bhj004.Google Scholar
Dweck, C. S. & Leggett, E. L. (1988). A social-cognitive approach to motivation and personality. Psychological Review, 95(2), 256–73.Google Scholar
Ekman, J. B. & Hake, M. K. (1990). Monitoring starvation risk: adjustments of body reserves in greenfinches (Carduelis chloris L.) during periods of unpredictable foraging success. Behavioral Ecology, 1, 62–7.Google Scholar
Everitt, B. J. & Robbins, T. W. (2015). Drug addiction: updating actions to habits to compulsions ten years on. Annual Review of Psychology, 67, 2350. doi: 10.1146/annurev-psych-122414-033457.Google Scholar
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898–902. doi: 10.1126/science.1077349.Google Scholar
Fischman, M. W. & Foltin, R. W. (1992). Self-administration of cocaine by humans: a laboratory perspective. Ciba Foundation Symposium, 166, 165–80.Google Scholar
Gibbon, J., Farrell, L., Locurto, C. M., Duncan, H. J., & Terrace, H. S. (1980). Partial reinforcement in autoshaping with pigeons. Animal Learning & Behavior, 8(1), 4559.CrossRefGoogle Scholar
Glimcher, P. W. (2011). Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 108 Suppl 3, 15647–54. doi: 10.1073/pnas.1014269108.Google Scholar
Gosler, A. G. (1996). Environmental and social determinants of winter fat storage in the great tit (Parus major). Journal of Animal Ecology, 65(1), 117. doi: 10.2307/5695?ref=search-gateway:1604b76cc4918de863817a1952f0beff.Google Scholar
Gottlieb, D. A. (2004). Acquisition with partial and continuous reinforcement in pigeon autoshaping. Learning & Behavior, 32(3), 321–34.CrossRefGoogle ScholarPubMed
Hart, A. S., Clark, J. J., & Phillips, P. E. M. (2015). Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning. Neurobiology of Learning and Memory, 117, 8492. doi: 10.1016/j.nlm.2014.07.010.Google Scholar
Hidi, S. & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–27.CrossRefGoogle Scholar
Hinde, R. A. (1960). Energy models of motivation. Symposia of the Society for Experimental Biology, 14, 199213.Google Scholar
Holst, von E. & Saint Paul, von U. (1963). On the functional organisation of drives. Animal Behaviour, 11(1), 120.Google Scholar
Hull, C. L. (1943). Principles of behavior: An introduction to behavior theory. (Elliott, R. M., Ed.). Appleton-Century.Google Scholar
Ikemoto, S. (2010). Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neuroscience and Biobehavioral Reviews, 35(2), 129–50. doi: 10.1016/j.neubiorev.2010.02.001.Google Scholar
Ikemoto, S. & Panksepp, J. (1996). Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behavioral Neuroscience, 110(2), 331–45.Google Scholar
Jenkins, H. M. & Moore, B. R. (1973). The form of the auto-shaped response with food or water reinforcers. Journal of the Experimental Analysis of Behavior, 20(2), 163–81. doi: 10.1901/jeab.1973.20-163.Google Scholar
Kassinove, J. I. & Schare, M. L. (2001). Effects of the “near miss” and the “big win” on persistence at slot machine gambling. Psychology of Addictive Behaviors, 15(2), 155–8. doi: 10.1037//0893-164X.15.2.155.Google Scholar
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., ... Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266–8. doi: 10.1038/30498.Google Scholar
Laumann, E. O., Gagnon, J. H., Michael, R. T., & Michaels, S. (1994). The social organization of sexuality: Sexual practices in the United States. University of Chicago Press.Google Scholar
Linnet, J., Peterson, E., Doudet, D. J., Gjedde, A., & Møller, A. (2010). Dopamine release in ventral striatum of pathological gamblers losing money. Acta Psychiatrica Scandinavica, 122(4), 326–33. doi: 10.1111/j.1600-0447.2010.01591.x.Google Scholar
Litt, A., Khan, U., & Shiv, B. (2010). Lusting while loathing: parallel counterdriving of wanting and liking. Psychological Science, 21(1), 118–25. doi: 10.1177/0956797609355633.Google Scholar
McClure, S. M., Daw, N. D., & Montague, P. R. (2003). A computational substrate for incentive salience. Trends in Neurosciences, 26(8), 423–8.Google Scholar
McFarland, D. (1969). Separation of satiating and rewarding consequences of drinking. Physiology & Behavior, 4(6), 987–9. doi: 10.1016/0031-9384(69)90054-7.Google Scholar
Miller, N. E. & Kessen, M. L. (1952). Reward effects of food via stomach fistula compared with those of food via mouth. Journal of Comparative and Physiological Psychology, 45(6), 555–64.Google Scholar
Myers, K. P. & Hall, W. G. (1998). Evidence that oral and nutrient reinforcers differentially condition appetitive and consummatory responses to flavors. Physiology & Behavior, 64(4), 493500.Google Scholar
Nicholls, J. G. (1984). Achievement motivation: Conceptions of ability, subjective experience, task choice, and performance. Psychological Review, 91(3), 328–46.Google Scholar
Nisbett, R. E. & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84, 231–59.Google Scholar
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. Oxford: Oxford University Press.Google Scholar
Peciña, S., Cagniard, B., Berridge, K. C., Aldridge, J. W., & Zhuang, X. (2003). Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. The Journal of Neuroscience, 23(28), 9395–402.Google Scholar
Pravosudov, V. V. & Grubb, T. C. (1997). Management of fat reserves and food caches in tufted titmice (Parus bicolor) in relation to unpredictable food supply. Behavioral Ecology, 8, 332–9.Google Scholar
Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51(3), 381–90. doi: 10.1016/j.neuron.2006.06.024.Google Scholar
Redish, A. D., Jensen, S., & Johnson, A. (2008). A unified framework for addiction: Vulnerabilities in the decision process. Behavioral and Brain Sciences, 31(4), 415–37. doi: 10.1017/S0140525X0800472X.Google Scholar
Renninger, K. A. (2000). Individual interest and its implications for understanding intrinsic motivation. In Sansone, C. & Harackiewicz, J. M. (Eds.), Intrinsic and extrinsic motivation: The search for optimal motivation and performance (pp. 375407). New York, NY: Elsevier. doi: 10.1016/B978-012619070-0/50035-0.Google Scholar
Renninger, K. A., Ewen, L., & Lasher, A. K. (2002). Individual interest as context in expository text and mathematical word problems. Learning and Instruction, 12, 467–91.CrossRefGoogle Scholar
Renninger, K. A. & Hidi, S. (2016). Interest, attention, and curiosity. In Renninger, K. A. & Hidi, S. (Eds.), The power of interest for motivation and engagement (pp. 3251). New York, NY and London: Routledge.Google Scholar
Rescorla, R. A. & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning II: Current theory and research (pp. 6499). New York, NY: Appleton-Century-Crofts.Google Scholar
Robinson, M. J. F. & Berridge, K. C. (2013). Instant transformation of learned repulsion into motivational “Wanting”. Current Biology, 23(4), 282–9. doi: 10.1016/j.cub.2013.01.016.Google Scholar
Robinson, M. J. F. & Berridge, K. C. (2015). Wanting vs needing. In Wright, J. D. (Ed.), International encyclopedia of the social & behavioral sciences (2nd ed., Vol. 25, pp. 351–6). Oxford: Elsevier. doi: 10.1016/B978-0-08-097086-8.26091-1.Google Scholar
Robinson, M. J. F., Anselme, P., Fischer, A. M., & Berridge, K. C. (2014a). Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behavioural Brain Research, 266, 119–30. doi: 10.1016/j.bbr.2014.03.004.Google Scholar
Robinson, M. J. F., Anselme, P., Suchomel, K., & Berridge, K. C. (2015a). Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues. Behavioral Neuroscience, 129(4), 502–11. doi: 10.1037/bne0000064.Google Scholar
Robinson, M. J. F., Burghardt, P. R., Patterson, C. M., Nobile, C. W., Akil, H., Watson, S. J., ... Ferrario, C. R. (2015b). Individual differences in cue-induced motivation and striatal systems in rats susceptible to diet-induced obesity. Neuropsychopharmacology, 40(9), 2113–23. doi: 10.1038/npp.2015.71.Google Scholar
Robinson, M. J. F., Fischer, A. M., Ahuja, A., Lesser, E. N., & Maniates, H. (2015c). Roles of “wanting” and “liking” in motivating behavior: Gambling, food, and drug addictions. In Balsam, P. D. & Simpson, E. H. (Eds.), (Vol. 27, pp. 105–36). Current topics in behavioral neurosciences. doi: 10.1007/7854_2015_387.Google Scholar
Robinson, M. J. F., Robinson, T. E., & Berridge, K. C. (2014b). Incentive salience in addiction and over-consumption. In Preston, S., Kringelbach, M. L., Knutson, B., & Whybrow, P. C. (Eds.), The interdisciplinary science of consumption (pp. 185–97). Cambridge, MA: MIT Press.Google Scholar
Robinson, T. E. & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research Brain Research Reviews, 18(3), 247–91.Google Scholar
Robinson, T. E. & Berridge, K. C. (2001). Incentive-sensitization and addiction. Addiction, 96(1), 103–14. doi: 10.1046/j.1360-0443.2001.9611038.x.Google Scholar
Robinson, T. E. & Berridge, K. C. (2008). The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363(1507), 3137–46. doi: 10.1098/rstb.2008.0093.Google Scholar
Rosse, R. B., Fay-McCarthy, M., Collins, J. P., Risher-Flowers, D., Alim, T. N., & Deutsch, S. I. (1993). Transient compulsive foraging behavior associated with crack cocaine use. The American Journal of Psychiatry, 150(1), 155–6.Google Scholar
Salamone, J. D. & Correa, M. (2002). Motivational views of reinforcement: Implications for understanding the behavioral functions of nucleus accumbens dopamine. Behavioural Brain Research, 137, 325.Google Scholar
Salamone, J. D., Cousins, M. S., & Bucher, S. (1994). Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behavioural Brain Research, 65(2), 221–9. doi: 10.1016/0166-4328(94)90108-2.Google Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 127.Google Scholar
Schultz, W. (2010). Subjective neuronal coding of reward: temporal value discounting and risk. The European Journal of Neuroscience, 31(12), 2124–35. doi: 10.1111/j.1460-9568.2010.07282.x.Google Scholar
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–9.Google Scholar
Singer, B. F., Scott-Railton, J., & Vezina, P. (2012). Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine. Behavioural Brain Research, 226(1), 340–4. doi: 10.1016/j.bbr.2011.09.003.Google Scholar
Spence, K. W. (1956). Behavior theory and conditioning. New Haven, CT: Yale University Press. doi: 10.1037/10029-000.Google Scholar
Tan, C. O. & Bullock, D. (2008). A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward. Journal of Neuroscience, 28(40), 10062–74. doi: 10.1523/JNEUROSCI.0259-08.2008.Google Scholar
Tindell, A. J., Smith, K. S., Berridge, K. C., & Aldridge, J. W. (2009). Dynamic computation of incentive salience: “wanting” what was never “liked”. The Journal of Neuroscience, 29(39), 12220–8. doi: 10.1523/JNEUROSCI.2499-09.2009.Google Scholar
Toates, F. (1986). Motivational systems. New York, NY: Cambridge University Press.Google Scholar
Tolman, E. C. (1949). The nature and functioning of wants. Psychological Review, 56(6), 357–69.Google Scholar
Turner, L. H., Solomon, R. L., Stellar, E., & Wampler, S. N. (1975). Humoral factors controlling food intake in dogs. Acta Neurobiologiae Experimentalis, 35(5-6), 491–8.Google Scholar
Valenstein, E. S., Cox, V. C., & Kakolewski, J. W. (1970). Reexamination of the role of the hypothalamus in motivation. Psychological Review, 77(1), 1631.Google Scholar
Voon, V., Hassan, K., Zurowski, M., Duff-Canning, S., de Souza, M., Fox, S., ... Miyasaki, J. (2006). Prospective prevalence of pathologic gambling and medication association in Parkinson disease. Neurology, 66(11), 1750–2. doi: 10.1212/01.wnl.0000218206.20920.4d.Google Scholar
Wise, R. A. (1982). Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Sciences, 5(1), 3953.CrossRefGoogle Scholar
Wolf, S. G. & Wolff, H. G. (1943). Human gastric function: An experimental study of a man and his stomach. London: Oxford University Press.Google Scholar
Woodward, A., Phillips, A., & Spelke, E. S. (1993). Infants’ expectations about the motions of inanimate vs. animate objects. In Proceedings of the Cognitive Science Society, Hillsdale, NJ: Erlbaum.Google Scholar
Young, P. T. (1961). Motivation and emotion: A survey of the determinants of human and animal activity. Oxford: Wiley.Google Scholar
Zack, M., Featherstone, R. E., Mathewson, S., & Fletcher, P. J. (2014). Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats. In Singer, B. F., Anselme, P., Robinson, M. J., & Vezina, P. (Eds.), Neuronal and Psychological Underpinnings of Pathological Gambling. Lausanne: Frontiers in Behavioral Neuroscience, 8, 36. doi: 10.3389/fnbeh.2014.00036.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×