Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T23:17:24.963Z Has data issue: false hasContentIssue false

17 - Animal Intelligence

from Part IV - Biology of Intelligence

Published online by Cambridge University Press:  13 December 2019

Robert J. Sternberg
Affiliation:
Cornell University, New York
Get access

Summary

The ability to assess the intelligence of other species has been constrained because it is not always easy to communicate to other species what we require of them. Furthermore, we tend to define the tasks with procedures designed for us rather than for the species in question. The appropriate assessment of animal intelligence is important, however, because it has demonstrated that although the human capacity for intelligent behavior quantitatively surpasses that of other animals, qualitatively, it is not as different as we generally believe. Furthermore, the intelligent behavior of other species demonstrates that although language and culture contribute to human intelligence, they are clearly not necessary. Finally, although we attribute certain human behavior such as unskilled gambling and cognitive dissonance to our complex social environment, the fact that other species show very similar suboptimal behavior suggests that simpler underlying processes likely are responsible for those behaviors.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akins, C., & Zentall, T. R. (1996). Evidence for true imitative learning in Japanese quail. Journal of Comparative Psychology, 110, 316320.Google Scholar
Aronson, E., & Mills, J. (1959). The effect of severity of initiation on liking for a group. Journal of Abnormal and Social Psychology, 59, 177181.CrossRefGoogle Scholar
Babb, S. J., & Crystal, J. D. (2006). Episodic-like memory in the rat. Current Biology, 16, 13171321.CrossRefGoogle ScholarPubMed
Bartal, I. B.-A., Decety, J., & Mason, P. (2011). Helping a cagemate in need: Empathy and pro-social behavior in rats. Science, 334, 14271430.Google Scholar
Bitterman, M. E. (1975). The comparative analysis of learning. Science, 188, 699709.CrossRefGoogle ScholarPubMed
Bitterman, M. E., & Mackintosh, N. J. (1969). Habit reversal and probability learning: Rats, birds, and fish. In Gilbert, R. M. & Sutherland, N. S. (Eds.), Animal discrimination learning (pp. 163185). New York: Academic Press.Google Scholar
Boesch, C., & Boesch, H. (1990). Tools use and tool making in wild chimpanzees. Folia Primatologica, 54, 8699.Google Scholar
Boysen, S. T., & Berntson, G. G. (1989). Numerical competence in a chimpanzee (Pan troglodytes). Journal of Comparative Psychology, 103, 2331.Google Scholar
Call, J. (2001). Object permanence in orangutans (Pongo pygmaeus), chimpanzees (Pan troglodytes), and children (Homo sapiens). Journal of Comparative Psychology, 115, 159171.CrossRefGoogle ScholarPubMed
Cammaerts, M. C., & Cammaerts, R. (2015). Are ants (Hymenoptera, Formicidae) capable of self recognition? Journal of Sciences, 5, 521532.Google Scholar
Capaldi, E. J. (1993). Animal number abilities: Implications for a hierarchical approach to instrumental learning. In Boysen, S. T. & Capaldi, E. J. (Eds.), The development of numerical competence (pp. 191209). Hillsdale, NJ: Erlbaum.Google Scholar
Capaldi, E. J., & Miller, D. J. (1988). Counting in rats: Its functional significance and the independent cognitive processes that constitute it. Journal of Experimental Psychology: Animal Behavior Processes, 14, 317.Google Scholar
Case, J. P., & Zentall, T. R. (2018). Suboptimal choice in pigeons: Does the predictive value of the conditioned reinforcer alone determine choice? Animal Cognition, 22, 8187.Google Scholar
Chapuis, N., & Varlet, C. (1987). Short cuts by dogs in natural surroundings. Quarterly Journal of Experimental Psychology, 39, 4964.Google Scholar
Clayton, N. S., & Dickinson, A. (1999). Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches. Journal of Comparative Psychology, 113, 403416.CrossRefGoogle ScholarPubMed
Clement, T. S., Feltus, J., Kaiser, D. H., & Zentall, T. R. (2000). “Work ethic” in pigeons: Reward value is directly related to the effort or time required to obtain the reward. Psychonomic Bulletin and Review, 7, 100106.CrossRefGoogle ScholarPubMed
Collette, T. S., & Graham, P. (2004). Animal navigation: Path integration, visual landmarks and cognitive maps. Current Biology, 14, 475477.Google Scholar
Couvillon, P. A., & Bitterman, M. E. (1992). A conventional conditioning analysis of “transitive inference” in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 18, 308310.Google Scholar
Custance, D. M., Whiten, A., & Bard, K. A. (1995). Can young chimpanzees imitate arbitrary actions? Hayes and Hayes (1952) revisited. Behaviour, 132, 837859.CrossRefGoogle Scholar
Dally, J. M., Clayton, N. S., & Emery, N. J. (2008). Social influences on foraging by rooks (Corvus frugilegus). Behaviour, 145, 11011124.Google Scholar
Dally, J. M., Emery, N. J., & Clayton, N. S. (2004). Cache protection strategies by western scrub-jays (Aphelocoma californica): Hiding food in the shade. Proceedings of the Royal Society B: Biological Sciences, 271, S387S390.Google Scholar
Dally, J. M., Emery, N. J., & Clayton, N. S. (2005). Cache protection strategies by western scrub-jays (Aphelocoma californica): Implications for social cognition. Animal Behaviour, 70, 12511263.CrossRefGoogle Scholar
Davis, H. (1992). Transitive inference in rats (Rattus norvegicus). Journal of Comparative Psychology, 106, 342349.Google Scholar
Davis, H., & Memmott, J. (1982). Counting behavior in animals: A critical evaluation. Psychological Bulletin, 92, 547571.Google Scholar
Dawkins, R. (1976). The selfish gene. New York: Oxford University Press.Google Scholar
Dawson, B. V., & Foss, B. M. (1965). Observational learning in budgerigars. Animal Behaviour, 13, 470474.Google Scholar
Dennett, D. C. (1983). Intentional systems in cognitive ecology: The “panglossian paradigm” defended. Behavioral and Brain Sciences, 6, 343355.Google Scholar
Dorrance, B. R., Kaiser, D. H., & Zentall, T. R. (2000). Event duration discrimination by pigeons: The choose-short effect may result from retention-test novelty. Animal Learning and Behavior, 28, 344353.Google Scholar
Edwards, C. A., Jagielo, J. A., Zentall, T. R., & Hogan, D. E. (1982). Acquired equivalence and distinctiveness in matching-to-sample by pigeons: Mediation by reinforcer-specific expectancies. Journal of Experimental Psychology: Animal Behavior Processes, 8, 244259.Google Scholar
Fersen, L. V., Wynne, C. D. L., Delius, J. D., & Staddon, J. E. R. (1991). Transitive inference formation in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 17, 334341.Google Scholar
Festinger, L (1957). A theory of cognitive dissonance. Stanford: Stanford University Press.CrossRefGoogle Scholar
Foerder, P., Galloway, M., Barthel, T., Moore, D. E. III, & Reiss, D. (2011). Insightful problem solving in an Asian elephant. PLoS One, 6(8), e23251. https://doi.org/10.1371/journal.pone.0023251CrossRefGoogle Scholar
Frye, D. (1993). Causes and precursors of children’s theory of mind. In Hay, D. F. & Angold, A. (Eds.), Precursors and causes of development and psychopathology. Chichester, UK: Wiley.Google Scholar
Gagnon, S., & Doré, F. Y. (1992). Search behavior in various breeds of adult dogs (Canis familiaris): Object permanence and olfactory cues. Journal of Comparative Psychology, 106, 5868.Google Scholar
Galef, B. G. Jr. (1988). Imitation in animals: History, definition, and interpretation of data from the psychological laboratory. In Zentall, T. R. & Galef, B. G. Jr. (Eds.), Social learning: Psychological and biological perspectives (pp. 328). Hillsdale, NJ: Erlbaum.Google Scholar
Galef, B. G. Jr., & Whiskin, E. E. (1998). Determinants of the longevity of socially learned food preferences of Norway rats. Animal Behaviour, 55, 967975.Google Scholar
Galizio, A., Doughty, A. H., Williams, D. C., & Saunders, K. J. (2017). Understanding behavior under nonverbal transitive-inference procedures: Stimulus-control-topography analyses. Behavioural Processes, 140, 202215.Google Scholar
Gallup, G. G. (1970). Chimpanzees self-recognition, Science, 167, 8687.Google Scholar
Gallup, G. G., & Suarez, S. D. (1991). Social responding to mirrors in rhesus monkeys: Effects of temporary mirror removal. Journal of Comparative Psychology, 105, 376379.Google Scholar
Garcia, J., & Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4, 123124.CrossRefGoogle Scholar
Gardner, R. A., & Gardner, B. T. (1969). Teaching sign language to a chimpanzee. Science, 165, 664672.Google Scholar
Gillan, D. J. (1981). Reasoning in the chimpanzee: II. Transitive inference. Journal of Experimental Psychology: Animal Behavior Processes, 7, 150164.Google Scholar
Gillan, D. J., Premack, D., & Woodruff, G. (1981). Reasoning in the chimpanzee: I. Analogical reasoning. Journal of Experimental Psychology: Animal Behavior Processes, 7, 117.Google Scholar
Grant, D. S. (1981). Stimulus control of information processing in pigeon short-term memory. Learning and Motivation, 12, 1939.Google Scholar
Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature445, 429432.Google Scholar
Hackenberg, T. D. (2017). To free or not to free: Determinants of social release in rats. Paper presented at the meeting of the Society for the Quantitative Analysis of Behavior, Denver, CO, May 25.Google Scholar
Hall, K. R. L., & Schaller, G. B. (1964). Tool-using behavior of the California sea otter. Journal of Mammalogy, 45, 287298.Google Scholar
Hare, B., Call, J., & Tomasello, M. (2001). Do chimpanzees know what conspecifics know? Animal Behaviour, 61, 139151.Google Scholar
Harlow, H. F. (1949). The formation of learning sets. Psychological Review, 56, 5165.Google Scholar
Hayes, S. C. (1983). When more is less: Quantity versus quality of publications in the evaluation of vitae. American Psychologist, 38, 13981400.Google Scholar
Hayes, K. J., & Hayes, C. (1952). Imitation in a home-raised chimpanzee. Journal of Comparative and Physiological Psychology, 45, 450459.Google Scholar
Herman, L. M. (2002). Vocal, social, and self-imitation by bottlenosed dolphins. In Dautenhahn, K. & Nehaniv, C. (Eds.), Imitation in animals and artifacts (pp. 63108). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Herman, L. M., Pack, A. A., & Morrel-Samuels, P. (1993). Representational and conceptual skills of dolphins. In Roitblat, H. L., Herman, L. M., & Nachtigall, P. E. (Eds.), Language and communication: Comparative perspectives (pp. 403442). Hillsdale, NJ: Erlbaum.Google Scholar
Herrnstein, R. J., & deVilliers, P. A. (1980). Fish as a natural category for people and pigeons. Psychology of Learning and Motivation, 14, 5995.Google Scholar
Herrnstein, R. J., & Loveland, D. H. (1964). Complex visual concept in the pigeon. Science, 146, 549551.Google Scholar
Herrnstein, R. J., Loveland, D. H., & Cable, C. (1976). Natural concepts in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 2, 285301.Google Scholar
Heyes, C. M. (1998). Theory of mind in nonhuman primates. Behavioral and Brain Sciences, 21, 101134.CrossRefGoogle ScholarPubMed
Heyes, C. M., & Dawson, G. R. (1990). A demonstration of observational learning in rats using a bidirectional control. Quarterly Journal of Experimental Psychology, 42B, 5971.Google Scholar
Honig, W. K., & Thompson, R. K. R. (1982). Retrospective and prospective processing in animal working memory. In Bower, G. (Ed.), The psychology of learning and motivation (vol. 16, pp. 239283). Orlando, FL: Academic Press.Google Scholar
HornerV., & WhitenA. (2005). Causal knowledge and imitation/emulation switching in chimpanzees (Pan troglodytes) and children (Homo sapiens). Animal Cognition8164181.Google Scholar
Hsee, C. K. (1998). Less is better: When low-value options are valued more highly than high-value options. Journal of Behavioral Decision Making, 11, 107121.3.0.CO;2-Y>CrossRefGoogle Scholar
Hull, C. L. (1943). Principles of behavior. New York: Appleton-Century-Crofts.Google Scholar
Kacelnik, A., & Marsh, B. (2002). Cost can increase preference in starlings. Animal Behaviour, 63, 245250.CrossRefGoogle Scholar
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263291.Google Scholar
Kelly, R., & Grant, D. S. (2001). A differential outcomes effect using biologically neutral outcomes in delayed matching-to-sample with pigeons. Quarterly Journal of Experimental Psychology, 54B, 6979.Google Scholar
Kralik, J. D., Xu, E. R., Knight, E. J., Khan, S. A., & Levine, J. W. (2012). When less is more: Evolutionary origins of the affect heuristic. PLoS One, 7, e46240. https://doi.org/10.1371/ journal.pone.0046240CrossRefGoogle ScholarPubMed
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science354, 110114.Google Scholar
Krützen, M., Kreicker, S., MacLeod, C. D., Learmonth, J., Kopps, A. M., Walsham, P., et al. (2014). Cultural transmission of tool use by Indo-Pacific bottlenose dolphins (Tursiops sp.) provides access to a novel foraging niche. Proceedings of the Royal Society B: Biological Sciences 281, 20140374.Google Scholar
Kuan, L.-A., & Colwill, R. (1997). Demonstration of a socially transmitted taste aversion in the rat. Psychonomic Bulletin and Review, 4, 374377.Google Scholar
Laland, K. N., & Galef, B. G. Jr. (Eds.) (2009). The question of animal culture. London: Harvard University Press.Google Scholar
Lazareva, O. F., & Wasserman, E. A. (2006). Effect of stimulus orderability and reinforcement history on transitive responding in pigeons. Behavioural Processes, 72, 161172.Google Scholar
Lipp, H.-P., Vyssotski, A. L., Wolfer, D. P., Renaudineau, S., Savini, M., Tröster, G., et al. (2004). Pigeon homing along highways and exits. Current Biology, 14, 12391249.CrossRefGoogle ScholarPubMed
Mackintosh, N. J. (1969). Comparative studies of reversal and probability learning: Rats, birds, and fish. In Gilbert, R. M. & Sutherland, N. S. (Eds.), Animal discrimination learning (pp. 137162). New York: Academic Press.Google Scholar
Magalhães, P., & White, K. G. (2013). Sunk cost and work ethic effects reflect suboptimal choice between different work requirements. Behavioural Processes, 94, 5559.CrossRefGoogle ScholarPubMed
Mann, J., & Sargeant, B. (2003). Like mother, like calf: the ontogeny of foraging traditions in wild Indian ocean bottlenose dolphins (Tursiops sp.). In Fragaszy, D. & Perry, S. (Eds.), The biology of traditions (pp. 236266). Cambridge, UK: Cambridge University Press.Google Scholar
Maron, J. L. (1982). Shell-dropping behavior of western gulls (Larus occidentalis). The Auk, 99, 565569.Google Scholar
McGonigle, B. O., & Chalmers, M. (1977). Are monkeys logical? Nature, 267, 694696.Google Scholar
McGrew, W. C. (1992). Chimpanzee material culture: Implications for human evolution. Cambridge, UK: Cambridge University Press.Google Scholar
McGrew, W. C., & Tutin, C. E. G. (1978). Evidence for a social custom in wild chimpanzees? Man, 13, 234251.Google Scholar
Meyer, D. R. (1971). Habits and concepts of monkeys. In Jarrard, L. E. (Ed.), Cognitive processes of nonhuman primates (pp. 83102). New York: Academic Press.CrossRefGoogle Scholar
Miller, H. C., Friedrich, A. M., Narkavic, R. J., & Zentall, T. R. (2009). A differential outcomes effect using hedonically-nondifferential outcomes with delayed matching-to-sample by pigeons. Learning and Behavior, 37, 161166.Google Scholar
Miller, H. C., Gipson, C. D., Vaughan, A., Rayburn-Reeves, R., & Zentall, T. R. (2009). Object permanence in dogs: Invisible displacement in a rotation task. Psychonomic Bulletin and Review, 16, 150155.Google Scholar
Mitchell, R. W. (1997). A comparison of the self-awareness and kinesthetic-visual matching theories of self-recognition: Autistic children and others. New York Academy of Sciences, 818, 3962.CrossRefGoogle ScholarPubMed
Moore, B. R. (1992). Avian movement imitation and a new form of mimicry: Tracing the evolution of a complex form of learning. Behaviour, 122, 231263.Google Scholar
Morgan, C. L. (1894). An introduction to comparative psychology. London: Scott.CrossRefGoogle Scholar
Naqshbandi, M., & Roberts, W. A. (2006). Anticipation of future events in squirrel monkeys (Saimiri sciureus) and rats (Rattus norvegicus): Tests of the Bischof-Kohler hypothesis. Journal of Comparative Psychology, 120, 345357.Google Scholar
Natale, F., Antinucci, F., Spinozzi, F., & Poti’, P. (1986). Stage 6 object permanence in nonhuman primate cognition: A comparison between gorilla (Gorilla gorilla) and Japanese macaque (Macaca fuscata). Journal of Comparative Psychology, 100, 335339.Google Scholar
Navarro, A. D., & Fantino, E. (2005). The sunk cost effect in pigeons and humans. Journal of the Experimental Analysis of Behavior, 83, 113.Google Scholar
Nguyen, N. H., Klein, E. D., & Zentall, T. R. (2005). Imitation of two-action sequences by pigeons. Psychonomic Bulletin and Review, 12, 514518.Google Scholar
Nielsen, M., & Haun, D. (2016). Why developmental psychology is incomplete without comparative and crosscultural perspectives. Philosophical Transactions of the Royal Society: B, 371, 20150071.Google Scholar
OverH., & CarpenterM. (2012). Putting the social into social learning: Explaining both selectivity and fidelity in children’s copying behaviorJournal of Comparative Psychology126, 182–192.Google Scholar
Patterson, F. G. (1978). The gestures of a gorilla: Language acquisition in another pongid. Brain and Language, 5, 7297.Google Scholar
Pattison, K. F., & Zentall, T. R. (2014). Suboptimal choice by dogs: When less is better than more. Animal Cognition, 17, 10191022.Google Scholar
Pattison, K. F., Zentall, T. R., & Watanabe, S. (2012). Sunk cost: Pigeons (Columba livia) too show bias to complete a task rather than shift to another. Journal of Comparative Psychology, 126, 19.Google Scholar
Pepperberg, I. M. (1987). Interspecies communication: A tool for assessing conceptual abilities in an African grey parrot. In Green-berg, G. & Tobach, E. (Eds.), Language, cognition, and consciousness: Integrative levels (pp. 3156). Hillsdale, NJ: Erlbaum.Google Scholar
Peterson, G. B. (1984). How expectancies guide behavior. In Roitblat, H. L., Bever, T. G., & Terrace, H. S. (Eds.), Animal cognition (pp. 135148). Hillsdale, NJ: Erlbaum.Google Scholar
Peterson, G. B., Wheeler, R. L., & Trapold, M. A. (1980). Enhancement of pigeons’ conditional discrimination performance by expectancies of reinforcement and nonreinforcement. Animal Learning and Behavior, 8, 2230.Google Scholar
Piaget, J. (1951). Play, dreams, and imitation in childhood. New York: W. W. Norton.Google Scholar
Piaget, J. (1952). The child’s concept of number. New York: W. W. Norton.Google Scholar
Piaget, J. (1954). The construction of reality in the child. New York: Basic Books.Google Scholar
Plotnik, J. M., de Waal, F. B. M., & Reiss, D. (2006). Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences, 103, 1705317057.Google Scholar
Povinelli, D. J., Nelson, K. E., & Boysen, S. T. (1990). Inferences about guessing and knowing by chimpanzees. Journal of Comparative Psychology, 104, 203210.Google Scholar
Premack, D. (1976). Intelligence in ape and man. Hillsdale, NJ: Erlbaum.Google Scholar
Prior, H., Schwatz, A., & Güntürkün, O. (2008). Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS Biology, 6(8), e202. https://doi.org/10.1371/journal. pbio.0060202Google Scholar
Raby, C. R., Alexis, D. M., Dickinson, A., & Clayton, N. S. (2007). Empirical evaluation of mental time travel. Behavioral Brain Sciences, 30, 330331.Google Scholar
Rajala, A. Z., Reininger, K. R., Lancaster, K. M., & Populin, L. C. (2010). Rhesus monkeys (Macaca mulatta) do recognize themselves in the mirror: Implications for the evolution of self-recognition. PLoS One, 5(9), e12865. https://doi.org/10.1371/journal.pone.0012865Google Scholar
Reiss, D., & Marino, L. (2001). Self-recognition in the bottlenose dolphin: A case of cognitive convergence. Proceedings of the National Academy of Sciences, 98, 59375942.Google Scholar
Riley, D. A. (1968). Discrimination learning. Boston: Allyn & Bacon.Google Scholar
Ristau, C. A. (1991). Aspects of the cognitive ethology of an injury-feigning bird, the piping plover. In Ristau, C. (Ed.), Comparative ethology: The minds of other animals (pp. 7989). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Rizzolatti, G., Fadiga, L, GalleseV., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131141.Google Scholar
Roberts, W. A. (2002). Are animals stuck in time? Psychological Bulletin, 128, 473489.Google Scholar
Roberts, W. A., & Grant, D. S. (1976). Studies of short-term memory in the pigeon using the delayed matching-to-sample procedure. In Medin, D. L., Roberts, W. A., & Davis, R. T. (Eds.), Processes of animal memory (pp. 79112). Hillsdale, NJ: Erlbaum.Google Scholar
Roper, K. L., Kaiser, D. H., & Zentall, T. R. (1995). Directed forgetting in pigeons: The role of alternative memories in the effectiveness of forget cues. Animal Learning and Behavior, 23, 280285.Google Scholar
Roper, K. L., & Zentall, T. R. (1993). Directed forgetting in animals. Psychological Bulletin, 113, 513532.Google Scholar
Rumbaugh, D. M. (Ed.) (1977). Language learning by a chimpanzee: The Lana project. New York: Academic Press.Google Scholar
Rutte, C., & Taborsky, M. (2008). The influence of social experience on cooperative behaviour of rats (Rattus norvegicus): Direct vs generalised reciprocityBehavioral Ecology and Sociobiology, 62(4), 499505.Google Scholar
Savage-Rumbaugh, E. S. (1984). Acquisition of functional symbol use in apes and children. In Roitblat, H. L., Bever, T. G., & Terrace, H. S. (Eds.), Animal cognition (pp. 291310). Hillsdale, NJ: Erlbaum.Google Scholar
Schaik, C. P. van (2012). Animal culture: Chimpanzee conformity? Current Biology, 22, R402R404.Google ScholarPubMed
Sherburne, L. M., Zentall, T. R., & Kaiser, D. H. (1998). Timing in pigeons: The choose-short effect may result from “confusion” between delay and intertrial intervals. Psychonomic Bulletin and Review, 5, 516522.Google Scholar
Singer, R. A., Abroms, B. D., & Zentall, T. R. (2007). Formation of a simple cognitive map by rats. International Journal of Comparative Psychology, 19, 417425.Google Scholar
Singer, R. A., & Zentall, T. R. (2007). Pigeons learn to answer the question “Where did you just peck?” and can report peck location when unexpectedly asked. Learning and Behavior, 35, 184189.CrossRefGoogle ScholarPubMed
Skinner, B. F. (1962). Two “synthetic social relations.” Journal of the Experimental Analysis of Behavior, 5, 531533.Google Scholar
Slotnick, B. M., & Katz, H. M. (1974). Olfactory learning-set formation in rats. Science, 185, 796798.Google Scholar
Smith, A. P., & Zentall, T. R. (2016). Suboptimal choice in pigeons: Choice is primarily based on the value of the conditioned reinforcer rather than overall reinforcement rate. Journal of Experimental Psychology: Animal Behavior Processes, 42, 212220.Google Scholar
Southgate, V., Senju, A., & Csibra, G. (2007). Action anticipation through attribution of false belief by 2-year-olds. Psychological Science, 18, 587592.Google Scholar
Spence, K. W. (1937). The differential response in animals to stimuli varying within a single dimension. Psychological Review, 44, 430444.Google Scholar
Stagner, J. P., & Zentall, T. R. (2010). Suboptimal choice behavior by pigeons. Psychonomic Bulletin and Review, 17, 412416.Google Scholar
Steirn, J. N., Weaver, J. E., & Zentall, T. R. (1995). Transitive inference in pigeons: Simplified procedures and a test of value transfer theory. Animal Learning and Behavior, 23, 7682.Google Scholar
Suddendorf, T., & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genetic, Social, and General Psychology Monographs 123, 133167.Google Scholar
Tan, L., & Hackenberg, T. D. (2016). Functional analysis of mutual behavior in laboratory rats (Rattus norvegicus). Journal of Comparative Psychology, 130, 1223.CrossRefGoogle ScholarPubMed
Tolman, E. C. (1932). Purposive behavior in animals and men. New York: Century.Google Scholar
Topal, J., Byrne, R. W., Miklosi, A., & Csanyi, V. (2006). Reproducing human actions and action sequences: “Do as I do!” in a dog. Animal Cognition, 9, 355367.Google Scholar
Trapold, M. A. (1970). Are expectancies based on different reinforcing events discriminably different? Learning and Motivation, 1, 129140.Google Scholar
Triana, E., & Pasnak, R. (1981). Object permanence in cats and dogs. Animal Learning and Behavior, 9, 135139.Google Scholar
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. & Donaldson, W. (Eds.), Organization of memory (pp. 382403). New York: Academic Press.Google Scholar
Urcuioli, P. J., Zentall, T. R., Jackson-Smith, P., & Steirn, J. N. (1989). Evidence for common coding in many-to-one matching: Retention, intertrial interference, and transfer. Journal of Experimental Psychology: Animal Behavior Processes, 15, 264273.Google Scholar
Wasserman, E. A., DeVolder, C. L., & Coppage, D. J. (1992). Non-similarity based conceptualization in pigeons via secondary or mediated generalization. Psychological Science, 6, 374379.Google Scholar
Weaver, J. E., Steirn, J. N., & Zentall, T. R. (1997). Transitive inference in pigeons: Control for differential value transfer. Psychonomic Bulletin and Review, 4, 113117.Google Scholar
WeirA. A. S.ChappellJ., & Kacelnik, A. (2002). Shaping of hooks in New Caledonian crowsScience, 297, 981.Google Scholar
Whiten, A., & Ham, R. (1992). On the nature and evolution of imitation in the animal kingdom: Reappraisal of a century of research. Advances in the Study of Behavior, 21, 239283.Google Scholar
Williams, D. A., Butler, M. M., & Overmier, J. B. (1990). Expectancies of reinforcer location and quality as cues for a conditional discrimination in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 16, 313.Google Scholar
Woodruff, G., & Premack, D. (1979). Intentional communication in the chimpanzee: The development of deception. Cognition, 7, 333362.Google Scholar
Woodruff, G., Premack, D., & Kennel, K. (1978). Conservation of liquid and solid quantity by the chimpanzee. Science, 202, 991994.Google Scholar
Zentall, T. R. (1993). Animal cognition: An approach to the study of animal behavior. In Zentall, T. R. (Ed.), Animal cognition: A tribute to Donald A. Riley (pp. 315). Hillsdale, NJ: Erlbaum.Google Scholar
Zentall, T. R. (1996). An analysis of imitative learning in animals. In Heyes, C. M. & Galef, B. G., Jr. (Eds.), Social learning and tradition in animals (pp. 221243). New York: Academic Press.Google Scholar
Zentall, T. R. (1997). Animal memory: The role of instructions. Learning and Motivation, 28, 248267.Google Scholar
Zentall, T. R. (1998). Symbolic representation in pigeons: Emergent stimulus relations in conditional discrimination learning. Animal Learning and Behavior, 26, 363377.Google Scholar
Zentall, T. R. (2016). Reciprocal altruism in rats: Why does it occur? Learning and Behavior, 44, 78.Google Scholar
Zentall, T. R., Clement, T. S., Bhatt, R. S., & Allen, J. (2001). Episodic-like memory in pigeons. Psychonomic Bulletin and Review, 8, 685690.Google Scholar
Zentall, T. R., Laude, J. R., Case, J. P., & Daniels, C. W. (2014). Less means more for pigeons but not always. Psychonomic Bulletin and Review, 21, 16231628.Google Scholar
Zentall, T. R., Peng, D., & Miles, L. (in press). Transitive inference in pigeons may result from differential tendencies to reject the test stimuli acquired during training. Animal Cognition.Google Scholar
Zentall, T. R., & Raley, O. L. (2019). Object permanence in the pigeon: Insertion of a delay prior to choice facilitates visible- and invisible-displacement accuracy. Journal of Comparative Psychology, 133, 132139.Google Scholar
Zentall, T. R., & Singer, R. A. (2007). Within-trial contrast: Pigeons prefer conditioned reinforcers that follow a relatively more rather than less aversive event. Journal of the Experimental Analysis of Behavior, 88, 131149.Google Scholar
Zentall, T. R., & Smeets, P. M. (Eds.) (1996). Stimulus class formation in humans and animals. Amsterdam: North Holland.Google Scholar
Zentall, T. R., Sutton, J. E., & Sherburne, L. M. (1996). True imitative learning in pigeons. Psychological Science, 7, 343346.Google Scholar
Zucca, P., Milos, N., & Vallortigara, G. (2007). Piagetian object permanence and its development in Eurasian jays (Garrulus glandarius). Animal Cognition, 10, 243258.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×