Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T06:37:26.542Z Has data issue: false hasContentIssue false

6 - Visual Development

from Part II - Perceptual Development

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access

Summary

Newborns can see – but only if they are awake with an object right in front of them that is large with elements of high contrast against the background, like the mother’s face. Improvements come rapidly after birth with the maturation of the retina and the visual cortex to which it connects, allowing better input to higher visual areas that underlie the perception of whole objects and their movement. Nevertheless, missing visual input near birth because of dense cataracts in one or both eyes alters the developmental trajectory, even when treatment occurs within the first few months of life. Thus, the early visual input, despite its limitations, is critical for setting up the neural architecture for later refinement.

Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 157 - 185
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anzures, G., Wheeler, A., Quinn, P. C., Pascalis, O., Slater, A. M., Heron-Delaney, M., … Lee, K. (2012). Brief daily exposures to Asian females reverses perceptual narrowing for Asian faces in Caucasian infants. Journal of Experimental Child Psychology, 112(4), 484495. doi:10.1016/j.jecp.2012.04.005Google Scholar
Armstrong, V., Maurer, D., Ellemberg, D., & Lewis, T. L. (2011). Sensitivity to first- and second-order drifting gratings in 3-month-old infants. Iperception, 2(5), 440457. doi:10.1068/i0406Google Scholar
Atkinson, J., Braddick, O., Lin, M. H., Curran, W., Guzzetta, A., & Cioni, G. (1999). Form and motion: Is there a dorsal stream vulnerability in development? Investigative Ophthalmology & Visual Science, 40, S395.Google Scholar
Banks, M., & Bennett, P. (1988). Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. Journal of the Optical Society of America, 5(12), 20592079.Google Scholar
Banks, M., (1978). Acuity and contrast sensitivity in 1-, 2-, and 3-month-old human infants. Investigative Ophthalmology & Visual Science, 17, 361365.Google Scholar
Bar-Haim, Y., Ziv, T., Lamy, D., & Hodes, R. M. (2006). Nature and nurture in own-race face processing. Psychological Science, 17(2), 159163.Google Scholar
Bardi, L., Regolin, L., & Simion, F. (2011). Biological motion preference in humans at birth: Role of dynamic and configural properties. Developmental Science, 14(2), 353359.Google Scholar
Bhatt, R. S., Bertin, E., Hayden, A., & Reed, A. (2005). Face processing in infancy: Developmental changes in the use of different kinds of relational information. Child Development, 76(1), 169181. doi:10.1111/j.1467-8624.2005.00837.xGoogle Scholar
Biagi, L., Crespi, S. A., Tosetti, M., & Morrone, M. C. (2015). BOLD response selective to flow-motion in very young infants. PLoS Biol, 13(9), e1002260. doi:10.1371/journal.pbio.1002260Google Scholar
Bidet-Ildei, C., Kitromilides, E., Orliaguet, J. P., Pavlova, M., & Gentaz, E. (2014). Preference for point-light human biological motion in newborns: Contribution of translational displacement. Developmental Psychology, 50(1), 113120. doi:10.1037/a0032956Google Scholar
Birch, D. G., Birch, E. E., Hoffman, D. R., & Uauy, R. D. (1992). Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. Investigative Ophthalmology & Visual Science, 33(8), 23652376.Google Scholar
Birch, E. E., Birch, D. G., Hoffman, D. R., & Uauy, R. (1992). Dietary essential fatty acid supply and visual acuity development. Investigative Ophthalmology & Visual Science, 33, 32423253.Google Scholar
Birch, E. E., Cheng, C., Stager, D. R., Weakley, D. R., & Stager, D. R. (2009). The critical period for surgical treatment of dense congenital bilateral cataracts. Journal of American Association for Pediatric Ophthalmology and Strabismus, 13(1), 6771.Google Scholar
Birch, E. E., Garfield, S., Castañeda, Y., Hughbanks-Wheaton, D., Uauy, R., & Hoffman, D. (2007). Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Human Development, 83(5), 279284. doi:10.1016/j.earlhumdev.2006.11.003Google Scholar
Birch, E. E., Gwiazda, J., & Held, R. (1982). Stereoacuity development for crossed and uncrossed disparities in human infants. Vision Research, 22(5), 507513.Google Scholar
Birtles, D. B., Braddick, O. J., Wattam-Bell, J., Wilkinson, A. R., & Atkinson, J. (2007). Orientation and motion-specific visual cortex responses in infants born preterm. Neuroreport, 18, 19751979. doi:10.1097/WNR.0b013e3282f228c8Google Scholar
Blakemore, C. (1990). Maturation of mechanisms for efficient spatial vision. In Blakemore, C. (Ed.), Vision: Coding and efficiency (pp. 254266). Cambridge, UK: Cambridge University Press.Google Scholar
Blakemore, C., & Vital-Durand, F. (1986). Organization and post-natal development of the monkey’s lateral geniculate nucleus. Journal of Physiology, 380(1), 453491.Google Scholar
Blakstad, E. W., Strømmen, K., Moltu, S. J., Wattam-Bell, J., Nordheim, T., Almaas, A. N., … Nakstad, B. (2015). Improved visual perception in very low birth weight infants on enhanced nutrient supply. Neonatology, 108(1), 3037. doi:10.1159/000381660CrossRefGoogle ScholarPubMed
Bowering, E. R., Maurer, D., Lewis, T. L., & Brent, H. P. (1993). Sensitivity in the nasal and temporal hemifields in children treated for cataract. Investigative Ophthalmology & Visual Science, 34(13), 35013509.Google Scholar
Bowering, E. R., Maurer, D., Lewis, T. L., Brent, H. P., & Riedel, P. (1996). The visual field in childhood: Normal development and the influence of deprivation. Developmental Cognitive Neuroscience Technical Report, 96, 133.Google Scholar
Braddick, O., & Atkinson, J. (2011). Development of human visual function. Vision Research, 51(13), 15881609. doi:10.1016/j.visres.2011.02.018Google Scholar
Braddick, O., Birtles, D., Wattam-Bell, J., & Atkinson, J. (2005). Motion- and orientation-specific cortical responses in infancy. Vision Research, 45(25–26), 31693179. doi:10.1016/j.visres.2005.07.021Google Scholar
Braddick, O., Wattam-Bell, J., Day, J., & Atkinson, J. (1983). The onset of binocular function in human infants. Human Neurobiology, 2(2), 6569.Google Scholar
Brenna, J. T., Varamini, B., Jensen, R. G., Diersen-Schade, D. A., Boettcher, J. A., & Arterburn, L. M. (2007). Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. American Journal of Clinical Nutrition, 85(6), 14571464.Google Scholar
Brown, A. M., Lindsey, D. T., Cammenga, J. G., Giannone, P. J., & Stenger, M. R. (2015). The contrast sensitivity of the newborn human infant. Investigative Ophthalmology & Visual Science, 56(1), 625632. doi:10.1167/iovs.14-14757Google Scholar
Brown, A. M., Opoku, F. O., & Stenger, M. R. (2018). Neonatal contrast sensitivity and visual acuity: Basic psychophysics. Translational Vision Science & Technology, 7(3), 18. doi:10.1167/tvst.7.3.18Google Scholar
Bushnell, I. W. R. (2001). Mother’s face recognition in newborn infants: Learning and memory. Infant and Child Development, 10(1–2), 6774. doi:10.1002/icd.248Google Scholar
Candy, T. R., Crowell, J. A., & Banks, M. S. (1998). Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate. Vision Research, 38(24), 38573870.Google Scholar
Cashon, C. H., & Cohen, L. B. (2004). Beyond U-shaped development in infants’ processing of faces: An information-processing account. Journal of Cognition and Development, 5(1), 5980.Google Scholar
Cassia, V. M., Turati, C., & Simion, F. (2004). Can a nonspecific bias toward top-heavy patterns explain newborns’ face preference? Psychological Science, 15(6), 379383. doi:10.1111/j.0956-7976.2004.00688.xGoogle Scholar
Cecchini, M., Iannoni, M. E., Aceto, P., Baroni, E., Di Vito, C., & Lai, C. (2017). Active sleep is associated with the face preference in the newborns who familiarized with a responsive face. Infant Behaviour and Development, 49, 3745. doi:10.1016/j.infbeh.2017.06.004Google Scholar
Chang, D. H., & Troje, N. F. (2009). Characterizing global and local mechanisms in biological motion perception. Journal of Vision, 9(5), 8.1–810. doi:10.1167/9.5.8Google Scholar
Collignon, O., Dormal, G., de Heering, A., Lepore, F., Lewis, T. L., & Maurer, D. (2015). Long-lasting crossmodal cortical reorganization triggered by brief postnatal visual deprivation. Current Biology, 25(18), 23792383. doi:10.1016/j.cub.2015.07.036Google Scholar
de Haan, M., Johnson, M. H., Maurer, D., & Perrett, D. I. (2001). Recognition of individual faces and average face prototypes by 1- and 3-month-old infants. Cognitive Development, 16(2), 659678.Google Scholar
de Heering, A., & Maurer, D. (2014). Face memory deficits in patients deprived of early visual input by bilateral congenital cataracts. Developmental Psychobiology, 56(1), 96108. doi:10.1002/dev.21094Google Scholar
de Heering, A., Turati, C., Rossion, B., Bulf, H., Goffaux, V., & Simion, F. (2008). Newborns’ face recognition is based on spatial frequencies below 0.5 cycles per degree. Cognition, 106(1), 444454. doi:10.1016/j.cognition.2006.12.012Google Scholar
Delaney, S. M., Dobson, V., Mohan, K. M., Harvey, M. A., & Harvey, E. M.(2004). The effect of flicker rate on nasal and temporal measured visual field extent in infants. Optometry and Vision Science, 81(12), 922928.Google ScholarPubMed
Di Giorgio, E., Leo, I., Pascalis, O., & Simion, F. (2012). Is the face-perception system human-specific at birth. Developmental Psychology, 48(4), 10831090. doi:10.1037/a0026521Google Scholar
Drover, J. R., Earle, A. E., Courage, M. L., & Adams, R. J. (2002). Improving the effectiveness of the infant contrast sensitivity card procedure. Optometry and Vision Science, 79(1), 5259.Google Scholar
Ellemberg, D., Lewis, T. L., Defina, N., Maurer, D., Brent, H. P., Guillemot, J. -P., & Lepore, F. (2005). Greater losses in sensitivity to second-order local motion than to first-order local motion after early visual deprivation in humans. Vision Research, 45(22), 28772884. doi:10.1016/j.visres.2004.11.019Google Scholar
Ellemberg, D., Lewis, T. L., Liu, C. H., & Maurer, D. (1999). Development of spatial and temporal vision during childhood. Vision Research, 39(14), 23252333.Google Scholar
Ellemberg, D., Lewis, T. L., Maurer, D., Brar, S., & Brent, H. P. (2002). Better perception of global motion after monocular than after binocular deprivation. Vision Research, 42(2), 169179.Google Scholar
Ellemberg, D., Lewis, T. L., Maurer, D., Lui, C. H., & Brent, H. P. (1999). Spatial and temporal vision in patients treated for bilateral congenital cataracts. Vision Research, 39(20), 34803489.CrossRefGoogle ScholarPubMed
Fair, J., Flom, R., Jones, J., & Martin, J. (2012). Perceptual learning: 12-month-olds’ discrimination of monkey faces. Child Development, 83(6), 19962006. doi:10.1111/j.1467-8624.2012.01814.xGoogle Scholar
Fantz, R. L. (1963). Pattern vision in newborn infants. Science, 140(3564), 296297.Google Scholar
Fantz, R. L., Ordy, J. M., & Udelf, M. S. (1962). Maturation of pattern vision in infants during the first six months. Journal of Comparative and Physiological Psychology, 55, 907917.Google Scholar
Farroni, T., Menon, E., & Johnson, M. H. (2006). Factors influencing newborns’ preference for faces with eye contact. Journal of Experimental Child Psychology, 95(4), 298308. doi:10.1016/j.jecp.2006.08.001Google Scholar
Ferguson, K. T., Kulkofsky, S., Cashon, C. H., & Casasola, M. (2009). The development of specialized processing of own-race faces in infancy. Infancy, 14(3), 263284. doi:10.1080/15250000902839369Google Scholar
Fine, I., Wade, A. R., Brewer, A. A., May, M. G., Goodman, D. F., Boynton, G. M., … MacLeod, D. I. (2003). Long-term deprivation affects visual perception and cortex. Nature Neuroscience, 6(9), 915916.Google Scholar
Frie, J., Padilla, N., Ådén, U., Lagercrantz, H., & Bartocci, M. (2016). Extremely preterm-born infants demonstrate different facial recognition processes at 6–10 months of corrected age. Journal of Pediatrics, 172, 96–102.e1. doi:10.1016/j.jpeds.2016.02.021Google Scholar
Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4(3), 179192.Google Scholar
Grady, C. L., Mondloch, C. J., Lewis, T. L., & Maurer, D. (2014). Early visual deprivation from congenital cataracts disrupts activity and functional connectivity in the face network. Neuropsychologia, 57, 122139. doi:10.1016/j.neuropsychologia.2014.03.005Google Scholar
Guerreiro, M. J. S., Putzar, L., & Röder, B. (2016). Persisting cross-modal changes in sight-recovery individuals modulate visual perception. Current Biology, 26(22), 30963100. doi:10.1016/j.cub.2016.08.069Google Scholar
Gwiazda, J., Bauer, J., & Held, R. (1989). Binocular function in human infants: Correlation of stereoptic and fusion-rivalry discriminations. Journal of Pediatric Ophthalmology and Strabismus, 26(3), 128132.Google Scholar
Hadad, B.-S., Maurer, D., & Lewis, T. L. (2012). Sparing of sensitivity to biological motion but not of global motion after early visual deprivation. Developmental Science, 15(4), 474481. doi:10.1111/j.1467-7687.2012.01145.xCrossRefGoogle Scholar
Hainline, L. (1978). Developmental changes in visual scanning of face and nonface patterns by infants. Journal of Experimental Child Psychology, 25(1), 90115.CrossRefGoogle ScholarPubMed
Haith, M. M., Bergman, T., & Moore, M. J. (1977). Eye contact and face scanning in early infancy. Science, 198(4319), 853855.Google Scholar
Hayden, A., Bhatt, R. S., Reed, A., Corbly, C. R., & Joseph, J. E. (2007). The development of expert face processing: Are infants sensitive to normal differences in second-order relational information? Journal of Experimental Child Psychology, 97(2), 8598. doi:10.1016/j.jecp.2007.01.004Google Scholar
Hensch, T. K., & Quinlan, E. M. (2018). Critical periods in amblyopia. Visual Neuroscience, 35, E014. doi:10.1017/S0952523817000219Google Scholar
Heron-Delaney, M., Anzures, G., Herbert, J. S., Quinn, P. C., Slater, A. M., Tanaka, J. W., … Pascalis, O. (2011). Perceptual training prevents the emergence of the other race effect during infancy. PloS one, 6(5), e19858.Google Scholar
Hoffman, D. R., Boettcher, J. A., & Diersen-Schade, D. A. (2009). Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: A review of randomized controlled trials. Prostaglandins, Leukotrienes and Essential Fatty Acids, 81(2–3), 151158. doi:10.1016/j.plefa.2009.05.003Google Scholar
Hood, B., & Atkinson, J. (1993). Disengaging visual attention in the infant and adult. Infant Behaviour and Development, 16, 405422.Google Scholar
Hou, C., Norcia, A. M., Madan, A., Tith, S., Agarwal, R., & Good, W. V. (2011). Visual cortical function in very low birth weight infants without retinal or cerebral pathology. Investigative Ophthalmology & Visual Science, 52(12), 90919098. doi:10.1167/iovs.11–7458Google Scholar
Humphrey, A. L., & Saul, A. B. (1998). Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. Journal of Neurophysiology, 80(6), 29913004.Google Scholar
Huttenlocher, P. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28(6), 517527.CrossRefGoogle ScholarPubMed
Jayaraman, S., Fausey, C. M., & Smith, L. B. (2017). Why are faces denser in the visual experiences of younger than older infants? Developmental Psychology, 53(1), 3849. doi:10.1037/dev0000230CrossRefGoogle ScholarPubMed
Jayaraman, S., & Smith, L. B. (2018). Faces in early visual environments are persistent not just frequent. Vision Research, 157, 213221. doi:10.1016/j.visres.2018.05.005Google Scholar
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6(10), 766774. doi:10.1038/nrn1766Google Scholar
Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40(1–2), 119.Google Scholar
Johnson, M. H., Senju, A., & Tomalski, P. (2015). The two-process theory of face processing: Modifications based on two decades of data from infants and adults. Neuroscience Biobehavioral Review, 50, 169179. doi:10.1016/j.neubiorev.2014.10.009Google Scholar
Kelly, D. J., Liu, S., Ge, L., Quinn, P. C., Slater, A. M., Lee, K., … Pascalis, O. (2007). Cross-race preferences for same-race faces extend beyond the African versus Caucasian contrast in 3-month-old infants. Infancy, 11(1), 8795. doi:10.1080/15250000709336871Google Scholar
Kelly, D. J., Liu, S., Lee, K., Quinn, P. C., Pascalis, O., Slater, A. M., & Ge, L. (2009). Development of the other-race effect during infancy: Evidence toward universality? Journal of Experimental Child Psychology, 104(1), 105114. doi:10.1016/j.jecp.2009.01.006Google Scholar
Kelly, D. J., Quinn, P. C., Slater, A. M., Lee, K., Ge, L., & Pascalis, O. (2007). The other-race effect develops during infancy: Evidence of perceptual narrowing. Psychological Science, 18(12), 10841089.Google Scholar
Kelly, D. J., Quinn, P. C., Slater, A. M., Lee, K., Gibson, A., Smith, M., … Pascalis, O. (2005). Three-month-olds, but not newborns, prefer own-race faces. Developmental Science, 8(6), F31F36.Google Scholar
Kiorpes, L. (2016). The puzzle of visual development: Behavior and neural limits. Journal of Neuroscience, 36(45), 1138411393. doi:10.1523/JNEUROSCI.2937-16.2016Google Scholar
Kodas, E., Galineau, L., Bodard, S., Vancassel, S., Guilloteau, D., Besnard, J. C., & Chalon, S. (2004). Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. Journal of Neurochemistry, 89(3), 695702. doi:10.1111/j.1471-4159.2004.02401.xGoogle Scholar
Le Grand, R., Mondloch, C. J., Maurer, D., & Brent, H. P. (2001). Neuroperception: Early visual experience and face processing. Nature, 410(6831), 890.Google Scholar
Le Grand, R., Mondloch, C. J., Maurer, D., (2003). Expert face processing requires visual input to the right hemisphere during infancy. Nature Neuroscience, 6(10), 11081112. doi:10.1038/nn1121Google Scholar
Le Grand, R., Mondloch, C. J., Maurer, D., (2004). Impairment in holistic face processing following early visual deprivation. Psychological Science, 15(11), 762768.Google Scholar
Lewis, T. L., Ellemberg, D., Maurer, D., Wilkinson, F., Wilson, H. R., Dirks, M., & Brent, H. P. (2002). Sensitivity to global form in glass patterns after early visual deprivation in humans. Vision Research, 42(8), 939948.Google Scholar
Lewis, T. L., & Maurer, D. (1992). The development of the temporal and nasal visual fields during infancy. Vision Research, 32(5), 903911.Google Scholar
Lewis, T. L., (2009). Effects of early pattern deprivation on visual development. Optometry and Vision Science, 86(6), 640646. doi:10.1097/OPX.0b013e3181a7296bGoogle Scholar
Lewis, T. L., Maurer, D., & Brent, H. P. (1995). Development of grating acuity in children treated for unilateral or bilateral congenital cataract. Investigative Ophthalmology & Visual Science, 36(10), 20802095.Google Scholar
Lewis, T. L., Maurer, D., Tytla, M. E., Bowering, E. R., & Brent, H. P. (1992). Vision in the “good” eye of children treated for unilateral congenital cataract. Ophthalmology, 99(7), 10131017.Google Scholar
MacKay, T. L., Jakobson, L. S., Ellemberg, D., Lewis, T. L., Maurer, D., & Casiro, O. (2005). Deficits in the processing of local and global motion in very low birthweight children. Neuropsychologia, 43(12), 17381748. doi:10.1016/j.neuropsychologia.2005.02.008Google Scholar
Markant, J., Oakes, L. M., & Amso, D. (2016). Visual selective attention biases contribute to the other-race effect among 9-month-old infants. Developmental Psychobiology, 58(3), 355365. doi:10.1002/dev.21375Google Scholar
Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6(6), 255260.Google Scholar
Maurer, D., & Lewis, T. L. (1998). Overt orienting toward peripheral stimuli: Normal development and underlying mechanisms. In Richards, J. (Ed.), Cognitive neuroscience of attention: A developmental perspective (pp. 51102). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Maurer, D., Lewis, T. L., Brent, H. P., & Levin, A. V. (1999). Rapid improvement in the acuity of infants after visual input. Science, 286(5437), 108110.Google Scholar
Maurer, D., & Martello, M. (1980). The discrimination of orientation by young infants. Vision Research, 20, 201204.Google Scholar
Maurer, D., Mondloch, C. J., & Lewis, T. L. (2007). Sleeper effects. Developmental Science, 10(1), 4047. doi:10.1111/j.1467-7687.2007.00562.xGoogle Scholar
Maurer, D., & Salapatek, P. (1976). Developmental changes in the scanning of faces by young infants. Child Development, 47, 523527.Google Scholar
Maurer, D., & Werker, J. F. (2014). Perceptual narrowing during infancy: A comparison of language and faces. Developmental Psychobiology, 56(2), 154178. doi:10.1002/dev.21177Google Scholar
Mayer, D. L., Beiser, A. S., Warner, A. F., Pratt, E. M., Raye, K. N., & Lang, J. M. (1995). Monocular acuity norms for the Teller Acuity Cards between ages one month and four years. Investigative Ophthalmology & Visual Science, 36(3), 671685.Google Scholar
Mondloch, C. J., Le Grand, R., & Maurer, D. (2002). Configural face processing develops more slowly than featural face processing. Perception, 31(5), 553566. doi:10.1068/p3339Google Scholar
Mondloch, C. J., Le Grand, R., & Maurer, D. (2003). Early visual experience is necessary for the development of some – but not all – aspects of face processing. In Pascalis, O. & Slater, A. (Eds.), The development of face processing in infancy and early childhood (pp. 99117). New York, NY: Nova Science.Google Scholar
Mondloch, C. J., Lewis, T. L., Budreau, D. R., Maurer, D., Dannemiller, J. L., Stephens, B. R., & Kleiner-Gathercoal, K. A. (1999). Face perception during early infancy. Psychological Science, 10(5), 419422.Google Scholar
Mondloch, C. J., Lewis, T. L., Levin, A. V., & Maurer, D. (2013). Infant face preferences after binocular visual deprivation. International Journal of Behavioral Development, 37(2), 148153. doi:10.1177/0165025412471221Google Scholar
Mondloch, C. J., & Maurer, D. (2008). The effect of face orientation on holistic processing. Perception, 37(8), 1175. doi:10.1068/p6048Google Scholar
Mondloch, C. J., Robbins, R., & Maurer, D. (2010). Discrimination of facial features by adults, 10-year-olds, and cataract-reversal patients. Perception, 39(2), 184194. doi:10.1068/p6153Google Scholar
Mondloch, C. J., Segalowitz, S. J., Lewis, T. L., Dywan, J., Le Grand, R., & Maurer, D. (2013). The effect of early visual deprivation on the development of face detection. Developmental Science, 16(5), 728742. doi:10.1111/desc.12065Google Scholar
Morton, J., & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 98, 164181.Google Scholar
Movshon, J. A., & Kiorpes, L. (1993). Biological limits on visual development in primates. In Simons, K. (Ed.), Early visual development: normal and abnormal (pp. 296305). New York, NY: Oxford University Press.Google Scholar
Nakato, E., Kanazawa, S., & Yamaguchi, M. K. (2018). Holistic processing in mother’s face perception for infants. Infant Behaviour and Development, 50, 257263. doi:10.1016/j.infbeh.2018.01.007Google Scholar
Orioli, G., Filippetti, M. L., Gerbino, W., Dragovic, D., & Farroni, T. (2018). Trajectory discrimination and peripersonal space perception in newborns. Infancy, 23(2), 252267. doi:10.1111/infa.12207Google Scholar
Pascalis, O., de Haan, M., & Nelson, C. A. (2002). Is face processing species-specific during the first year of life? Science, 296(5571), 13211323.Google Scholar
Pascalis, O., de Schonen, S., Morton, J., Deruelle, C., & Fabre-Gremet, M. (1995). Mother’s face recognition by neonates: A replication and an extension. Infant Behaviour and Development, 18, 7985.Google Scholar
Pascalis, O., Scott, L. S., Kelly, D. J., Shannon, R. W., Nicholson, E., Coleman, M., & Nelson, C. A. (2005). Plasticity of face processing in infancy. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 52975300.Google Scholar
Pasternak, T., & Leinen, L. J. (1986). Pattern and motion vision in cats with selective loss of cortical directional selectivity. Journal of Neuroscience, 6(4), 938945.Google Scholar
Pereira, S. A., Pereira Junior, A., Costa, M. F., Monteiro, M. V., Almeida, V. A., Fonseca Filho, G. G., … Simion, F. (2017). A comparison between preterm and full-term infants’ preference for faces. Journal of Pediatrics (Rio J), 93(1), 3539. doi:10.1016/j.jped.2016.04.009Google Scholar
Quinn, P. C., Uttley, L., Lee, K., Gibson, A., Smith, M., Slater, A. M., & Pascalis, O. (2008). Infant preference for female faces occurs for same- but not other-race faces. Journal of Neuropsychology, 2(Pt. 1), 1526.Google Scholar
Quinn, P. C., Yahr, J., Kuhn, A., Slater, A. M., & Pascalils, O. (2002). Representation of the gender of human faces by infants: a preference for female. Perception, 31(9), 11091121.Google Scholar
Reid, V. M., Dunn, K., Young, R. J., Amu, J., Donovan, T., & Reissland, N. (2017). The human fetus preferentially engages with face-like visual stimuli. Current Biology, 27(12), 1825–1828.e3. doi:10.1016/j.cub.2017.05.044Google Scholar
Renier, L., de Volder, A. G., & Rauschecker, J. P. (2014). Cortical plasticity and preserved function in early blindness. Neuroscience and Biobehaviour Reviews, 41, 5363. doi:10.1016/j.neubiorev.2013.01.025Google Scholar
Rhodes, G., & Jeffery, L. (2006). Adaptive norm-based coding of facial identity. Vision Research, 46(18), 29772987. doi:10.1016/j.visres.2006.03.002Google Scholar
Robbins, R. A., Nishimura, M., Mondloch, C. J., Lewis, T. L., & Maurer, D. (2010). Deficits in sensitivity to spacing after early visual deprivation in humans: A comparison of human faces, monkey faces, and houses. Developmental Psychobiology, 52(8), 775781. doi:10.1002/dev.20473Google Scholar
Sai, F. Z. (2005). The role of the mother’s voice in developing mother’s face preference: Evidence for intermodal perception at birth. Infant and Child Development, 14(1), 2950. doi:10.1002/icd.376Google Scholar
Salapatek, P., & Kessen, W. (1966). Visual scanning of triangles by the human newborn. Journal of Experimental Child Psychology, 3(2), 155167.Google Scholar
Sangrigoli, S., Pallier, C., Argenti, A. M., Ventureyra, V. A., & de Schonen, S. (2005). Reversibility of the other-race effect in face recognition during childhood. Psychological Science, 16(6), 440444.Google Scholar
Scott, L. S., & Monesson, A. (2009). The origin of biases in face perception. Psychological Science, 20(6), 676680. doi:10.1111/j.1467-9280.2009.02348.xGoogle Scholar
Sifre, R., Olson, L., Gillespie, S., Klin, A., Jones, W., & Shultz, S. (2018). A longitudinal investigation of preferential attention to biological motion in 2- to 24-month-old infants. Scientific Reports, 8(1), 2527. doi:10.1038/s41598-018-20808-0Google Scholar
Simion, F., & Giorgio, E. D. (2015). Face perception and processing in early infancy: Inborn predispositions and developmental changes. Frontiers in Psychology, 6, 969. doi:10.3389/fpsyg.2015.00969Google Scholar
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences of the United States of America, 195, 809813.Google Scholar
Simpson, E. A., Varga, K., Frick, J. E., & Fragaszy, D. (2011). Infants experience perceptual narrowing for nonprimate faces. Infancy, 16, 318330.Google Scholar
Siu, C. R., & Murphy, K. M. (2018). The development of human visual cortex and clinical implications. Eye Brain, 10, 2536. doi:10.2147/EB.S130893Google Scholar
Sugden, N. A., & Marquis, A. R. (2017). Meta-analytic review of the development of face discrimination in infancy: Face race, face gender, infant age, and methodology moderate face discrimination. Psychological Bulletin, 143(11), 12011244. doi:10.1037/bul0000116Google Scholar
Sugden, N. A., Mohamed-Ali, M. I., & Moulson, M. C. (2014). I spy with my little eye: Typical, daily exposure to faces documented from a first-person infant perspective. Developmental Psychobiology, 56(2), 249261. doi:10.1002/dev.21183Google Scholar
Sugden, N. A., & Moulson, M. C. (2017). Hey baby, what’s “up”? One- and 3-month-olds experience faces primarily upright but non-upright faces offer the best views. Quarterly Journal of Experimental Psychology (Hove), 70(5), 959969. doi:10.1080/17470218.2016.1154581Google Scholar
Taylor, N. M., Jakobson, L. S., Maurer, D., & Lewis, T. L. (2009). Differential vulnerability of global motion, global form, and biological motion processing in full-term and preterm children. Neuropsychologia, 47(13), 27662778. doi:10.1016/j.neuropsychologia.2009.06.001Google Scholar
Turati, C., Bulf, H., & Simion, F. (2008). Newborns’ face recognition over changes in viewpoint. Cognition, 106(3), 13001321. doi:10.1016/j.cognition.2007.06.005Google Scholar
Turati, C., Di Giorgio, E., Bardi, L., & Simion, F. (2010). Holistic face processing in newborns, 3-month-old infants, and adults: Evidence from the composite face effect. Child Development, 81(6), 18941905. doi:10.1111/j.1467-8624.2010.01520.xGoogle Scholar
Turati, C., Macchi Cassia, V., Simion, F., & Leo, I. (2006). Newborns’ face recognition: Role of inner and outer facial features. Child Development, 77(2), 297311. doi:10.1111/j.1467-8624.2006.00871.xGoogle Scholar
Turati, C., Valenza, E., Leo, I., & Simion, F. (2005). Three-month-olds’ visual preference for faces and its underlying visual processing mechanisms. Journal of Experimental Child Psychology, 90(3), 255273. doi:10.1016/j.jecp.2004.11.001CrossRefGoogle ScholarPubMed
Tytla, M. E., Lewis, T. L., Maurer, D., & Brent, H. P. (1993). Stereopsis after congenital cataract. Investigative Ophthalmology & Visual Science, 34(5), 17671773.Google Scholar
Uttley, L., de Boisferon, A. H., Dupierrix, E., Lee, K., Quinn, P. C., Slater, A. M., & Pascalis, O. (2013). Six-month-old infants match other-race faces with a non-native language. International Journal of Behavioral Development, 37(2), 8489. doi:10.1177/0165025412467583Google Scholar
Ventureyra, V. A. G., Pallier, C., & Yoo, H. -Y. (2004). The loss of first language phonetic perception in adopted Koreans. Journal of Neurolinguistics, 17(1), 7991. doi:10.1016/S0911-6044(03)00053-8Google Scholar
Vogel, M., Monesson, A., & Scott, L. S. (2012). Building biases in infancy: The influence of race on face and voice emotion matching. Developmental Science, 15(3), 359372. doi:10.1111/j.1467-7687.2012.01138.xGoogle Scholar
Vogelsang, L., Gilad-Gutnick, S., Ehrenberg, E., Yonas, A., Diamond, S., Held, R., & Sinha, P. (2018). Potential downside of high initial visual acuity. Proceedings of the National Academy of Sciences of the United States of America, 115(44), 1133311338. doi:10.1073/pnas.1800901115Google Scholar
von Hofsten, O., von Hofsten, C., Sulutvedt, U., Laeng, B., Brennen, T., & Magnussen, S. (2014). Simulating newborn face perception. Journal of Vision, 14(13), 16. doi:10.1167/14.13.16Google Scholar
Warner, C. E., Kwan, W. C., & Bourne, J. A. (2012). The early maturation of visual cortical area MT is dependent on input from the retinorecipient medial portion of the inferior pulvinar. Journal of Neuroscience, 32(48), 1707317085. doi:10.1523/JNEUROSCI.3269-12.2012Google Scholar
Wattam-Bell, J. (1991). Development of motion-specific cortical responses in infancy. Vision Research, 31(2), 287297.Google Scholar
Wattam-Bell, J. (1996a). Visual motion processing in one-month-old infants: Habituation experiments. Vision Research, 36(11), 16791685.Google Scholar
Wattam-Bell, J. (1996b). Visual motion processing in one-month-old infants: Preferential looking experiments. Vision Research, 36(11), 16711677.Google Scholar
Wattam-Bell, J., Birtles, D., Nyström, P., von Hofsten, C., Rosander, K., Anker, S., … Braddick, O. (2010). Reorganization of global form and motion processing during human visual development. Current Biology, 20(5), 411415. doi:10.1016/j.cub.2009.12.020Google Scholar
Weinacht, S., Kind, C., Mönting, J. S., & Gottlob, I. (1999). Visual development in preterm and full-term infants: A prospective masked study. Investigative Ophthalmology & Visual Science, 40(2), 346353.Google Scholar
Williams, C., Birch, E. E., Emmett, P. M., & Northstone, K. (2001). Stereoacuity at age 3.5 y in children born full-term is associated with prenatal and postnatal dietary factors: A report from a population-based cohort study. American Journal of Clinical Nutrition, 73(2), 316322. doi:10.1093/ajcn/73.2.316Google Scholar
Young, A. W., Hellawell, D., & Hay, D. C. (2013). Configurational information in face perception. Perception, 42(11), 11661178.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×