Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T06:34:18.508Z Has data issue: false hasContentIssue false

Part II - Perceptual Development

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access
Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 155 - 338
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anzures, G., Wheeler, A., Quinn, P. C., Pascalis, O., Slater, A. M., Heron-Delaney, M., … Lee, K. (2012). Brief daily exposures to Asian females reverses perceptual narrowing for Asian faces in Caucasian infants. Journal of Experimental Child Psychology, 112(4), 484495. doi:10.1016/j.jecp.2012.04.005CrossRefGoogle ScholarPubMed
Armstrong, V., Maurer, D., Ellemberg, D., & Lewis, T. L. (2011). Sensitivity to first- and second-order drifting gratings in 3-month-old infants. Iperception, 2(5), 440457. doi:10.1068/i0406Google Scholar
Atkinson, J., Braddick, O., Lin, M. H., Curran, W., Guzzetta, A., & Cioni, G. (1999). Form and motion: Is there a dorsal stream vulnerability in development? Investigative Ophthalmology & Visual Science, 40, S395.Google Scholar
Banks, M., & Bennett, P. (1988). Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. Journal of the Optical Society of America, 5(12), 20592079.Google Scholar
Banks, M., (1978). Acuity and contrast sensitivity in 1-, 2-, and 3-month-old human infants. Investigative Ophthalmology & Visual Science, 17, 361365.Google ScholarPubMed
Bar-Haim, Y., Ziv, T., Lamy, D., & Hodes, R. M. (2006). Nature and nurture in own-race face processing. Psychological Science, 17(2), 159163.Google Scholar
Bardi, L., Regolin, L., & Simion, F. (2011). Biological motion preference in humans at birth: Role of dynamic and configural properties. Developmental Science, 14(2), 353359.Google Scholar
Bhatt, R. S., Bertin, E., Hayden, A., & Reed, A. (2005). Face processing in infancy: Developmental changes in the use of different kinds of relational information. Child Development, 76(1), 169181. doi:10.1111/j.1467-8624.2005.00837.xGoogle Scholar
Biagi, L., Crespi, S. A., Tosetti, M., & Morrone, M. C. (2015). BOLD response selective to flow-motion in very young infants. PLoS Biol, 13(9), e1002260. doi:10.1371/journal.pbio.1002260Google Scholar
Bidet-Ildei, C., Kitromilides, E., Orliaguet, J. P., Pavlova, M., & Gentaz, E. (2014). Preference for point-light human biological motion in newborns: Contribution of translational displacement. Developmental Psychology, 50(1), 113120. doi:10.1037/a0032956CrossRefGoogle ScholarPubMed
Birch, D. G., Birch, E. E., Hoffman, D. R., & Uauy, R. D. (1992). Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. Investigative Ophthalmology & Visual Science, 33(8), 23652376.Google Scholar
Birch, E. E., Birch, D. G., Hoffman, D. R., & Uauy, R. (1992). Dietary essential fatty acid supply and visual acuity development. Investigative Ophthalmology & Visual Science, 33, 32423253.Google Scholar
Birch, E. E., Cheng, C., Stager, D. R., Weakley, D. R., & Stager, D. R. (2009). The critical period for surgical treatment of dense congenital bilateral cataracts. Journal of American Association for Pediatric Ophthalmology and Strabismus, 13(1), 6771.CrossRefGoogle ScholarPubMed
Birch, E. E., Garfield, S., Castañeda, Y., Hughbanks-Wheaton, D., Uauy, R., & Hoffman, D. (2007). Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Human Development, 83(5), 279284. doi:10.1016/j.earlhumdev.2006.11.003Google Scholar
Birch, E. E., Gwiazda, J., & Held, R. (1982). Stereoacuity development for crossed and uncrossed disparities in human infants. Vision Research, 22(5), 507513.Google Scholar
Birtles, D. B., Braddick, O. J., Wattam-Bell, J., Wilkinson, A. R., & Atkinson, J. (2007). Orientation and motion-specific visual cortex responses in infants born preterm. Neuroreport, 18, 19751979. doi:10.1097/WNR.0b013e3282f228c8CrossRefGoogle ScholarPubMed
Blakemore, C. (1990). Maturation of mechanisms for efficient spatial vision. In Blakemore, C. (Ed.), Vision: Coding and efficiency (pp. 254266). Cambridge, UK: Cambridge University Press.Google Scholar
Blakemore, C., & Vital-Durand, F. (1986). Organization and post-natal development of the monkey’s lateral geniculate nucleus. Journal of Physiology, 380(1), 453491.CrossRefGoogle ScholarPubMed
Blakstad, E. W., Strømmen, K., Moltu, S. J., Wattam-Bell, J., Nordheim, T., Almaas, A. N., … Nakstad, B. (2015). Improved visual perception in very low birth weight infants on enhanced nutrient supply. Neonatology, 108(1), 3037. doi:10.1159/000381660Google Scholar
Bowering, E. R., Maurer, D., Lewis, T. L., & Brent, H. P. (1993). Sensitivity in the nasal and temporal hemifields in children treated for cataract. Investigative Ophthalmology & Visual Science, 34(13), 35013509.Google Scholar
Bowering, E. R., Maurer, D., Lewis, T. L., Brent, H. P., & Riedel, P. (1996). The visual field in childhood: Normal development and the influence of deprivation. Developmental Cognitive Neuroscience Technical Report, 96, 133.Google Scholar
Braddick, O., & Atkinson, J. (2011). Development of human visual function. Vision Research, 51(13), 15881609. doi:10.1016/j.visres.2011.02.018Google Scholar
Braddick, O., Birtles, D., Wattam-Bell, J., & Atkinson, J. (2005). Motion- and orientation-specific cortical responses in infancy. Vision Research, 45(25–26), 31693179. doi:10.1016/j.visres.2005.07.021Google Scholar
Braddick, O., Wattam-Bell, J., Day, J., & Atkinson, J. (1983). The onset of binocular function in human infants. Human Neurobiology, 2(2), 6569.Google Scholar
Brenna, J. T., Varamini, B., Jensen, R. G., Diersen-Schade, D. A., Boettcher, J. A., & Arterburn, L. M. (2007). Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. American Journal of Clinical Nutrition, 85(6), 14571464.Google Scholar
Brown, A. M., Lindsey, D. T., Cammenga, J. G., Giannone, P. J., & Stenger, M. R. (2015). The contrast sensitivity of the newborn human infant. Investigative Ophthalmology & Visual Science, 56(1), 625632. doi:10.1167/iovs.14-14757CrossRefGoogle ScholarPubMed
Brown, A. M., Opoku, F. O., & Stenger, M. R. (2018). Neonatal contrast sensitivity and visual acuity: Basic psychophysics. Translational Vision Science & Technology, 7(3), 18. doi:10.1167/tvst.7.3.18Google Scholar
Bushnell, I. W. R. (2001). Mother’s face recognition in newborn infants: Learning and memory. Infant and Child Development, 10(1–2), 6774. doi:10.1002/icd.248CrossRefGoogle Scholar
Candy, T. R., Crowell, J. A., & Banks, M. S. (1998). Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate. Vision Research, 38(24), 38573870.CrossRefGoogle ScholarPubMed
Cashon, C. H., & Cohen, L. B. (2004). Beyond U-shaped development in infants’ processing of faces: An information-processing account. Journal of Cognition and Development, 5(1), 5980.Google Scholar
Cassia, V. M., Turati, C., & Simion, F. (2004). Can a nonspecific bias toward top-heavy patterns explain newborns’ face preference? Psychological Science, 15(6), 379383. doi:10.1111/j.0956-7976.2004.00688.xGoogle Scholar
Cecchini, M., Iannoni, M. E., Aceto, P., Baroni, E., Di Vito, C., & Lai, C. (2017). Active sleep is associated with the face preference in the newborns who familiarized with a responsive face. Infant Behaviour and Development, 49, 3745. doi:10.1016/j.infbeh.2017.06.004Google Scholar
Chang, D. H., & Troje, N. F. (2009). Characterizing global and local mechanisms in biological motion perception. Journal of Vision, 9(5), 8.1–810. doi:10.1167/9.5.8Google Scholar
Collignon, O., Dormal, G., de Heering, A., Lepore, F., Lewis, T. L., & Maurer, D. (2015). Long-lasting crossmodal cortical reorganization triggered by brief postnatal visual deprivation. Current Biology, 25(18), 23792383. doi:10.1016/j.cub.2015.07.036CrossRefGoogle ScholarPubMed
de Haan, M., Johnson, M. H., Maurer, D., & Perrett, D. I. (2001). Recognition of individual faces and average face prototypes by 1- and 3-month-old infants. Cognitive Development, 16(2), 659678.Google Scholar
de Heering, A., & Maurer, D. (2014). Face memory deficits in patients deprived of early visual input by bilateral congenital cataracts. Developmental Psychobiology, 56(1), 96108. doi:10.1002/dev.21094Google Scholar
de Heering, A., Turati, C., Rossion, B., Bulf, H., Goffaux, V., & Simion, F. (2008). Newborns’ face recognition is based on spatial frequencies below 0.5 cycles per degree. Cognition, 106(1), 444454. doi:10.1016/j.cognition.2006.12.012Google Scholar
Delaney, S. M., Dobson, V., Mohan, K. M., Harvey, M. A., & Harvey, E. M.(2004). The effect of flicker rate on nasal and temporal measured visual field extent in infants. Optometry and Vision Science, 81(12), 922928.Google Scholar
Di Giorgio, E., Leo, I., Pascalis, O., & Simion, F. (2012). Is the face-perception system human-specific at birth. Developmental Psychology, 48(4), 10831090. doi:10.1037/a0026521Google Scholar
Drover, J. R., Earle, A. E., Courage, M. L., & Adams, R. J. (2002). Improving the effectiveness of the infant contrast sensitivity card procedure. Optometry and Vision Science, 79(1), 5259.Google Scholar
Ellemberg, D., Lewis, T. L., Defina, N., Maurer, D., Brent, H. P., Guillemot, J. -P., & Lepore, F. (2005). Greater losses in sensitivity to second-order local motion than to first-order local motion after early visual deprivation in humans. Vision Research, 45(22), 28772884. doi:10.1016/j.visres.2004.11.019CrossRefGoogle ScholarPubMed
Ellemberg, D., Lewis, T. L., Liu, C. H., & Maurer, D. (1999). Development of spatial and temporal vision during childhood. Vision Research, 39(14), 23252333.Google Scholar
Ellemberg, D., Lewis, T. L., Maurer, D., Brar, S., & Brent, H. P. (2002). Better perception of global motion after monocular than after binocular deprivation. Vision Research, 42(2), 169179.Google Scholar
Ellemberg, D., Lewis, T. L., Maurer, D., Lui, C. H., & Brent, H. P. (1999). Spatial and temporal vision in patients treated for bilateral congenital cataracts. Vision Research, 39(20), 34803489.Google Scholar
Fair, J., Flom, R., Jones, J., & Martin, J. (2012). Perceptual learning: 12-month-olds’ discrimination of monkey faces. Child Development, 83(6), 19962006. doi:10.1111/j.1467-8624.2012.01814.xGoogle Scholar
Fantz, R. L. (1963). Pattern vision in newborn infants. Science, 140(3564), 296297.Google Scholar
Fantz, R. L., Ordy, J. M., & Udelf, M. S. (1962). Maturation of pattern vision in infants during the first six months. Journal of Comparative and Physiological Psychology, 55, 907917.Google Scholar
Farroni, T., Menon, E., & Johnson, M. H. (2006). Factors influencing newborns’ preference for faces with eye contact. Journal of Experimental Child Psychology, 95(4), 298308. doi:10.1016/j.jecp.2006.08.001Google Scholar
Ferguson, K. T., Kulkofsky, S., Cashon, C. H., & Casasola, M. (2009). The development of specialized processing of own-race faces in infancy. Infancy, 14(3), 263284. doi:10.1080/15250000902839369Google Scholar
Fine, I., Wade, A. R., Brewer, A. A., May, M. G., Goodman, D. F., Boynton, G. M., … MacLeod, D. I. (2003). Long-term deprivation affects visual perception and cortex. Nature Neuroscience, 6(9), 915916.Google Scholar
Frie, J., Padilla, N., Ådén, U., Lagercrantz, H., & Bartocci, M. (2016). Extremely preterm-born infants demonstrate different facial recognition processes at 6–10 months of corrected age. Journal of Pediatrics, 172, 96–102.e1. doi:10.1016/j.jpeds.2016.02.021Google Scholar
Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4(3), 179192.Google Scholar
Grady, C. L., Mondloch, C. J., Lewis, T. L., & Maurer, D. (2014). Early visual deprivation from congenital cataracts disrupts activity and functional connectivity in the face network. Neuropsychologia, 57, 122139. doi:10.1016/j.neuropsychologia.2014.03.005Google Scholar
Guerreiro, M. J. S., Putzar, L., & Röder, B. (2016). Persisting cross-modal changes in sight-recovery individuals modulate visual perception. Current Biology, 26(22), 30963100. doi:10.1016/j.cub.2016.08.069Google Scholar
Gwiazda, J., Bauer, J., & Held, R. (1989). Binocular function in human infants: Correlation of stereoptic and fusion-rivalry discriminations. Journal of Pediatric Ophthalmology and Strabismus, 26(3), 128132.Google Scholar
Hadad, B.-S., Maurer, D., & Lewis, T. L. (2012). Sparing of sensitivity to biological motion but not of global motion after early visual deprivation. Developmental Science, 15(4), 474481. doi:10.1111/j.1467-7687.2012.01145.xGoogle Scholar
Hainline, L. (1978). Developmental changes in visual scanning of face and nonface patterns by infants. Journal of Experimental Child Psychology, 25(1), 90115.Google Scholar
Haith, M. M., Bergman, T., & Moore, M. J. (1977). Eye contact and face scanning in early infancy. Science, 198(4319), 853855.Google Scholar
Hayden, A., Bhatt, R. S., Reed, A., Corbly, C. R., & Joseph, J. E. (2007). The development of expert face processing: Are infants sensitive to normal differences in second-order relational information? Journal of Experimental Child Psychology, 97(2), 8598. doi:10.1016/j.jecp.2007.01.004Google Scholar
Hensch, T. K., & Quinlan, E. M. (2018). Critical periods in amblyopia. Visual Neuroscience, 35, E014. doi:10.1017/S0952523817000219Google Scholar
Heron-Delaney, M., Anzures, G., Herbert, J. S., Quinn, P. C., Slater, A. M., Tanaka, J. W., … Pascalis, O. (2011). Perceptual training prevents the emergence of the other race effect during infancy. PloS one, 6(5), e19858.Google Scholar
Hoffman, D. R., Boettcher, J. A., & Diersen-Schade, D. A. (2009). Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: A review of randomized controlled trials. Prostaglandins, Leukotrienes and Essential Fatty Acids, 81(2–3), 151158. doi:10.1016/j.plefa.2009.05.003Google Scholar
Hood, B., & Atkinson, J. (1993). Disengaging visual attention in the infant and adult. Infant Behaviour and Development, 16, 405422.Google Scholar
Hou, C., Norcia, A. M., Madan, A., Tith, S., Agarwal, R., & Good, W. V. (2011). Visual cortical function in very low birth weight infants without retinal or cerebral pathology. Investigative Ophthalmology & Visual Science, 52(12), 90919098. doi:10.1167/iovs.11–7458CrossRefGoogle ScholarPubMed
Humphrey, A. L., & Saul, A. B. (1998). Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. Journal of Neurophysiology, 80(6), 29913004.Google Scholar
Huttenlocher, P. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28(6), 517527.Google Scholar
Jayaraman, S., Fausey, C. M., & Smith, L. B. (2017). Why are faces denser in the visual experiences of younger than older infants? Developmental Psychology, 53(1), 3849. doi:10.1037/dev0000230Google Scholar
Jayaraman, S., & Smith, L. B. (2018). Faces in early visual environments are persistent not just frequent. Vision Research, 157, 213221. doi:10.1016/j.visres.2018.05.005Google Scholar
Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6(10), 766774. doi:10.1038/nrn1766Google Scholar
Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40(1–2), 119.Google Scholar
Johnson, M. H., Senju, A., & Tomalski, P. (2015). The two-process theory of face processing: Modifications based on two decades of data from infants and adults. Neuroscience Biobehavioral Review, 50, 169179. doi:10.1016/j.neubiorev.2014.10.009Google Scholar
Kelly, D. J., Liu, S., Ge, L., Quinn, P. C., Slater, A. M., Lee, K., … Pascalis, O. (2007). Cross-race preferences for same-race faces extend beyond the African versus Caucasian contrast in 3-month-old infants. Infancy, 11(1), 8795. doi:10.1080/15250000709336871Google Scholar
Kelly, D. J., Liu, S., Lee, K., Quinn, P. C., Pascalis, O., Slater, A. M., & Ge, L. (2009). Development of the other-race effect during infancy: Evidence toward universality? Journal of Experimental Child Psychology, 104(1), 105114. doi:10.1016/j.jecp.2009.01.006Google Scholar
Kelly, D. J., Quinn, P. C., Slater, A. M., Lee, K., Ge, L., & Pascalis, O. (2007). The other-race effect develops during infancy: Evidence of perceptual narrowing. Psychological Science, 18(12), 10841089.Google Scholar
Kelly, D. J., Quinn, P. C., Slater, A. M., Lee, K., Gibson, A., Smith, M., … Pascalis, O. (2005). Three-month-olds, but not newborns, prefer own-race faces. Developmental Science, 8(6), F31F36.Google Scholar
Kiorpes, L. (2016). The puzzle of visual development: Behavior and neural limits. Journal of Neuroscience, 36(45), 1138411393. doi:10.1523/JNEUROSCI.2937-16.2016CrossRefGoogle ScholarPubMed
Kodas, E., Galineau, L., Bodard, S., Vancassel, S., Guilloteau, D., Besnard, J. C., & Chalon, S. (2004). Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. Journal of Neurochemistry, 89(3), 695702. doi:10.1111/j.1471-4159.2004.02401.xGoogle Scholar
Le Grand, R., Mondloch, C. J., Maurer, D., & Brent, H. P. (2001). Neuroperception: Early visual experience and face processing. Nature, 410(6831), 890.Google Scholar
Le Grand, R., Mondloch, C. J., Maurer, D., (2003). Expert face processing requires visual input to the right hemisphere during infancy. Nature Neuroscience, 6(10), 11081112. doi:10.1038/nn1121Google Scholar
Le Grand, R., Mondloch, C. J., Maurer, D., (2004). Impairment in holistic face processing following early visual deprivation. Psychological Science, 15(11), 762768.CrossRefGoogle ScholarPubMed
Lewis, T. L., Ellemberg, D., Maurer, D., Wilkinson, F., Wilson, H. R., Dirks, M., & Brent, H. P. (2002). Sensitivity to global form in glass patterns after early visual deprivation in humans. Vision Research, 42(8), 939948.Google Scholar
Lewis, T. L., & Maurer, D. (1992). The development of the temporal and nasal visual fields during infancy. Vision Research, 32(5), 903911.Google Scholar
Lewis, T. L., (2009). Effects of early pattern deprivation on visual development. Optometry and Vision Science, 86(6), 640646. doi:10.1097/OPX.0b013e3181a7296bGoogle Scholar
Lewis, T. L., Maurer, D., & Brent, H. P. (1995). Development of grating acuity in children treated for unilateral or bilateral congenital cataract. Investigative Ophthalmology & Visual Science, 36(10), 20802095.Google Scholar
Lewis, T. L., Maurer, D., Tytla, M. E., Bowering, E. R., & Brent, H. P. (1992). Vision in the “good” eye of children treated for unilateral congenital cataract. Ophthalmology, 99(7), 10131017.Google Scholar
MacKay, T. L., Jakobson, L. S., Ellemberg, D., Lewis, T. L., Maurer, D., & Casiro, O. (2005). Deficits in the processing of local and global motion in very low birthweight children. Neuropsychologia, 43(12), 17381748. doi:10.1016/j.neuropsychologia.2005.02.008Google Scholar
Markant, J., Oakes, L. M., & Amso, D. (2016). Visual selective attention biases contribute to the other-race effect among 9-month-old infants. Developmental Psychobiology, 58(3), 355365. doi:10.1002/dev.21375CrossRefGoogle Scholar
Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6(6), 255260.Google Scholar
Maurer, D., & Lewis, T. L. (1998). Overt orienting toward peripheral stimuli: Normal development and underlying mechanisms. In Richards, J. (Ed.), Cognitive neuroscience of attention: A developmental perspective (pp. 51102). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Maurer, D., Lewis, T. L., Brent, H. P., & Levin, A. V. (1999). Rapid improvement in the acuity of infants after visual input. Science, 286(5437), 108110.Google Scholar
Maurer, D., & Martello, M. (1980). The discrimination of orientation by young infants. Vision Research, 20, 201204.Google Scholar
Maurer, D., Mondloch, C. J., & Lewis, T. L. (2007). Sleeper effects. Developmental Science, 10(1), 4047. doi:10.1111/j.1467-7687.2007.00562.xGoogle Scholar
Maurer, D., & Salapatek, P. (1976). Developmental changes in the scanning of faces by young infants. Child Development, 47, 523527.Google Scholar
Maurer, D., & Werker, J. F. (2014). Perceptual narrowing during infancy: A comparison of language and faces. Developmental Psychobiology, 56(2), 154178. doi:10.1002/dev.21177Google Scholar
Mayer, D. L., Beiser, A. S., Warner, A. F., Pratt, E. M., Raye, K. N., & Lang, J. M. (1995). Monocular acuity norms for the Teller Acuity Cards between ages one month and four years. Investigative Ophthalmology & Visual Science, 36(3), 671685.Google Scholar
Mondloch, C. J., Le Grand, R., & Maurer, D. (2002). Configural face processing develops more slowly than featural face processing. Perception, 31(5), 553566. doi:10.1068/p3339Google Scholar
Mondloch, C. J., Le Grand, R., & Maurer, D. (2003). Early visual experience is necessary for the development of some – but not all – aspects of face processing. In Pascalis, O. & Slater, A. (Eds.), The development of face processing in infancy and early childhood (pp. 99117). New York, NY: Nova Science.Google Scholar
Mondloch, C. J., Lewis, T. L., Budreau, D. R., Maurer, D., Dannemiller, J. L., Stephens, B. R., & Kleiner-Gathercoal, K. A. (1999). Face perception during early infancy. Psychological Science, 10(5), 419422.Google Scholar
Mondloch, C. J., Lewis, T. L., Levin, A. V., & Maurer, D. (2013). Infant face preferences after binocular visual deprivation. International Journal of Behavioral Development, 37(2), 148153. doi:10.1177/0165025412471221Google Scholar
Mondloch, C. J., & Maurer, D. (2008). The effect of face orientation on holistic processing. Perception, 37(8), 1175. doi:10.1068/p6048Google Scholar
Mondloch, C. J., Robbins, R., & Maurer, D. (2010). Discrimination of facial features by adults, 10-year-olds, and cataract-reversal patients. Perception, 39(2), 184194. doi:10.1068/p6153Google Scholar
Mondloch, C. J., Segalowitz, S. J., Lewis, T. L., Dywan, J., Le Grand, R., & Maurer, D. (2013). The effect of early visual deprivation on the development of face detection. Developmental Science, 16(5), 728742. doi:10.1111/desc.12065Google Scholar
Morton, J., & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 98, 164181.Google Scholar
Movshon, J. A., & Kiorpes, L. (1993). Biological limits on visual development in primates. In Simons, K. (Ed.), Early visual development: normal and abnormal (pp. 296305). New York, NY: Oxford University Press.Google Scholar
Nakato, E., Kanazawa, S., & Yamaguchi, M. K. (2018). Holistic processing in mother’s face perception for infants. Infant Behaviour and Development, 50, 257263. doi:10.1016/j.infbeh.2018.01.007Google Scholar
Orioli, G., Filippetti, M. L., Gerbino, W., Dragovic, D., & Farroni, T. (2018). Trajectory discrimination and peripersonal space perception in newborns. Infancy, 23(2), 252267. doi:10.1111/infa.12207Google Scholar
Pascalis, O., de Haan, M., & Nelson, C. A. (2002). Is face processing species-specific during the first year of life? Science, 296(5571), 13211323.Google Scholar
Pascalis, O., de Schonen, S., Morton, J., Deruelle, C., & Fabre-Gremet, M. (1995). Mother’s face recognition by neonates: A replication and an extension. Infant Behaviour and Development, 18, 7985.Google Scholar
Pascalis, O., Scott, L. S., Kelly, D. J., Shannon, R. W., Nicholson, E., Coleman, M., & Nelson, C. A. (2005). Plasticity of face processing in infancy. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 52975300.Google Scholar
Pasternak, T., & Leinen, L. J. (1986). Pattern and motion vision in cats with selective loss of cortical directional selectivity. Journal of Neuroscience, 6(4), 938945.Google Scholar
Pereira, S. A., Pereira Junior, A., Costa, M. F., Monteiro, M. V., Almeida, V. A., Fonseca Filho, G. G., … Simion, F. (2017). A comparison between preterm and full-term infants’ preference for faces. Journal of Pediatrics (Rio J), 93(1), 3539. doi:10.1016/j.jped.2016.04.009Google Scholar
Quinn, P. C., Uttley, L., Lee, K., Gibson, A., Smith, M., Slater, A. M., & Pascalis, O. (2008). Infant preference for female faces occurs for same- but not other-race faces. Journal of Neuropsychology, 2(Pt. 1), 1526.Google Scholar
Quinn, P. C., Yahr, J., Kuhn, A., Slater, A. M., & Pascalils, O. (2002). Representation of the gender of human faces by infants: a preference for female. Perception, 31(9), 11091121.Google Scholar
Reid, V. M., Dunn, K., Young, R. J., Amu, J., Donovan, T., & Reissland, N. (2017). The human fetus preferentially engages with face-like visual stimuli. Current Biology, 27(12), 1825–1828.e3. doi:10.1016/j.cub.2017.05.044Google Scholar
Renier, L., de Volder, A. G., & Rauschecker, J. P. (2014). Cortical plasticity and preserved function in early blindness. Neuroscience and Biobehaviour Reviews, 41, 5363. doi:10.1016/j.neubiorev.2013.01.025Google Scholar
Rhodes, G., & Jeffery, L. (2006). Adaptive norm-based coding of facial identity. Vision Research, 46(18), 29772987. doi:10.1016/j.visres.2006.03.002Google Scholar
Robbins, R. A., Nishimura, M., Mondloch, C. J., Lewis, T. L., & Maurer, D. (2010). Deficits in sensitivity to spacing after early visual deprivation in humans: A comparison of human faces, monkey faces, and houses. Developmental Psychobiology, 52(8), 775781. doi:10.1002/dev.20473Google Scholar
Sai, F. Z. (2005). The role of the mother’s voice in developing mother’s face preference: Evidence for intermodal perception at birth. Infant and Child Development, 14(1), 2950. doi:10.1002/icd.376Google Scholar
Salapatek, P., & Kessen, W. (1966). Visual scanning of triangles by the human newborn. Journal of Experimental Child Psychology, 3(2), 155167.Google Scholar
Sangrigoli, S., Pallier, C., Argenti, A. M., Ventureyra, V. A., & de Schonen, S. (2005). Reversibility of the other-race effect in face recognition during childhood. Psychological Science, 16(6), 440444.Google Scholar
Scott, L. S., & Monesson, A. (2009). The origin of biases in face perception. Psychological Science, 20(6), 676680. doi:10.1111/j.1467-9280.2009.02348.xGoogle Scholar
Sifre, R., Olson, L., Gillespie, S., Klin, A., Jones, W., & Shultz, S. (2018). A longitudinal investigation of preferential attention to biological motion in 2- to 24-month-old infants. Scientific Reports, 8(1), 2527. doi:10.1038/s41598-018-20808-0Google Scholar
Simion, F., & Giorgio, E. D. (2015). Face perception and processing in early infancy: Inborn predispositions and developmental changes. Frontiers in Psychology, 6, 969. doi:10.3389/fpsyg.2015.00969Google Scholar
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences of the United States of America, 195, 809813.Google Scholar
Simpson, E. A., Varga, K., Frick, J. E., & Fragaszy, D. (2011). Infants experience perceptual narrowing for nonprimate faces. Infancy, 16, 318330.Google Scholar
Siu, C. R., & Murphy, K. M. (2018). The development of human visual cortex and clinical implications. Eye Brain, 10, 2536. doi:10.2147/EB.S130893Google Scholar
Sugden, N. A., & Marquis, A. R. (2017). Meta-analytic review of the development of face discrimination in infancy: Face race, face gender, infant age, and methodology moderate face discrimination. Psychological Bulletin, 143(11), 12011244. doi:10.1037/bul0000116Google Scholar
Sugden, N. A., Mohamed-Ali, M. I., & Moulson, M. C. (2014). I spy with my little eye: Typical, daily exposure to faces documented from a first-person infant perspective. Developmental Psychobiology, 56(2), 249261. doi:10.1002/dev.21183Google Scholar
Sugden, N. A., & Moulson, M. C. (2017). Hey baby, what’s “up”? One- and 3-month-olds experience faces primarily upright but non-upright faces offer the best views. Quarterly Journal of Experimental Psychology (Hove), 70(5), 959969. doi:10.1080/17470218.2016.1154581Google Scholar
Taylor, N. M., Jakobson, L. S., Maurer, D., & Lewis, T. L. (2009). Differential vulnerability of global motion, global form, and biological motion processing in full-term and preterm children. Neuropsychologia, 47(13), 27662778. doi:10.1016/j.neuropsychologia.2009.06.001Google Scholar
Turati, C., Bulf, H., & Simion, F. (2008). Newborns’ face recognition over changes in viewpoint. Cognition, 106(3), 13001321. doi:10.1016/j.cognition.2007.06.005Google Scholar
Turati, C., Di Giorgio, E., Bardi, L., & Simion, F. (2010). Holistic face processing in newborns, 3-month-old infants, and adults: Evidence from the composite face effect. Child Development, 81(6), 18941905. doi:10.1111/j.1467-8624.2010.01520.xGoogle Scholar
Turati, C., Macchi Cassia, V., Simion, F., & Leo, I. (2006). Newborns’ face recognition: Role of inner and outer facial features. Child Development, 77(2), 297311. doi:10.1111/j.1467-8624.2006.00871.xGoogle Scholar
Turati, C., Valenza, E., Leo, I., & Simion, F. (2005). Three-month-olds’ visual preference for faces and its underlying visual processing mechanisms. Journal of Experimental Child Psychology, 90(3), 255273. doi:10.1016/j.jecp.2004.11.001Google Scholar
Tytla, M. E., Lewis, T. L., Maurer, D., & Brent, H. P. (1993). Stereopsis after congenital cataract. Investigative Ophthalmology & Visual Science, 34(5), 17671773.Google Scholar
Uttley, L., de Boisferon, A. H., Dupierrix, E., Lee, K., Quinn, P. C., Slater, A. M., & Pascalis, O. (2013). Six-month-old infants match other-race faces with a non-native language. International Journal of Behavioral Development, 37(2), 8489. doi:10.1177/0165025412467583Google Scholar
Ventureyra, V. A. G., Pallier, C., & Yoo, H. -Y. (2004). The loss of first language phonetic perception in adopted Koreans. Journal of Neurolinguistics, 17(1), 7991. doi:10.1016/S0911-6044(03)00053-8Google Scholar
Vogel, M., Monesson, A., & Scott, L. S. (2012). Building biases in infancy: The influence of race on face and voice emotion matching. Developmental Science, 15(3), 359372. doi:10.1111/j.1467-7687.2012.01138.xGoogle Scholar
Vogelsang, L., Gilad-Gutnick, S., Ehrenberg, E., Yonas, A., Diamond, S., Held, R., & Sinha, P. (2018). Potential downside of high initial visual acuity. Proceedings of the National Academy of Sciences of the United States of America, 115(44), 1133311338. doi:10.1073/pnas.1800901115Google Scholar
von Hofsten, O., von Hofsten, C., Sulutvedt, U., Laeng, B., Brennen, T., & Magnussen, S. (2014). Simulating newborn face perception. Journal of Vision, 14(13), 16. doi:10.1167/14.13.16Google Scholar
Warner, C. E., Kwan, W. C., & Bourne, J. A. (2012). The early maturation of visual cortical area MT is dependent on input from the retinorecipient medial portion of the inferior pulvinar. Journal of Neuroscience, 32(48), 1707317085. doi:10.1523/JNEUROSCI.3269-12.2012Google Scholar
Wattam-Bell, J. (1991). Development of motion-specific cortical responses in infancy. Vision Research, 31(2), 287297.Google Scholar
Wattam-Bell, J. (1996a). Visual motion processing in one-month-old infants: Habituation experiments. Vision Research, 36(11), 16791685.Google Scholar
Wattam-Bell, J. (1996b). Visual motion processing in one-month-old infants: Preferential looking experiments. Vision Research, 36(11), 16711677.Google Scholar
Wattam-Bell, J., Birtles, D., Nyström, P., von Hofsten, C., Rosander, K., Anker, S., … Braddick, O. (2010). Reorganization of global form and motion processing during human visual development. Current Biology, 20(5), 411415. doi:10.1016/j.cub.2009.12.020Google Scholar
Weinacht, S., Kind, C., Mönting, J. S., & Gottlob, I. (1999). Visual development in preterm and full-term infants: A prospective masked study. Investigative Ophthalmology & Visual Science, 40(2), 346353.Google Scholar
Williams, C., Birch, E. E., Emmett, P. M., & Northstone, K. (2001). Stereoacuity at age 3.5 y in children born full-term is associated with prenatal and postnatal dietary factors: A report from a population-based cohort study. American Journal of Clinical Nutrition, 73(2), 316322. doi:10.1093/ajcn/73.2.316Google Scholar
Young, A. W., Hellawell, D., & Hay, D. C. (2013). Configurational information in face perception. Perception, 42(11), 11661178.Google Scholar

References

Abrams, S. M., Field, T., Scafidi, F., & Prodromidis, M. (1995). Newborns of depressed mothers. Infant Mental Health Journal, 16(3), 233239.Google Scholar
Aktar, E., Mandell, D. J., de Vente, W., Majdandžić, M., Raijmakers, M. E., & Bögels, S. M. (2016). Infants’ temperament and mothers’, and fathers’ depression predict infants’ attention to objects paired with emotional faces. Journal of Abnormal Child Psychology, 44(5), 975990.Google Scholar
Amso, D., Fitzgerald, M., Davidow, J., Gilhooly, T., & Tottenham, N. (2010). Visual exploration strategies and the development of infants’ facial emotion discrimination. Frontiers in Psychology, 1, 180.Google Scholar
Amso, D., Haas, S., & Markant, J. (2014). An eye-tracking investigation of developmental change in bottom-up attention orienting to faces in cluttered natural scenes. PLoS One, 9(1), e85701.Google Scholar
Amso, D., & Johnson, S. P. (2006). Learning by selection: Visual search and object perception in young infants. Developmental Psychology, 42, 12361245. doi: 10.1037/0012-1649.42.6.1236Google Scholar
Amso, D., & Lynn, A. (2017). Distinctive mechanisms of adversity and socioeconomic inequality in child development: A review and recommendations for evidence-based policy. Policy Insights from the Behavioral and Brain Sciences, 4(2), 139146.Google Scholar
Amso, D., & Scerif, G. (2015). The attentive brain: Insights from developmental cognitive neuroscience. Nature Reviews Neuroscience, 16(10), 606.Google Scholar
Aslin, R. N. (2007). What’s in a look? Developmental Science, 10(1), 4853. doi: 10.1111/j.1467-7687.2007.00563.xGoogle Scholar
Aslin, R. N. (2012). Infant eyes: A window on cognitive development. Infancy, 17(1), 126140. doi: 10.1111/j.1532-7078.2011.00097.xGoogle Scholar
Atkinson, J., Braddick, O., & Moar, K. (1977). Development of contrast sensitivity over the first 3 months of life in the human infant. Vision Research, 17(9), 10371044.Google Scholar
Baillargeon, R. (1987). Object permanence in 3½- and 4½-month-old infants. Developmental Psychology, 23(5), 655664. doi: 10.1037/0012-1649.23.5.655Google Scholar
Baillargeon, R. (2002). The acquisition of physical knowledge in infancy: A summary in eight lessons. In Goswami, U. (Ed.), The Blackwell handbook of childhood cognitive development (Vol. 1, pp. 4683). Malden, MA: Blackwell.Google Scholar
Bertenthal, B., & von Hofsten, C. (1998). Eye, head and trunk control: The foundation for manual development. Neuroscience & Biobehavioral Reviews, 22(4), 515520.Google Scholar
Bornstein, M. H., Mash, C., Arterberry, M. E., & Manian, N. (2012). Object perception in 5-month-old infants of clinically depressed and nondepressed mothers. Infant Behavior and Development, 35(1), 150157.Google Scholar
Braddick, O. J., Wattam-Bell, J., & Atkinson, J. (1986). Orientation-specific cortical responses develop in early infancy. Nature, 320(6063), 617619.Google Scholar
Bradley, R., & Corwyn, R. (2002). Socioeconomic status and child development. Annual Review of Psychology, 53, 371399. doi: 10.1146/annurev.psych.53.100901.135233Google Scholar
Breznitz, Z., & Friedman, S. L. (1988). Toddlers’ concentration: Does maternal depression make a difference? Journal of Child Psychology and Psychiatry, 29(3), 267279.Google Scholar
Bronson, G. W. (1990). Changes in infants’ visual scanning across the 2- to 14-week age period. Journal of Experimental Child Psychology, 49, 101125.Google Scholar
Bulf, H., & Valenza, E. (2013). Object-based visual attention in 8-month-old infants: Evidence from an eye-tracking study. Developmental Psychology, 49(10), 19091918. doi: 10.1037/a0031310Google Scholar
Bushnell, I. W. R. (2001). Mother’s face recognition in newborn infants: Learning and memory. Infant and Child Development, 10(1–2), 6774. doi: 10.1002/icd.248Google Scholar
Canfield, R. L., & Haith, M. M. (1991). Young infants’ visual expectations for symmetric and asymmetric stimulus sequences. Developmental Psychology, 27, 198208.Google Scholar
Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 14841525.Google Scholar
Casey, B. J., & Richards, J. E. (1988). Sustained visual attention in young infants measured with an adapted version of the visual preference paradigm. Child Development, 59(6), 15141521.Google Scholar
Clearfield, M. W., & Jedd, K. E. (2012). The effects of socio-economic status on infant attention. Infant and Child Development, 22(1), 5367. doi: 10.1002/icd.1770Google Scholar
Cohen, L. B., & Cashon, C. H. (2003). Infant perception and cognition. In Lerner, R. M., Easterbrooks, M. A., & Mistry, J. (Eds.), Handbook of psychology: Developmental psychology (Vol. 6, pp. 6589). Hoboken, NJ: John Wiley & Sons.Google Scholar
Colombo, J. (2001). The development of visual attention in infancy. Annual Review of Psychology, 52(1), 337367. doi: 10.1146/annurev.psych.52.1.337Google Scholar
Colombo, J., & Cheatham, C. L. (2006). The emergence and basis of endogenous attention in infancy and early childhood. Advances in Child Development and Behavior, 34, 283.Google Scholar
Colombo, J., Mitchell, D. W., Coldren, J. T., & Freeseman, L. J. (1991). Individual differences in infant visual attention: Are short lookers faster processors or feature processors? Child Development, 62(6), 12471257. doi: 10.1111/j.1467–8624.1991.tb01603.xGoogle Scholar
Courage, M. L., Reynolds, G. D., & Richards, J. E. (2006). Infants’ attention to patterned stimuli: Developmental change from 3 to 12 months of age. Child Development, 77(3), 680695.Google Scholar
Courchesne, E., Ganz, L., & Norcia, A. M. (1981). Event-related brain potentials to human faces in infants. Child Development, 52(3), 804811.Google Scholar
Csibra, G., & Volein, A. (2008). Infants can infer the presence of hidden objects from referential gaze information. British Journal of Developmental Psychology, 26, 111.Google Scholar
Dannemiller, J. L. (2005). Motion popout in selective visual orienting at 4.5 but not at 2 months in human infants. Infancy, 8(3), 201216.Google Scholar
de Boer, T., Scott, L. S., & Nelson, C. A. (2007). Methods for acquiring and analyzing infant event-related potentials. In de Haan, M. (Ed.), Infant EEG and event-related potentials (pp. 537). New York, NY: Psychology Press.Google Scholar
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Reviews of Neuroscience, 18, 193222. doi: 10.1016/j.cub.2014.02.049Google Scholar
DiPietro, J. A., Bornstein, M. H., Hahn, C. S., Costigan, K., & Achy-Brou, A. (2007). Fetal heart rate and variability: Stability and prediction to developmental outcomes in early childhood. Child Development, 78(6), 17881798.Google Scholar
Ellis, A. E., Xiao, N. G., Lee, K., & Oakes, L. M. (2017). Scanning of own- versus other-race faces in infants from racially diverse or homogenous communities. Developmental Psychobiology, 59(5), 613627. doi: 10.1002/dev.21527Google Scholar
Elsabbagh, M., Volein, A., Holmboe, K., Tucker, L., Csibra, G., Baron-Cohen, S., … Johnson, M. H. (2009). Visual orienting in the early broader autism phenotype: Disengagement and facilitation. Journal of Child Psychology and Psychiatry, 50(5), 637642.Google Scholar
Emberson, L. L., & Amso, D. (2012). Learning to sample: Eye tracking and fMRI indices of changes in object perception. Journal of Cognitive Neuroscience, 24, 20302042. doi: 10.1162/jocn_a_00259Google Scholar
Fair, J., Flom, R., Jones, J., & Martin, J. (2012). Perceptual learning: 12-month-olds’ discrimination of monkey faces. Child Development, 83(6), 19962006.Google Scholar
Fantz, R. L. (1956). A method for studying early visual development. Perceptual and Motor Skills, 6, 1315. doi: 10.2466/pms.1956.6.g.13Google Scholar
Fantz, R. L. (1963). Pattern vision in newborn infants. Science, 140(3564), 296297. doi: 10.1126/science.140.3564.296Google Scholar
Farroni, T., Massaccesi, S., Pividori, D., & Johnson, M. H. (2004). Gaze following in newborns. Infancy, 5, 3960.Google Scholar
Field, T., Healy, B., & LeBlanc, W. G. (1989). Sharing and synchrony of behavior states and heart rate in nondepressed versus depressed mother–infant interactions. Infant Behavior and Development, 12(3), 357376.Google Scholar
Franchak, J. M., & Adolph, K. E. (2010). Visually guided navigation: Head-mounted eye-tracking of natural locomotion in children and adults. Vision Research, 50(24), 27662774. doi: 10.1016/j.visres.2010.09.024Google Scholar
Frank, M. C., Amso, D., & Johnson, S. P. (2014). Visual search and attention to faces during early infancy. Journal of Experimental Child Psychology, 118(1), 1326. doi: 10.1016/j.jecp.2013.08.012Google Scholar
Frank, M. C., Vul, E., & Johnson, S. P. (2009). Development of infants’ attention to faces during the first year. Cognition, 110, 160170.Google Scholar
Frick, J. E., & Richards, J. E. (2001). Individual differences in infants’ recognition of briefly presented visual stimuli. Infancy, 2(3), 331352. doi: 10.1207/S15327078IN0203_3Google Scholar
Gaither, S. E., Pauker, K., & Johnson, S. P. (2012). Biracial and monoracial infant own-race face perception: An eye-tracking study. Developmental Science, 15(6), 775782.Google Scholar
Gibson, E. (2000). Perceptual learning in development: Some basic concepts. Ecological Psychology, 12(4), 295302. doi: 10.1207/S15326969ECO1204_04Google Scholar
Gilbert, C. D., & Sigman, M. (2007). Brain states: Top-down influences in sensory processing. Neuron, 54(5), 677696.Google Scholar
Grunau, R. E., Weinberg, J., & Whitfield, M. F. (2004). Neonatal procedural pain and preterm infant cortisol response to novelty at 8 months. Pediatrics, 114(1), e77-e84.Google Scholar
Grunau, R. E., Whitfield, M. F., & Fay, T. B. (2004). Psychosocial and academic characteristics of extremely low birth weight (≤ 800 g) adolescents who are free of major impairment compared with term-born control subjects. Pediatrics, 114(6), e725-e732.Google Scholar
Haith, M. M. (1980). Rules that babies look by: The organization of newborn visual activity. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experiences of young American children. Baltimore, MD: Paul H. Brookes.Google Scholar
Hoehl, S., Reid, V. M., Mooney, J., & Striano, T. (2008). What are you looking at? Infants’ neural processing of an adult’s object-directed eye gaze. Developmental Science, 11, 1016.Google Scholar
Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. Oxford: Oxford University Press.Google Scholar
Hood, B. M. (1995). Visual selective attention in the human infant: A neuroscientific approach. In Rovee-Collier, C. & Lipsitt, L. (Eds.), Advances in infancy research (Vol. 9, pp. 163216). Norwood, NJ: Ablex.Google Scholar
Hood, B. M., Willen, J. D., & Driver, J. (1998). Adult’s eyes trigger shifts of visual attention in human infants. Psychological Science, 9(2), 131134. doi: 10.1111/1467–9280.00024Google Scholar
Hurley, K. B., & Oakes, L. M. (2015). Experience and distribution of attention: Pet exposure and infants’ scanning of animal images. Journal of Cognition and Development, 16(1), 1130. doi: 10.1080/15248372.2013.833922Google Scholar
Hutchinson, E. A., de Luca, C. R., Doyle, L. W., Roberts, G., & Anderson, P. J. (2013). School-age outcomes of extremely preterm or extremely low birth weight children. Pediatrics, 131(4), e1053e1061. doi: 10.1542/peds.2012–2311Google Scholar
Hwang, K., Velanova, K., & Luna, B. (2010). Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: A functional magnetic resonance imaging effective connectivity study. Journal of Neuroscience, 30(46), 1553515545. doi: 10.1523/JNEUROSCI.2825-10.2010Google Scholar
Jankowski, J. J., Rose, S. A., & Feldman, J. F. (2001). Modifying the distribution of attention in infants. Child Development, 72(2), 339351. doi: 10.1111/1467–8624.00282Google Scholar
Johnson, M. H. (1990). Cortical maturation and the development of visual attention in early infancy. Journal of Cognitive Neuroscience, 2, 8195. doi: 10.1162/jocn.1990.2.2.81Google Scholar
Johnson, M. H. (1995). The inhibition of automatic saccades in early infancy. Developmental Psychobiology, 28, 281291. doi: 10.1002/dev.420280504Google Scholar
Johnson, M. H., Posner, M. I., & Rothbart, M. K. (1991). Components of visual orienting in early infancy: Contingency learning, anticipatory looking, and disengaging. Journal of Cognitive Neuroscience, 3, 335344. doi: 10.1162/jocn.1991.3.4.335Google Scholar
Johnson, S. P., Amso, D., & Slemmer, J. A. (2003). Development of object concepts in infancy: Evidence for early learning in an eye-tracking paradigm. Proceedings of the National Academy of Sciences, 100(18), 1056810573. doi: 10.1073/pnas.1630655100Google Scholar
Johnson, S. P., Slemmer, J. A., & Amso, D. (2004). Where infants look determines how they see: Eye movements and object perception performance in 3-month-olds. Infancy, 6, 185201.Google Scholar
Jones, W., & Klin, A. (2013). Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature, 504(7480), 427.Google Scholar
Jöbsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198, 12641267.Google Scholar
Káldy, Z., & Leslie, A. M. (2003). Identification of objects in 9-month-old infants: integrating “what” and “where” information. Developmental Science, 6, 360373.Google Scholar
Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138147.Google Scholar
Konrad, K., Neufang, S., Thiel, C. M., Specht, K., Hanisch, C., Fan, J., … Fink, G. R. (2005). Development of attentional networks: An fMRI study with children and adults. NeuroImage, 28(2), 429439.Google Scholar
Kramer, M. S., Goulet, L., Lydon, J., Seguin, L., McNamara, H., Dassa, C., … Koren, G. (2001). Socio-economic disparities in preterm birth: Casual pathways and mechanisms. Pediatric and Perinatal Epidemiology, 15(Suppl. 2), 104123.Google Scholar
Kretch, K. S., Franchak, J. M., & Adolph, K. E. (2014). Crawling and walking infants see the world differently. Child Development, 85(4), 15031518. doi: 10.1111/cdev.12206Google Scholar
Kuhlmeier, V., Wynn, K., & Bloom, P. (2003). Attribution of dispositional states by 12-month-olds. Psychological Science, 14(5), 402408. doi: 10.1111/1467–9280.01454Google Scholar
Lancaster, C. A., Gold, K. J., Flynn, H. A., Yoo, H., Marcus, S. M., & Davis, M. M. (2010 ). Risk factors for depressive symptoms during pregnancy: A systematic review. American Journal of Obstetrics and Gynecology, 202, 514. doi: 10.1016/j.ajog.2009.09.007Google Scholar
Lawson, K. R., & Ruff, H. A. (2004). Early focused attention predicts outcome for children born prematurely. Journal of Developmental & Behavioral Pediatrics, 25(6), 399406.Google Scholar
Leppänen, J. M., Cataldo, J. K., Bosquet Enlow, M., & Nelson, C. A. (2018). Early development of attention to threat-related facial expressions. PLoS One, 13(5), e0197424. doi: 10.1371/journal.pone.0197424Google Scholar
Lewis, M., & Brooks-Gunn, J. (1981). Visual attention at three months as a predictor of cognitive functioning at two years of age. Intelligence, 5(2), 131140.Google Scholar
Lloyd-Fox, S., Blasi, A., & Elwell, C.E. (2010). Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neuroscience & Biobehavioral Reviews, 34(3), 269284.Google Scholar
Markant, J., Ackerman, L. K., Nussenbaum, K., & Amso, D. (2016). Selective attention neutralizes the adverse effects of low socioeconomic status on memory in 9-month-old infants. Developmental Cognitive Neuroscience, 18, 2633.Google Scholar
Markant, J., & Amso, D. (2013). Selective memories: Infants’ encoding is enhanced in selection via suppression. Developmental Science, 16, 926940.Google Scholar
Johnson, M. H. (2014). Leveling the playing field: Attention mitigates the effect of IQ on memory. Cognition, 131(2), 195204.Google Scholar
Johnson, M. H. (2016). The development of selective attention orienting is an agent of change in learning and memory efficacy. Infancy, 21(2), 154176.Google Scholar
Markant, J., Oakes, L. M., & Amso, D. (2016). Visual selective attention biases contribute to the other-race effect among 9-month-old infants. Developmental Psychobiology, 58(3), 355365.Google Scholar
Markant, J., Worden, M. S., & Amso, D. (2015). Not all attention orienting is created equal: Recognition memory is enhanced when attention orienting involves distractor suppression. Neurobiology of Learning and Memory, 120, 2840. doi: 10.1016/j.nlm.2015.02.006Google Scholar
McLoyd, V. C. (1998). Socioeconomic disadvantage and child development. American Psychologist, 53(2), 185204. doi: 10.1037/0003-066X.53.2.185Google Scholar
Mundy, P. (2003). Annotation: The neural basis of social impairments in autism – the role of the dorsal medial-frontal cortex and anterior cingulate system. Journal of Child Psychology and Psychiatry, 44(6), 793809.Google Scholar
Mundy, P., Block, J., Delgado, C., Pomares, Y., van Hecke, A. V., & Parlade, M. V. (2007). Individual differences and the development of joint attention in infancy. Child Development, 78(3), 938954.Google Scholar
Mundy, P., & Newell, L. (2007). Attention, joint attention, and social cognition. Current Directions in Psychological Science, 16(5), 269274.CrossRefGoogle ScholarPubMed
Oakes, L. M., Kannass, K. N., & Shaddy, D. J. (2002). Developmental changes in endogenous control of attention: The role of target familiarity on infants’ distraction latency. Child Development, 73(6), 16441655. doi: 10.1111/1467–8624.00496Google Scholar
Pascalis, O., de Haan, M., & Nelson, C.A. (2002). Is face processing species-specific during the first year of life? Science, 296, 13211323.Google Scholar
Posner, M. I. (Ed.). (2004). Cognitive neuroscience of attention. New York, NY: Guilford Press.Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542. doi: 10.1146/annurev.ne.13.030190.000325Google Scholar
Posner, M. I., Rafal, R. D., & Choate, L.S. (1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2, 211228.Google Scholar
Reid, V. M., Dunn, K., Young, R. J., Amu, J., Donovan, T., & Reissland, N. (2017). The human fetus preferentially engages with face-like visual stimuli. Current Biology, 27(12), 18251828.Google Scholar
Reid, V. M., Striano, T., Kaufman, J., & Johnson, M. H. (2004). Eye-gaze cueing facilitates neural processing of objects in 4-month-old infants. NeuroReport, 15, 25532555.Google Scholar
Reynolds, G. D., Guy, M. W., & Zhang, D. (2011). Neural correlates of individual differences in infant visual attention and recognition memory. Infancy, 16(4), 368391. doi: 10.1111/j.1532-7078.2010.00060.xGoogle Scholar
Reynolds, G. D., & Richards, J. E. (2005). Familiarization, attention, and recognition memory in infancy: An event-related potential and cortical source localization study. Developmental Psychology, 41(4), 598.Google Scholar
Richards, J. E. (2000). Localizing the development of covert attention in infants with scalp event-related potentials. Developmental Psychology, 36(1), 91108. doi: 10.1037/0012-1649.36.1.91Google Scholar
Richards, J. E. (2003). Attention affects the recognition of briefly presented visual stimuli in infants: An ERP study. Developmental Science, 6(3), 312328. doi: 10.1111/1467–7687.00287Google Scholar
Richards, J. E., & Casey, B. J. (1992). Development of sustained visual attention in the human infant. In Campbell, B. A. & Hayne, H. (Eds.), Attention and information processing in infants and adults: perspectives from human and animal research (pp. 3060). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Rosander, K. (2007). Visual tracking and its relationship to cortical development. Progress in Brain Research, 164, 105122. doi: 10.1016/S0079-6123(07)64006-0Google Scholar
Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2001). Attention and recognition memory in the 1st year of life: A longitudinal study of preterm and full-term infants. Developmental Psychology, 37(1), 135.Google Scholar
Rose, S. A., Feldman, J. F., (2012). Implications of infant cognition for executive functions at age 11. Psychological Science, 23(11), 1345–55.Google Scholar
Ross-Sheehy, S., Oakes, L. M., & Luck, S. J. (2003). The development of visual short-term memory capacity in infants. Child Development, 74, 18071822.Google Scholar
Ruff, H. A., Lawson, K. R., Parrinello, R., & Weissberg, R. (1990). Long-term stability of individual differences in sustained attention in the early years. Child Development, 61(1), 6075.Google Scholar
Salapatek, P., & Kessen, W. (1966). Visual scanning of triangles by the human newborn. Journal of Experimental Child Psychology, 3, 155167.Google Scholar
Schlesinger, M., & Amso, D. (2013). Image free-viewing as intrinsically motivated exploration: Estimating the learnability of center-of-gaze image samples in infants and adults. Frontiers in Psychology. doi: 10.3389/fpsyg.2013.00802Google Scholar
Schoenfeld, M. A., Hopf, J. M., Merkel, C., Heinze, H. J., & Hillyard, S. A. (2014). Object-based attention involves the sequential activation of feature-specific cortical modules. Nature Neuroscience, 17 (4), 619624.Google Scholar
Scott, L. S., & Monesson, A. (2010). Experience-dependent neural specialization during infancy. Neuropsychologia, 48(6), 18571861.Google Scholar
Senju, A., Csibra, G., & Johnson, M. (2008). Understanding the referential nature of looking: Infants’ preference for object-directed gaze. Cognition, 108, 303319.Google Scholar
Sigman, M., Cohen, S. E., & Beckwith, L. (1997). Why does infant attention predict adolescent intelligence? Infant Behavior and Development, 20(2), 133140.Google Scholar
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences, 105(2), 809813. doi: 10.1073/pnas.0707021105Google Scholar
Simion, F., Valenza, E., Umiltà, C., & Barba, B. D. (1995). Inhibition of return in newborns is temporo-nasal asymmetrical. Infant Behavior and Development, 18(2), 189194.Google Scholar
Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96(1), B1B11. doi: 10.1016/j.cognition.2004.07.004Google Scholar
Spelke, E. S., Katz, G., Purcell, S. E., Ehrlich, S. M., & Breinlinger, K. (1994). Early knowledge of object motion: Continuity and inertia. Cognition, 51(2), 131176. doi: 10.1016/0010-0277(94)90013-2Google Scholar
Striano, T., Chen, X., Cleveland, A., & Bradshaw, S. (2006). Joint attention social cues influence infant learning. European Journal of Developmental Psychology, 3, 289299.Google Scholar
Sugita, Y. (2008). Face perception in monkeys reared with no exposure to faces. Proceedings of the National Academy of Sciences, 105(1), 394398.Google Scholar
Tacke, N. F., Bailey, L. S., & Clearfield, M. W. (2015). Socio-economic status (SES) affects infants’ selective exploration. Infant and Child Development, 24(6), 571586. doi: 10.1002/icd.1900Google Scholar
Tummeltshammer, K., & Amso, D. (2017). Top-down contextual knowledge guides visual attention in infancy. Developmental Science, 21(4), 19. doi: 10.1111/desc.12599Google Scholar
Valenza, E., Simion, F., & Umiltà, C. (1994). Inhibition of return in newborn infants. Infant Behavior and Development, 17(3), 293302.Google Scholar
Vogel, M., Monesson, A., & Scott, L.S. (2012). Building biases in infancy: The influence of race on face and voice emotion matching. Developmental Science, 15(3), 359372.Google Scholar
von Hofsten, C., & Rosander, K. (1997). Development of smooth pursuit tracking in young infants. Vision Research, 37(13), 17991810.Google Scholar
Weissman, M. M., Leckman, J. F., Merikangas, K. R., Gammon, G. D., & Prusoff, B. A. (1984). Depression and anxiety disorders in parents and children: Results from the Yale Family Study. Archives of General Psychiatry, 41(9), 845852.Google Scholar
Wellman, H. M., Phillips, A. T., Dunphy-Lelii, S., & LaLonde, N. (2004). Infant social attention predicts preschool social cognition. Developmental Science, 7(3), 283288.Google Scholar
Werchan, D. M., & Amso, D. (2017). A novel ecological account of prefrontal cortex functional development. Psychological Review, 124(6), 720739. doi: 10.1037/rev0000078Google Scholar
Wheeler, A., Anzures, G., Quinn, P. C., Pascalis, O., Omrin, D. S., & Lee, K. (2011). Caucasian infants scan own- and other-race faces differently. PloS One, 6(4), e18621.Google Scholar
Young, G. S., Merin, N., Rogers, S. J., & Ozonoff, S. (2009). Gaze behavior and affect at 6 months: Predicting clinical outcomes and language development in typically developing infants and infants at risk for autism. Developmental Science, 12(5), 798814Google Scholar
Yu, C., & Smith, L. B. (2016). The social origins of sustained attention in one-year-old human infants. Current Biology, 26(9), 12351240. doi: 10.1016/j.cub.2016.03.026Google Scholar
Zweigenbaum, L., Bryson, S., Rogers, T., Roberts, W., Brian, J., & Szatmari, P. (2005). Behavioral manifestations of autism in the first year of life. International Journal of Developmental Neuroscience, 23(2–3), 143152.Google Scholar

References

Abdala, C., & Keefe, D. H. (2012) Morphological and functional ear development. In Werner, L., Fay, R., & Popper, A. (Eds.) Human auditory development (pp. 1960). New York, NY: Springer International.Google Scholar
Anderson, D. E., & Patel, A. D. (2018). Infants born preterm, stress, and neurodevelopment in the neonatal intensive care unit: Might music have an impact? Developmental Medicine & Child Neurology, 60, 256266.Google Scholar
Arnaud, A., Gracco, V., & Ménard, L. (2018). Enhanced perception of pitch changes in speech and music in early blind adults. Neuropsychologia, 117, 261270.Google Scholar
Arnon, S., Diamant, C., Bauer, S., Regev, R., Sirota, G., & Litmanovitz, I. (2014). Maternal singing during kangaroo care led to autonomic stability in preterm infants and reduced maternal anxiety. Acta Paediatrica, 103, 10391044.Google Scholar
Bargones, J. Y., & Werner, L. A. (1994). Adults listen selectively: Infants do not. Psychological Science, 5, 170174.Google Scholar
Baruch, C., & Drake, C. (1997). Tempo discrimination in infants. Infant Behavior and Development, 20, 573577.Google Scholar
Bendixen, A., Háden, G. P., Németh, R., Farkas, D., Török, M., & Winkler, I. (2015). Newborn infants detect cues of concurrent sound segregation. Developmental Neuroscience, 37, 172181.Google Scholar
Bergeson, T. R., & Trehub, S. E. (2002). Absolute pitch and tempo in mothers’ songs to infants. Psychological Science, 13, 7275.Google Scholar
Bergeson, T. R., (2006). Infants perception of rhythmic patterns. Music Perception, 23, 345360.Google Scholar
Bergeson, T. R., (2007). Signature tunes in mother’s speech to infants. Infant Behavior and Development, 30, 648654.Google Scholar
Bernier, D. E., & Soderstrom, M. (2018). Was that my name? Infants’ listening in conversational multi-talker backgrounds. Journal of Child Language, 45, 14391449.Google Scholar
Bigand, E., & Poulin-Charronnat, B. (2006). Are we ‘‘experienced listeners’’? A review of the musical capacities that do not depend on formal musical training. Cognition, 100, 100130.Google Scholar
Birnholz, J. C., & Benacerraf, B. R. (1983). The development of human fetal hearing. Science, 222, 516518.Google Scholar
Blacking, J. (1992). The biology of music making. In Myers, H. (Ed.), Ethnomusicology: An introduction (pp. 301314). New York, NY: Norton.Google Scholar
Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.Google Scholar
Broadbent, D. E. (1952). Listening to one of two synchronous messages. Journal of Experimental Psychology, 44, 5155.Google Scholar
Broesch, T. L., & Bryant, G. A. (2015). Prosody in infant-directed speech is similar across Western and traditional cultures. Journal of Cognition and Development, 16, 3143.Google Scholar
Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300, 498502.Google Scholar
Chang, H. W., & Trehub, S. E. (1977a). Auditory processing of relational information by young infants. Journal of Experimental Child Psychology, 24, 324331.Google Scholar
Chang, H. W., (1977b). Infants’ perception of temporal grouping in auditory patterns. Child Development, 48, 16661670.Google Scholar
Cirelli, L. K. (2018). How interpersonal synchrony facilitates early prosocial behavior. Current Opinion in Psychology, 20, 3539.Google Scholar
Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17, 10031011.Google Scholar
Cirelli, L. K., Jurewicz, Z. B., & Trehub, S. E. (in press). Effects of maternal singing style on mother–infant arousal and behavior. Journal of Cognitive Neuroscience.Google Scholar
Cirelli, L. K., Spinelli, C., Nozaradan, S., & Trainor, L. J. (2016). Measuring neural entrainment to beat and meter in infants: Effects of music background. Frontiers in Neuroscience, 10, 229.Google Scholar
Cirelli, L. K., & Trehub, S. E. (2018). Infants help singers of familiar songs. Music & Science, 1, doi:2059204318761622.Google Scholar
Cirelli, L. K., & Trehub, S. E. (2020). Familiar songs reduce infant distress. Developmental Psychology, 56(5), 861–868. doi: 10.1037/dev0000917Google Scholar
Cirelli, L. K., Trehub, S. E., & Trainor, L. J. (2018). Rhythm and melody as social signals for infants. Annals of the New York Academy of Sciences, 1423, 6672.Google Scholar
Cooke, M. P., & Brown, G. J. (1993). Computational auditory scene analysis: Exploiting principles of perceived continuity. Speech Communication, 13, 391399.Google Scholar
Corbeil, M., Trehub, S. E., & Peretz, I. (2016). Singing delays the onset of infant distress. Infancy, 21, 373391.Google Scholar
Corrigall, K. A., & Trainor, L. J. (2010). Musical enculturation in preschool children: Acquisition of key and harmonic knowledge. Music Perception, 28, 195200.Google Scholar
Costa-Giomi, E. (2014). Mode of presentation affects infants’ preferential attention to singing and speech. Music Perception, 32, 160169.Google Scholar
Cross, I. (2011). The meanings of musical meanings: Comment on “Towards a Neural Basis of Processing Musical Semantics” by Stefan Koelsch. Physics of Life Reviews, 8, 116119.Google Scholar
Darwin, C. J., & Hukin, R. W. (1999). Auditory objects of attention: The role of interaural time-differences. Journal of Experimental Psychology: Human Perception and Performance, 25, 617629.Google Scholar
Dowling, W. J., & Harwood, D. L. (1986). Music cognition. New York, NY: Academic Press.Google Scholar
Draganova, R., Eswaran, H., Lowery, C. L., Murphy, P., Huotilainen, M., & Preissl, H. (2005). Sound frequency change detection in fetuses and newborns: A magnetoencephalographic study. NeuroImage, 28, 354361.Google Scholar
Erickson, L. C., & Newman, R. S. (2017). Influences of background noise on infants and children. Current Directions in Psychological Science, 26, 451457.Google Scholar
Fancourt, D., & Perkins, R. (2018). Effect of singing interventions on symptoms of postnatal depression: Three-arm randomised controlled trial. British Journal of Psychiatry, 212, 119121.Google Scholar
Fernald, A. (1985). Four-month-old infants prefer to listen to motherese. Infant Behavior and Development, 8, 181195.Google Scholar
Fernald, A. (1992). Meaningful melodies in mothers’ speech to infants. In Papousek, H., Jurgens, U., & Papousek, M. (Eds.), Nonverbal vocal behaviour (pp. 262282). Cambridge, UK: Cambridge University Press.Google Scholar
Fernandez-Prieto, I., Navarra, J., & Pons, F. (2015). How big is this sound? Crossmodal association between pitch and size in infants. Infant Behavior and Development, 38, 7781.Google Scholar
Field, T. (2010). Postpartum depression effects on early interactions, parenting, and safety practices: A review. Infant Behavior and Development, 33, 16.Google Scholar
Folland, N. A., Butler, B. E., Payne, J. E., & Trainor, L. J. (2015). Cortical representations sensitive to the number of perceived auditory objects emerge between 2 and 4 months of age: Electrophysiological evidence. Journal of Cognitive Neuroscience, 27, 10601067.Google Scholar
Fujioka, T., Trainor, L. J., & Ross, B. (2008). Simultaneous pitches are encoded separately in auditory cortex: An MMNm study. NeuroReport, 19, 361366.Google Scholar
Ghazban, N. (2013). Emotion regulation in infants using maternal singing and speech (Unpublished doctoral dissertation). Ryerson University, Toronto, Canada.Google Scholar
Granier-Deferre, C., Bassereau, S., Ribeiro, A., Jacquet, A. Y., & Decasper, A. J. (2011). A melodic contour repeatedly experienced by human near-term fetuses elicits a profound cardiac reaction one month after birth. PLoS ONE, 6, e17304.Google Scholar
Gudmundsdottir, H., & Trehub, S. (2018). Adults recognize toddlers’ song renditions. Psychology of Music, 46, 281291.Google Scholar
Háden, G. P., Honing, H., Török, M., & Winkler, I. (2015). Detecting the temporal structure of sound sequences in newborn infants. International Journal of Psychophysiology, 96, 2328.Google Scholar
Hannon, E. E., Schachner, A., & Nave-Blodgett, J. E. (2017). Babies know bad dancing when they see it: Older but not younger infants discriminate between synchronous and asynchronous audiovisual musical displays. Journal of Experimental Child Psychology, 159, 159174.Google Scholar
Hannon, E. E., & Trehub, S. E. (2005a). Metrical categories in infancy and adulthood. Psychological Science, 16, 4855.Google Scholar
Hannon, E. E., (2005b). Tuning in to musical rhythms: Infants learn more readily than adults. Proceedings of the National Academy of Sciences, 102, 1263912643.Google Scholar
Haryu, E., & Kajikawa, S. (2012). Are higher-frequency sounds brighter in color and smaller in size? Auditory-visual correspondences in 10-month-old-infants. Infant Behavior and Development, 35, 727732.Google Scholar
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167178.Google Scholar
Jones, M. R. (1976). Time, our lost dimension: Toward a new theory of perception, attention, and memory. Psychological Review, 83, 323355.Google Scholar
Kisilevsky, B. S., Hains, S. M., Brown, C. A., Lee, C. T., Cowperthwaite, B., Stutzman, S. S., … Wang, Z. (2009). Fetal sensitivity to properties of maternal speech and language. Infant Behavior and Development, 32, 5971.Google Scholar
Krumhansl, C. L., & Jusczyk, P. W. (1990). Infants’ perception of phrase structure in music. Psychological Science, 1, 7073.Google Scholar
Lasky, R. E., & Williams, A. L. (2005). The development of the auditory system from conception to term. NeoReviews, 6, 141152.Google Scholar
Leerkes, E. M., Blankson, A. N., & O’Brien, M. (2009). Differential effects of maternal sensitivity to infant distress and nondistress on social-emotional functioning. Child Development, 80, 762775.Google Scholar
Lin, J. Y., & Hartmann, W. M. (1998). The pitch of a mistuned harmonic: Evidence for a template model. Journal of the Acoustical Society of America, 103, 26082617.Google Scholar
Litovsky, R. Y. (1997). Developmental changes in the precedence effect: Estimates of minimum audible angle. Journal of the Acoustical Society of America, 102, 17391745.Google Scholar
Marie, C., & Trainor, L. J. (2013). Development of simultaneous pitch encoding: Infants show a high voice superiority effect. Cerebral Cortex, 23, 660669.Google Scholar
Marie, C., (2014). Early development of polyphonic sound encoding and the high voice superiority effect. Neuropsychologia, 57, 5058.Google Scholar
McAdams, S., & Bertoncini, J. (1997). Organization and discrimination of repeating sound sequences by newborn infants. Journal of the Acoustical Society of America, 102, 29452953.Google Scholar
McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M., & Miller, N. S. (2006). The time of our lives: Life span development of timing and event tracking. Journal of Experimental Psychology: General, 135, 348367.Google Scholar
McElwain, N. L., & Booth-Laforce, C. (2006). Maternal sensitivity to infant distress and nondistress as predictors of infant–mother attachment security. Journal of Family Psychology, 20, 247255.Google Scholar
McMillan, B. T., & Saffran, J. R. (2016). Learning in complex environments: The effects of background speech on early word learning. Child Development, 87, 18411855.Google Scholar
McNeill, W. H. (1995). Keeping together in time: Dance and drill in human history. Cambridge, MA: Harvard University Press.Google Scholar
Mehr, S. A., Singh, M., York, H., Glowacki, L., & Krasnow, M. M. (2018). Form and function in human song. Current Biology, 28, 356368.Google Scholar
Mehr, S. A., Song, L. A., & Spelke, E. S. (2016). For 5-month-old infants, melodies are social. Psychological Science, 27, 486501.Google Scholar
Moore, J. K., & Guan, Y. L. (2001). Cytoarchitectural and axonal maturation in human auditory cortex. Journal of the Association for Research in Otolaryngology, 2, 297311.Google Scholar
Morton, D. (1980). Thailand. In Sadie, S. (Ed.), The new Grove dictionary of music and musicians (Vol. 18, pp. 712722). London: Macmillan.Google Scholar
Nakata, T., & Trehub, S. E. (2004). Infants’ responsiveness to maternal speech and singing. Infant Behavior and Development, 27, 455464.Google Scholar
Nakata, T., (2011). Expressive timing and dynamics in infant-directed and non-infant-directed singing. Psychomusicology: Music, Mind and Brain, 21, 130138.Google Scholar
Newman, R. S. (2005). The cocktail party effect in infants revisited: Listening to one’s name in noise. Developmental Psychology, 41, 352362.Google Scholar
Olsho, L. W., Koch, E. G., Carter, E. A., Halpin, C. F., & Spetner, N. B. (1988). Pure-tone sensitivity of human infants. Journal of the Acoustical Society of America, 84, 13161324.Google Scholar
Olsho, L. W., Koch, E. G., & Halpin, C. F. (1987). Level and age effects in infant frequency discrimination. Journal of the Acoustical Society of America, 82, 454464.Google Scholar
Ozturk, O., Krehm, M., & Vouloumanos, A. (2013). Sound symbolism in infancy: Evidence for sound-shape cross-modal correspondences in 4-month-olds. Journal of Experimental Child Psychology, 114, 173186.Google Scholar
Papacharalampous, G. X., Nikolopoulos, T. P., Davilis, D. I., Xenellis, I. E., & Korres, S. G. (2011). Universal newborn hearing screening, a revolutionary diagnosis of deafness: Real benefits and limitations. European Archives of Otorhinolaryngology, 268, 13991406.Google Scholar
Parga, J. J., Daland, R., Kesavan, K., Macey, P. M. Zeltzer, L., & Harper, R. M. (2018). A description of externally recorded womb sounds in human subjects during gestation. PLoS ONE, 13, e0197045.Google Scholar
Pujol, J., Soriano-Mas, C., Ortiz, H., Sebastián-Gallés, N., Losilla, J. M., & Deus, J. (2006). Myelination of language-related areas in the developing brain. Neurology, 66, 339343.Google Scholar
Pundir, A. S., Hameed, L. S., Dikshit, P. C., Kumar, P., Mohan, S., Radotra, B., … Iyengar, S. (2012). Expression of medium and heavy chain neurofilaments in the developing human auditory cortex. Brain Structure and Function, 217, 303321.Google Scholar
Pundir, A. S., Singh, U. A., Ahuja, N., Makhija, S., Dikshit, P. C., Radotra, B., … Iyengar, S. (2016). Growth and refinement of excitatory synapses in the human auditory cortex. Brain Structure and Function, 221, 36413674.Google Scholar
Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat: Movement influences infant rhythm perception. Science, 308, 14301430.Google Scholar
Phillips-Silver, J., (2007). Hearing what the body feels: Auditory encoding of rhythmic movement. Cognition, 105, 533546.Google Scholar
Piazza, E. A., Iordan, M. C., & Lew-Williams, C. (2017). Mothers consistently alter their unique vocal fingerprints when communicating with infants. Current Biology, 27, 31623167.Google Scholar
Plantinga, J., & Trainor, L. J. (2005). Memory for melody: Infants use a relative pitch code. Cognition, 98, 111.Google Scholar
Plantinga, J., & Trehub, S. E. (2014). Revisiting the innate preference for consonance. Journal of Experimental Psychology Human Perception & Performance, 40, 4049.Google Scholar
Plomp, R., & Levelt, W. J. (1965). Tonal consonance and critical bandwidth. Journal of the Acoustical Society of America, 38, 548–60.Google Scholar
Remez, R. E., Fellowes, J. M., & Nagel, D. S. (2007). On the perception of similarity among talkers. Journal of the Acoustical Society of America, 122, 36883696.Google Scholar
Rich, M. (2014, June 24). Pediatrics group to recommend reading aloud to children from birth. New York Times. Retrieved from www.nytimes.com/2014/06/24/us/pediatrics-group-to-recommend-reading-aloud-to-children-from-birth.html.Google Scholar
Richards, D. S., Frentzen, B., Gerhardt, K. J., McCann, M. E., & Abrams, R. M. (1992). Sound levels in the human uterus. Obstetrics & Gynecology, 80, 186190.Google Scholar
Rocha, S., & Mareschal, D. (2017). Getting into the groove: The development of tempo-flexibility between 10 and 18 months of age. Infancy, 22, 540551.Google Scholar
Rose, M. M., & Moore, B. C. (2000). Effects of frequency and level on auditory stream segregation. Journal of the Acoustical Society of America, 108, 12091214.Google Scholar
Rubin, D. C. (1995). Memory in oral traditions: The cognitive psychology of epic, ballads, and counting-out rhymes. New York, NY: Oxford University Press.Google Scholar
Sachs, C. (1943). The road to major. Musical Quarterly, 29, 381404.Google Scholar
Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions and the brain: How musical sounds become rewarding. Trends in Cognitive Sciences, 19, 8691.Google Scholar
Savage, P. E., Brown, S., Sakai, E., & Currie, T. E. (2015). Statistical universals reveal the structures and functions of human music. Proceedings of the National Academy of Sciences, 112, 89878992.Google Scholar
Schellenberg, E. G., & Trainor, L. J. (1996). Sensory consonance and the perceptual similarity of complex-tone harmonic intervals: Tests of adult and infant listeners. Journal of the Acoustical Society of America, 100, 33213328.Google Scholar
Schellenberg, E. G., & Trehub, S. E. (1994). Frequency ratios and the perception of tone patterns. Psychonomic Bulletin & Review, 1, 191201.Google Scholar
Schellenberg, E. G., (1996). Natural musical intervals: Evidence from infant listeners. Psychological Science, 7, 272277.Google Scholar
Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270, 303304.Google Scholar
Sharma, A., Dorman, M. F., & Kral, A. (2005). The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hearing Research, 203, 134143.Google Scholar
Shaw, R., Isaia, A., Schwartz, A., & Atkins, M. (2019). Encouraging parenting behaviors that promote early childhood development among caregivers from low-income urban communities: A randomized static group comparison trial of a primary care-based parenting program. Maternal and Child Health Journal, 23, 39–46.Google Scholar
Smith, N. A., Folland, N. A., Martinez, D. M., & Trianor, L. J. (2017). Multisensory object perception in infancy: 4-month-olds perceive a mistuned harmonic as a separate auditory and visual object. Cognition, 164, 17.Google Scholar
Smith, N. A., & Trainor, L. J. (2011). Auditory stream segregation improves infants’ selective attention to target tones amid distracters. Infancy, 16, 655668.Google Scholar
Smith, S. L., Gerhadt, K. J., Griffiths, S. K., Huang, X., & Abrams, R. M. (2003). Intelligibility of sentences recorded from the uterus of a pregnant ewe and from the fetal inner ear. Audiology and Neurotology, 8, 347353.Google Scholar
Sohmer, H., Perez, R., Sichel, J. Y., Priner, R., & Freeman, S. (2001). The pathway enabling external sounds to reach and excite the fetal inner ear. Audiology and Neurotology, 6, 109116.Google Scholar
Sole, M. (2017). Crib song: Insights into functions of toddlers’ private spontaneous singing. Psychology of Music, 45, 172192.Google Scholar
Soley, G., & Hannon, E. E. (2010). Infants prefer the musical meter of their own culture: A cross-cultural comparison. Developmental Psychology, 46, 286292.Google Scholar
Sussman, E., & Steinschneider, M. (2009). Attention effects on auditory scene analysis in children. Neuropsychologia, 47, 771785.Google Scholar
Thorpe, L. A., & Trehub, S. E. (1989). Duration illusion and auditory grouping in infancy. Developmental Psychology, 25, 122127.Google Scholar
Trainor, L. J. (1996). Infant preferences for infant-directed versus noninfant-directed playsongs and lullabies. Infant Behavior and Development, 19, 8392.Google Scholar
Trainor, L. J., & Heinmiller, B. M. (1998). Infants prefer to listen to consonance over dissonance. Infant Behavior, 21, 7788.Google Scholar
Trainor, L. J., & Trehub, S. E. (1992). A comparison of infants’ and adults’ sensitivity to Western musical structure. Journal of Experimental Psychology: Human Perception and Performance, 18, 394402.Google Scholar
Trainor, L. J., (1993). What mediates infants’ and adults’ superior processing of the major over the augmented triad? Music Perception, 11, 185196.Google Scholar
Tramo, M. J., Cariani, P. A., Delgutte, B., & Braida, L. D. (2001). Neurobiological foundations for the theory of harmony in Western tonal music. Annals of the New York Academy of Sciences, 930, 92116.Google Scholar
Trehub, S. E. (2015). Cross-cultural convergence of musical features. Proceedings of the National Academy of Sciences, 112, 88098810.Google Scholar
Trehub, S. E., & Cirelli, L. K. (2018). Precursors to the performing arts in infancy and early childhood. Progress in Brain Research, 237, 225242.Google Scholar
Trehub, S. E., & Gudmundsdottir, H. R. (2019). Mothers as singing mentors for infants. In Welsh, G. F., Howard, D. M., & Nix, J. (Eds.), The Oxford handbook of singing (pp. 455469). Oxford: Oxford University Press.Google Scholar
Trehub, S. E., & Hannon, E. E. (2009). Conventional rhythms enhance infants’ and adults’ perception of musical patterns. Cortex, 45, 110118.Google Scholar
Trehub, S. E., Plantinga, J., & Russo, F. A. (2016). Maternal vocal interactions with infants: Reciprocal visual influences. Social Development, 25, 665683.Google Scholar
Trehub, S. E., & Russo, F. A. (in press). Infant-directed singing from a dynamic multimodal perspective: Evolutionary origins, cross-cultural variation, and relation to infant-directed speech. In Russo, F., Ilari, B., & Cohen, A. (Eds.), Routledge companion to interdisciplinary studies in singing: Vol 1. New York, NY: Routledge.Google Scholar
Trehub, S. E., Schellenberg, E. G., & Kamenetsky, S. B. (1999). Infants’ and adults’ perception of scale structure. Journal of Experimental Psychology: Human Perception and Performance, 25, 965975.Google Scholar
Trehub, S. E., Schneider, B. A., & Endman, M. (1980). Developmental changes in infants’ sensitivity to octave-band noises. Journal of Experimental Child Psychology, 29, 282293.Google Scholar
Trehub, S. E., Schneider, B. A., & Henderson, J. L. (1995). Gap detection in infants, children, and adults. Journal of the Acoustical Society of America, 98, 25322541.Google Scholar
Trehub, S. E., Schneider, B. A., Morrongiello, B. A., & Thorpe, L. A. (1988). Auditory sensitivity in school-age children. Journal of Experimental Child Psychology, 46, 273285.Google Scholar
Trehub, S. E., & Thorpe, L. A. (1989). Infants’ perception of rhythm: Categorization of auditory sequences by temporal structure. Canadian Journal of Psychology, 43, 217229.Google Scholar
Trehub, S. E., Thorpe, L. A., & Morrongiello, B. A. (1985). Infants’ perception of melodies: Changes in a single tone. Infant Behavior and Development, 8, 213223.Google Scholar
Trehub, S. E., Thorpe, L. A., (1987). Organizational processes in infants’ perception of auditory patterns. Child Development, 58, 741749.Google Scholar
Trehub, S. E., & Trainor, L. (1998). Singing to infants: Lullabies and play songs. Advances in Infancy Research, 12, 4378.Google Scholar
Trehub, S. E., Unyk, A. M., Kamenetsky, S. B., Hill, D. S., Trainor, L. J., Henderson, J. L., & Saraza, M. (1997). Mothers’ and fathers’ singing to infants. Developmental Psychology, 33, 500507.Google Scholar
Trehub, S. E., Unyk, A. M., & Trainor, L. J. (1993a). Adults identify infant-directed music across cultures. Infant Behavior and Development, 16, 193211.Google Scholar
Trehub, S. E., Unyk, A. M., (1993b). Maternal singing in cross-cultural perspective. Infant Behavior and Development, 16, 285295.Google Scholar
van Puyvelde, M., Rodrigues, H., Loots, G., de Coster, L., Du Ville, K., Matthijs, L., … Pattyn, N. (2014). Shall we dance? Music as a port of entrance to maternal-infant intersubjectivity in a context of postnatal depression. Infant Mental Health Journal, 35, 220232.Google Scholar
Virtala, P., Huotilainen, M., Partanen, E., Fellman, V., & Tervaniemi, M. (2013). Newborn infants’ auditory system is sensitive to Western music chord categories. Frontiers in Psychology, 4, 492.Google Scholar
Volkova, A., Trehub, S. E., & Schellenberg, E. G. (2006). Infants’ memory for musical performances. Developmental Science, 9, 583589.Google Scholar
Walker, P., Bremner, J. G., Mason, U., Spring, J., Mattock, K., Slater, A., & Johnson, S. P. (2010). Preverbal infants’ sensitivity to synaesthetic cross-modality correspondences. Psychological Science, 21, 2125.Google Scholar
Weiss, M. W., Trehub, S. E., & Schellenberg, E. G. (2012). Something in the way she sings: Enhanced memory for vocal melodies. Psychological Science, 23, 10741078.Google Scholar
Werner, L. A. (2017). Ontogeny of human auditory system function. In Cramer, K. S., Coffin, A., Fay, R. R., & Popper, A. N. (Eds.), Auditory development and plasticity (pp. 161192). New York, NY: Springer International.Google Scholar
Werner, L. A., Marean, G. C., Halpin, C. F., Spetner, N. B., & Gillenwater, J. M. (1992). Infant auditory temporal acuity: Gap detection. Child Development, 63, 260272.Google Scholar
Wightman, F. L., & Kistler, D. J. (2005). Informational masking of speech in children: Effects of ipsilateral and contralateral distracters. Journal of the Acoustical Society of America, 118, 31643176.Google Scholar
Wild, C. J., Linke, A. C., Zubiaurre-Elorza, L., Herzmann, C., Duffy, H., Han, V. K., … Cusack, R. (2017). Adult-like processing of naturalistic sounds in auditory cortex by 3- and 9-month old infants. NeuroImage, 157, 623634.Google Scholar
Winkler, I., Háden, G. P., Ladinig, O., Sziller, I., & Honing, H. (2009). Newborn infants detect the beat in music. Proceedings of the National Academy of Sciences, 106, 24682471.Google Scholar
World Health Organization (2010). Newborn and infant hearing screening: Current issues and guiding principles for action. Geneva: WHO Press.Google Scholar
Yoshinaga-Itano, C. (1999). Benefits of early intervention for children with hearing loss. Otolaryngology Clinics of North America, 32, 10891102.Google Scholar
Zatorre, R. J., & Baum, S. R. (2012). Musical melody and speech intonation: Singing a different tune. PLoS Biology, 10, e1001372.Google Scholar
Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: music and speech. Trends in Cognitive Sciences, 6, 3746.Google Scholar
Zentner, M., & Eerola, T. (2010). Rhythmic engagement with music in infancy. Proceedings of the National Academy of Sciences, 107, 57685773.Google Scholar
Zentner, M. R., & Kagan, J. (1996). Perception of music by infants. Nature, 383, 29.Google Scholar
Zhang, L. I., Bao, S., & Merzenich, M. M. (2002). Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proceedings of the National Academy of Sciences, 99, 23092314.Google Scholar
Zhao, T. C., & Kuhl, P. K. (2016). Musical intervention enhances infants’ neural processing of temporal structure in music and speech. Proceedings of the National Academy of Sciences, 113, 52125217.Google Scholar

References

Ackerley, R., Backlund Wasling, H., Liljencrantz, J., Olausson, H., Johnson, R. D., & Wessberg, J. (2014). Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. Journal of Neuroscience, 34, 28792883.Google Scholar
Adolph, K. E., Karasik, L. B., & Tamis-LeMonda, C. S. (2010). Motor skill. In Bornstein, M. (Ed.), Handbook of cultural developmental science (pp. 6189). New York, NY: Psychology Press.Google Scholar
Ang, J. Y., Lua, J. L., Mathur, A., Thomas, R., Asmar, B. I., Savasan, S., … Shankaran, S. (2012). A randomized placebo-controlled trial of massage therapy on the immune system of preterm infants. Pediatrics, 130, e1549e1558.Google Scholar
Azañón, E., Camacho, K., Morales, M., & Longo, M. R. (2018). The sensitive period for tactile remapping does not include early infancy. Child Development, 89, 13941404.Google Scholar
Bahrick, L. E., & Lickliter, R. (2012). The role of intersensory redundancy in early perceptual, cognitive, and social development. In Bremner, A. J., Lewkowicz, D. J., & Spence, C. (Eds.), Multisensory development (pp. 183205). Oxford: Oxford University Press.Google Scholar
Bahrick, L. E., & Watson, J. S. (1985). Detection of intermodal proprioceptive-visual contingency as a potential basis of self-perception in infancy. Developmental Psychology, 21, 963973.Google Scholar
Bartocci, M., Bergqvist, L. L., Lagercrantz, H., & Anand, K. J. S. (2006). Pain activates cortical areas in the preterm newborn brain. Pain, 122, 109117.Google Scholar
Begum Ali, J., Spence, C., & Bremner, A. J. (2015). Human infants’ ability to perceive touch in external space develops postnatally. Current Biology, 25, R978R979.Google Scholar
Begum Ali, J., Thomas, R. L., Mullen, S., & Bremner, A. J. (under review). Sensitivity to visual–tactile colocation on the body prior to skilled reaching in early infancy.Google Scholar
Botvinick, M., & Cohen, J. (1998). Rubber hands “feel” touch that eyes see. Nature, 391, 756.Google Scholar
Bremner, A. J. (2018). The origins of body representations in early life. In Alsmith, A. J. T. & de Vignemont, F. (Eds.), The subject’s matter: Self-consciousness and the body (pp. 332). Cambridge, MA: MIT Press.Google Scholar
Bremner, A. J., Lewkowicz, D. J., & Spence, C. (Eds.). (2012). Multisensory development. Oxford: Oxford University Press.Google Scholar
Bremner, A. J., Mareschal, D., Lloyd-Fox, S., & Spence, C. (2008). Spatial localization of touch in the first year of life: Early influence of a visual code, and the development of remapping across changes in limb position. Journal of Experimental Psychology: General, 137, 149162.Google Scholar
Bremner, A. J., & Spence, C. (2017). The development of tactile perception. In Benson, J. (Ed.), Advances in child development and behavior (Vol. 52, pp. 227268). Oxford: Elsevier.Google Scholar
Brownell, C. A., Nichols, S. R., Svetlova, M., Zerwas, S., & Ramani, G. (2010). The head bone’s connected to the neck bone: When do toddlers represent their own body topography? Child Development, 81, 797810.Google Scholar
Bushnell, E. W., & Boudreau, J. P. (1993). Motor development and the mind: The potential role of motor abilities as a determinant of aspects of perceptual development. Child Development, 64, 10051021.Google Scholar
Butterworth, G., & Hopkins, B. (1988). Hand–mouth coordination in the new-born baby. British Journal of Developmental Psychology, 6, 303314.Google Scholar
Castiello, U., Becchio, C., Zoia, S., Nelini, C., Sartori, L., Blason, L., … Gallese, V. (2010). Wired to be social: The ontogeny of human interaction. PLoS ONE, 5, e13199.Google Scholar
Chinn, L. K., Hoffmann, M., Leed, J. E., & Lockman, J. J. (2019). Reaching with one arm to the other: Coordinating touch, proprioception, and action during infancy. Journal of Experimental Child Psychology, 183, 1932.Google Scholar
Chinn, L. K., Noonan, C. F., Hoffmann, M., & Lockman, J. J. (2019). Development of infant reaching strategies to tactile targets on the face. Frontiers in Psychology, 10(9). https://doi.org/10.3389/fpsyg.2019.00009Google Scholar
Classen, C. (Ed.). (2005). The book of touch. Oxford: Berg.Google Scholar
Cole, J., & Paillard, J. (1995). Living without touch and peripheral information about body position and movement: Studies with deafferented subjects. In Bermudez, J. L., Marcel, A., & Eilan, N. (Eds.), The body and the self (pp. 245266). Cambridge, MA: MIT Press.Google Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 5970.Google Scholar
Crucianelli, L., Wheatley, L., Filippetti, M. L., Jenkinson, P. M., Kirk, E., & Fotopoulou, A. K. (2019). The mindedness of maternal touch: An investigation of maternal mind-mindedness and mother–infant touch interactions. Developmental Cognitive Neuroscience, 35, 4756.Google Scholar
Demattè, M. L., Sanabria, D., Sugarman, R., & Spence, C. (2006). Cross-modal interactions between olfaction and touch. Chemical Senses, 31, 291300.Google Scholar
de Vignemont, F., Majid, A., Jola, C., & Haggard, P. (2009). Segmenting the body into parts: evidence from biases in tactile perception. Quarterly Journal of Experimental Psychology, 62, 500512.Google Scholar
de Vries, J. I. P., Visser, G. H. A., & Prechtl, H. F. R. (1984). Fetal motility in the first half of pregnancy. Clinics in Developmental Medicine, 94, 4664.Google Scholar
Diego, M. A., Field, T., & Hernandez-Reif, M. (2005). Vagal activity, gastric motility, and weight gain in massaged preterm neonates. Journal of Pediatrics, 147, 5055.Google Scholar
Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429433.Google Scholar
Fabrizi, L., Slater, R., Worley, A., Meek, J., Boyd, S., Olhede, S., & Fitzgerald, M. (2011). A shift in sensory processing that enables the developing human brain to discriminate touch from pain. Current Biology, 21, 15521558.Google Scholar
Fairhurst, M. T., Löken, L., & Grossmann, T. (2014). Physiological and behavioral responses reveal 9-month-old infants’ sensitivity to pleasant touch. Psychological Science, 25, 11241131.Google Scholar
Field, T. (2001). Touch. Cambridge, MA: MIT Press.Google Scholar
Field, T., & Hernandez-Reif, M. (2001). Sleep problems in infants decrease following massage therapy. Early Child Development & Care, 168, 95104.Google Scholar
Filippetti, M. L., Johnson, M. H., Lloyd-Fox, S., Dragovic, D., & Farroni, T. (2013). Body perception in newborns. Current Biology, 23, 24132416.Google Scholar
Filippetti, M. L., Lloyd-Fox, S., Longo, M. R., Farroni, T., & Johnson, M. H., (2014). Neural mechanisms of body awareness in infants. Cerebral Cortex, 25(1), 19.Google Scholar
Filippetti, M. L., Orioli, G., Johnson, M. H., & Farroni, T. (2015). Newborn body perception: Sensitivity to spatial congruency. Infancy, 20, 455465.Google Scholar
Freier, L., Mason, L., & Bremner, A. J. (2016). Perception of visual-tactile colocation in the first year of life. Developmental Psychology, 52, 21842190.Google Scholar
Gallace, A., & Spence, C. (2014). In touch with the future: The sense of touch from cognitive neuroscience to virtual reality. Oxford: Oxford University Press.Google Scholar
Gallagher, S. (2005). How the body shapes the mind. Oxford: Oxford University Press.Google Scholar
Gibson, J. J. (1966). The senses considered as perceptual systems. Oxford: Houghton-Mifflin.Google Scholar
Goksan, S., Hartley, C., Emery, F., Cockrill, N., Poorun, R., Moultrie, F., … Clare, S. (2015). fMRI reveals neural activity overlap between adult and infant pain. ELIFE, 4, e06356.Google Scholar
Gori, M., Del Viva, M. M., Sandini, G., & Burr, D. C. (2008). Young children do not integrate visual and haptic form information. Current Biology, 18, 694698.Google Scholar
Gori, M., Sandini, G., Martinoli, C., & Burr, D. (2010). Poor haptic orientation discrimination in nonsighted children may reflect disruption of cross-sensory calibration. Current Biology, 20, 223225.Google Scholar
Gottlieb, G. (1971). Ontogenesis of sensory function in birds and mammals. In Tobach, E., Aronson, L. R., & Shaw, E. (Eds.), The biopsychology of development (pp. 67128). New York, NY: Academic Press.Google Scholar
Gray, L., Watt, L., & Blass, E. M. (2000). Skin-to-skin contact is analgesic in healthy newborns. Pediatrics, 105, e14.Google Scholar
Harlow, H. F., & Zimmerman, R. R. (1959). Affectional response in the infant monkey. Science, 130, 421431.Google Scholar
Hart, S., Field, T., Hernandez-Reif, M., & Lundy, B. (1998). Preschoolers’ cognitive performance improves following massage. Early Child Development & Care, 143, 5964.Google Scholar
Held, R., Ostrovsky, Y., de Gelder, B., Gandhi, T., Ganesh, S., Mathur, U., & Sinha, P. (2011). The newly sighted fail to match seen with felt. Nature Neuroscience, 14, 551553.Google Scholar
Hoffmann, M., Chinn, L. K., Somogyi, E., Heed, T., Fagard, J., Lockman, J. J., & O’Regan, J. K. (2017). Development of reaching to the body in early infancy: From experiments to robotic models. Paper presented at the 2017 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Lisbon, Portugal.Google Scholar
Holmes, N. P., & Spence, C. (2004). The body schema and multisensory representation(s) of peripersonal space. Cognitive Processing, 5, 94105.Google Scholar
Hooker, D. (1952). The prenatal origin of behavior. Lawrence: University of Kansas Press.Google Scholar
Hopkins, B., & Westra, T. (1988). Maternal handling and motor development: An intracultural study. Genetic, Social, and General Psychology Monographs, 114, 377408.Google Scholar
Humphrey, T. (1964). Some correlations between the appearance of human fetal reflexes and the development of the nervous system. Progress in Brain Research, 4, 93135.Google Scholar
Jönsson, E. H., Kotilahti, K., Heiskala, J., Backlund Wasling, H., Olausson, H., Croy, I., … Karlsson, L. (2018). Affective and non-affective touch evoke differential brain responses in 2-month-old infants. NeuroImage, 169, 162171.Google Scholar
Jouen, F., & Molina, M. (2005). Exploration of the newborn’s manual activity: A window onto early cognitive processes. Infant Behavior & Development, 28, 227239.Google Scholar
Jousmäki, V., & Hari, R. (1998). Parchment-skin illusion: Sound-biased touch. Current Biology, 8, R190-R191.Google Scholar
Kahrimanovic, M., Bergmann Tiest, W. M., & Kappers, A. M. (2010). Haptic perception of volume and surface area of 3-D objects. Attention, Perception, & Psychophysics, 72, 517527.Google Scholar
Kalagher, H., & Jones, S. S. (2011a). Developmental change in young children’s use of haptic information in a visual task: The role of hand movements. Journal of Experimental Child Psychology, 108, 293307.Google Scholar
Kalagher, H., (2011b). Young children’s haptic exploratory procedures. Journal of Experimental Child Psychology, 110, 592602.Google Scholar
Karasik, L. B., Tamis-LeMonda, C. S., Ossmy, O., & Adolph, K. E. (2018). The ties that bind: Cradling in Tajikistan. PLoS ONE, 13, e0204428.Google Scholar
Kida, T., & Shinohara, K. (2013). Gentle touch activates the prefrontal cortex in infancy: A NIRS study. Neuroscience Letters, 541, 6366.Google Scholar
Kisilevsky, B. S., & Muir, D. W. (1984). Neonatal habituation and dishabituation to tactile stimulation during sleep. Developmental Psychology, 20, 367373.Google Scholar
Krsnik, Ž., Majić, V., Vasung, L., Huang, H., & Kostović, I. (2017). Growth of thalamocortical fibers to the somatosensory cortex in the human fetal brain. Frontiers in Neuroscience, 11, 233.Google Scholar
Le Cornu Knight, F., Bremner, A. J., & Cowie, D. (2020). Does the language we use to segment the body, shape the way we perceive it? A study of tactile perceptual distortions. Cognition, 197, 104127. doi:10.1016/j.cognition.2019.104127Google Scholar
Le Cornu Knight, F., Cowie, D., & Bremner, A. J. (2016). Part-based representations of the body in early childhood: Evidence from perceived distortions of tactile space across limb boundaries. Developmental Science, 20(6), e12439.Google Scholar
Le Cornu Knight, F., Longo, M., & Bremner, A. J. (2014). Categorical perception of tactile distance. Cognition, 131, 254262.Google Scholar
Lederman, S. J., & Klatzky, R. L. (2009). Haptic perception: A tutorial. Attention, Perception, & Psychophysics, 71, 14391459.Google Scholar
Lee, H. K. (2005). The effect of infant massage on weight gain: Physiological and behavioral responses in premature infants. Taehan Kanho Hakhoe Chi, 35, 14511460.Google Scholar
Ley, P., Bottari, D., Shenoy, B. H., Kekunnaya, R., & Röder, B. (2013). Partial recovery of visual–spatial remapping of touch after restoring vision in a congenitally blind man. Neuropsychologia, 51, 11191123.Google Scholar
Lipsitt, L. P. (2002). The newborn as informant. In Fagan, J. W. & Hayne, H. (Eds.), Progress in infancy research, vol. 2 (pp. 2750). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Löken, L. S., Wessberg, J., Morrison, I., McGlone, F., & Olausson, H. (2009). Coding of pleasant touch by unmyelinated afferents in humans. Nature Neuroscience, 12, 547548.Google Scholar
Maister, L., Tang, T., & Tsakiris, M. (2017). Neurobehavioral evidence of interoceptive sensitivity in early infancy. ELIFE, 6, e25318.Google Scholar
Maitre, N. L., Key, A. P., Chorna, O. D., Slaughter, J. C., Matusz, P. J., Wallace, M. T., & Murray, M. M. (2017). The dual nature of early-life experience on somatosensory processing in the human infant brain. Current Biology, 27, 10481054.Google Scholar
Majid, A. (2010). Words for parts of the body. In Malt, B., & Wolff, P. (Eds.), Words and the mind: How words capture human experience (pp. 5871). Oxford: Oxford University Press.Google Scholar
Ma-Kellams, C., Blascovich, J., & McCall, C. (2012). Culture and the body: East–West differences in visceral perception. Journal of Personality and Social Psychology, 102, 718–28.Google Scholar
Marcus, L., Lejeune, F., Berne-Audéoud, F., Gentaz, E., & Debillon, T. (2012). Tactile sensory capacity of the preterm infant: Manual perception of shape from 28 gestational weeks. Pediatrics, 130, e88e94.Google Scholar
Markus, H. R., & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. Psychological Review, 98, 224253.Google Scholar
Marshall, P. J., & Meltzoff, A. N. (2015). Body maps in the infant brain. Trends in Cognitive Sciences, 19, 499505.Google Scholar
Maurer, D., Stager, C. L., & Mondloch, C. J. (1999). Cross-modal transfer of shape is difficult to demonstrate in one-month-olds. Child Development, 70, 10471057.Google Scholar
Meins, E., Fernyhough, C., Fradley, E., & Tuckey, M. (2001). Rethinking maternal sensitivity: Mothers’ comments on infants’ mental processes predict security of attachment at 12 months. Journal of Child Psychology and Psychiatry and Allied Disciplines, 42, 637648.Google Scholar
Meltzoff, A. N., & Borton, R. W. (1979). Intermodal matching by human neonates. Nature, 282, 403404.Google Scholar
Meltzoff, A. N., Ramírez, R. R., Saby, J. N., Larson, E., Taulu, S., & Marshall, P. J. (2018). Infant brain responses to felt and observed touch of hands and feet: An MEG study. Developmental Science, 21, e12651.Google Scholar
Meltzoff, A. N., Saby, J. N., & Marshall, P. J. (2019). Neural representations of the body in 60-day-old human infants. Developmental Science, 22, e12698.Google Scholar
Miguel, H. O., Lisboa, I. C., Gonçalves, Ó. F., & Sampaio, A. (2019). Brain mechanisms for processing discriminative and affective touch in 7-month-old infants. Developmental Cognitive Neuroscience, 35, 2027.Google Scholar
Milh, M., Kaminska, A., Huon, C., Lapillonne, A., Ben-Ari, Y., & Khazipov, R. (2007). Rapid cortical oscillations and early motor activity in premature human neonate. Cerebral Cortex, 17, 15821594.Google Scholar
Montagu, A. (1978). Touching: The human significance of the skin. New York, NY: Harper & Row.Google Scholar
Moreau, T., Helfgott, E., Weinstein, P., & Milner, P. (1978). Lateral differences in habituation of ipsilateral head-turning to repeated tactile stimulation in the human newborn. Perceptual & Motor Skills, 46, 427436.Google Scholar
Murphy, J., Brewer, R., Catmur, C., & Bird, G. (2017). Interoception and psychopathology: A developmental neuroscience perspective. Developmental Cognitive Neuroscience, 23, 4556.Google Scholar
Nevalainen, P., Lauronen, L., & Pihko, E. (2014). Development of human somatosensory cortical functions – what have we learned from magnetoencephalography: A review. Frontiers in Human Neuroscience, 8, 158.Google Scholar
Norris, S., Campbell, L. A., & Brenkert, S. (1981). Nursing procedures and alterations in transcutaneous oxygen tension in premature infants. Nursing Research, 31, 330336.Google Scholar
Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man: A clinical study of localization. Oxford: Macmillan.Google Scholar
Pirazzoli, L., Lloyd-Fox, S., Braukmann, R., Johnson, M. H., & Gliga, T. (2019). Hand or spoon? Exploring the neural basis of affective touch in 5-month-old infants. Developmental Cognitive Neuroscience, 35, 2835.Google Scholar
Quattrocki, E., & Friston, K. (2014). Autism, oxytocin and interoception. Neuroscience & Biobehavioral Reviews, 47, 410430.Google Scholar
Radman, Z. (2013). The hand, an organ of the mind: What the manual tells the mental. Cambridge, MA: MIT Press.Google Scholar
Rigato, S., Begum Ali, J., van Velzen, J., & Bremner, A. J. (2014). The neural basis of somatosensory remapping develops in human infancy. Current Biology, 24, 12221226.Google Scholar
Rochat, P. (1998). Self-perception and action in infancy. Experimental Brain Research, 123, 102109.Google Scholar
Rochat, P. (2010). The innate sense of the body develops to become a public affair by 2–3 years. Neuropsychologia, 48, 738745.Google Scholar
Rochat, P., & Hespos, S. J. (1997). Differential rooting response by neonates: Evidence for an early sense of self. Early Development & Parenting, 64, 153188.Google Scholar
Rochat, P., & Senders, S. J. (1991). Active touch in infancy: Action systems in development. In Weiss, M. J. S. & Zelazo, P. R. (Eds.), Newborn attention: Biological constraints and the influence of experience (pp. 412442). Westport, CT: Ablex.Google Scholar
Röder, B., Rösler, F., & Spence, C. (2004). Early vision impairs tactile perception in the blind. Current Biology, 14, 121124.Google Scholar
Rose, S. A. (1994). From hand to eye: Findings and issues in infant cross-modal transfer. In Lewkowicz, D.J., & Lickliter, R. (Eds.), The development of intersensory perception: Comparative perspectives (pp. 265284). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Rose, S. A., Gottfried, A. W., & Bridger, W. H. (1981). Cross-modal transfer in 6-month-old infants. Developmental Psychology, 17, 661669.Google Scholar
Saby, J. N., Meltzoff, A. N., & Marshall, P. J. (2015). Neural body maps in human infants: Somatotopic responses to tactile stimulation in 7-month-olds. NeuroImage, 118, 7478.Google Scholar
Schicke, T., & Röder, B. (2006). Spatial remapping of touch: Confusion of perceived stimulus order across hand and foot. Proceedings of the National Academy of Sciences of the United States of America, 103, 1180811813.Google Scholar
Shen, G., Weiss, S. M., Meltzoff, A. N., & Marshall, P. J. (2018). The somatosensory mismatch negativity as a window into body representations in infancy. International Journal of Psychophysiology, 134, 144150.Google Scholar
Somogyi, E., Jacquey, L., Heed, T., Hoffmann, M., Lockman, J. J., Granjon, L., … O’Regan, J. K. (2018). Which limb is it? Responses to vibrotactile stimulation in early infancy. British Journal of Developmental Psychology, 36, 384401.Google Scholar
Stein, B. E. (Ed.) (2012). The new handbook of multisensory processes. Cambridge, MA: MIT Press.Google Scholar
Streri, A. (2012). Crossmodal interactions in the human newborn: New answers to Molyneux’s question. In Bremner, A. J., Lewkowicz, D. J., & Spence, C. (Eds.), Multisensory development (pp. 88112). Oxford: Oxford University Press.Google Scholar
Streri, A., Lhote, M., & Dutilleul, S. (2000). Haptic perception in newborns. Developmental Science, 3, 319327.Google Scholar
Thomas, R. L., Misra, R., Akkunt, E., Ho, C., Spence, C., & Bremner, A. J. (2018). Sensitivity to auditory-tactile colocation in early infancy. Developmental Science, 21, e12597.Google Scholar
Tiriac, A., Sokoloff, G., & Blumberg, M. S. (2015). Myoclonic twitching and sleep-dependent plasticity in the developing sensorimotor system. Current Sleep Medicine Reports, 1, 7479.Google Scholar
Turkewitz, G. (1994). Sources of order for intersensory functioning. In Lewkowicz, D. J., & Lickliter, R. (Eds.), The development of intersensory perception: Comparative perspectives (pp. 318). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Tuulari, J. J., Scheinin, N. M., Lehtola, S., Merisaari, H., Saunavaara, J., Parkkola, R., … Björnsdotter, M. (2019). Neural correlates of gentle skin stroking in early infancy. Developmental Cognitive Neuroscience, 35, 3641.Google Scholar
Zappella, M., & Simopoulos, A. (1966). The crossed-extension reflex in the newborn. Annales Paediatriae Fenniae, 12, 3033.Google Scholar
Zmyj, N., Jank, J., Schütz-Bosbach, S., & Daum, M. M. (2011). Detection of visual-tactile contingency in the first year after birth. Cognition, 120, 8289.Google Scholar

References

Afeiche, M. C., Koyratty, B. N. S., Wang, D., Jacquier, E. F., & Le, K. A. (2018). Intakes and sources of total and added sugars among 4- to 13-year-old children in China, Mexico and the United States. Pediatric Obesity, 13(4), 204212. doi:10.1111/ijpo.12234Google Scholar
Ahern, S. M., Caton, S. J., Blundell, P., & Hetherington, M. M. (2014). The root of the problem: Increasing root vegetable intake in preschool children by repeated exposure and flavour learning. Appetite, 80, 154160. doi:10.1016/j.appet.2014.04.016Google Scholar
Al Ain, S., Perry, R. E., Nunez, B., Kayser, K., Hochman, C., Brehman, E., … Sullivan, R. M. (2017). Neurobehavioral assessment of maternal odor in developing rat pups: Implications for social buffering. Social Neuroscience, 12(1), 3249. doi:10.1080/17470919.2016.1159605Google Scholar
Bailey, R. L., Catellier, D. J., Jun, S., Dwyer, J. T., Jacquier, E. F., Anater, A. S., & Eldridge, A. L. (2018). Total usual nutrient intakes of US children (under 48 months): Findings from the Feeding Infants and Toddlers Study (FITS) 2016. Journal of Nutrition, 148(Suppl. 9), 1557S1566S. doi:10.1093/jn/nxy042Google Scholar
Ballard, O., & Morrow, A. L. (2013). Human milk composition: Nutrients and bioactive factors. Pediatric Clinics of North America, 60(1), 4974. doi:10.1016/j.pcl.2012.10.002Google Scholar
Barends, C., de Vries, J., Mojet, J., & de Graaf, C. E. (2013). Effects of repeated exposure to either vegetables or fruits on infant’s vegetable and fruit acceptance at the beginning of weaning. Food Quality and Preference, 29, 157165.Google Scholar
Barker, E. (1980). Sensory evaluation of human milk. Manitoba, Canada: University of Manitoba.Google Scholar
Bartolomei, F., Lagarde, S., Medina Villalon, S., McGonigal, A., & Benar, C. G. (2017). The “Proust phenomenon”: Odor-evoked autobiographical memories triggered by direct amygdala stimulation in human. Cortex, 90, 173175. doi:10.1016/j.cortex.2016.12.005Google Scholar
Bassette, R., Fung, D. Y. C., & Mantha, V. R. (1986). Off-flavors in milk. CRC Critical Reviews in Food Science and Nutrition, 24, 152.Google Scholar
Beauchamp, G. K., & Cowart, B. J. (1990). Preference for high salt concentrations among children. Developmental Psychology, 26(4), 539545.Google Scholar
Beauchamp, G. K., Cowart, B. J., & Moran, M. (1986). Developmental changes in salt acceptability in human infants. Developmental Psychobiology, 19, 1725.Google Scholar
Beauchamp, G. K., Katahira, K., Yamazaki, K., Mennella, J. A., Bard, J., & Boyse, E. A. (1995). Evidence suggesting that the odortypes of pregnant women are a compound of maternal and fetal odortypes. Proceedings of the National Academy of the Sciences of the United States of America, 92(7), 26172621.Google Scholar
Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience & Biobehavioral Reviews, 20, 125. doi:0149-7634(95)00033-B [pii]Google Scholar
Birch, L. L., Gunder, L., Grimm-Thomas, K., & Laing, D. G. (1998). Infants’ consumption of a new food enhances acceptance of similar foods. Appetite, 30, 283295.Google Scholar
Birch, L. L., & Marlin, D. W. (1982). I don’t like it; I never tried it: Effects of exposure on two-year-old children’s food preferences. Appetite, 3, 353360.Google Scholar
Birch, L. L., McPhee, L., Shoba, B. C., Pirok, E., & Steinberg, L. (1987). What kind of exposure reduces children’s food neophobia? Looking vs. tasting. Appetite, 9, 171178.Google Scholar
Black, M. M., & Aboud, F. E. (2011). Responsive feeding is embedded in a theoretical framework of responsive parenting. Journal of Nutrition, 141(3), 490494. doi:10.3945/jn.110.129973Google Scholar
Bridger, W. H. (1961). Ethological concepts and human development. Recent Advances in Biological Psychiatry, 4, 95107.Google Scholar
Bronfenbrenner, U., & Morris, P. (1998). The ecology of human developmental processes. In Damon, W. & Eisenberg, N. (Eds.), Theoretical models of human development (pp. 9931028). New York, NY: John Wiley & Sons.Google Scholar
Brown, G. W., Tuholski, J. M., Sauer, L. W., Minsk, L. D., & Rosenstern, I. (1960). Evaluation of prepared milks for infant nutrition: Use of the Latin square technique. Journal of Pediatrics, 56, 391398.Google Scholar
Butte, N. F., Wills, C., Jean, C. A., Smith, E. O., & Garza, C. (1985). Feeding patterns of exclusively breast-fed infants during the first four months of life. Early Human Development, 12(3), 291300.Google Scholar
Cameron, S. L., Heath, A. L., & Taylor, R. W. (2012). How feasible is baby-led weaning as an approach to infant feeding? A review of the evidence. Nutrients, 4(11), 15751609. doi:10.3390/nu4111575Google Scholar
Cannon, A. M., Gridneva, Z., Hepworth, A. R., Lai, C. T., Tie, W. J., Khan, S., … Geddes, D. T. (2017). The relationship of human milk leptin and macronutrients with gastric emptying in term breastfed infants. Pediatric Research, 82(1), 7278. doi:10.1038/pr.2017.79Google Scholar
Capretta, P. J., Petersik, J. T., & Steward, D. J. (1975). Acceptance of novel flavours is increased after early experience of diverse taste. Nature, 254, 689691.Google Scholar
Carruth, B. R., & Skinner, J. D. (2002). Feeding behaviors and other motor development in healthy children (2–24 months). Journal of the American College of Nutrition, 21(2), 8896.Google Scholar
Carruth, B. R., Ziegler, P. J., Gordon, A., & Hendricks, K. (2004). Developmental milestones and self-feeding behaviors in infants and toddlers. Journal of the American Dietetic Association, 104(Suppl. 1), s51s56. doi:10.1016/j.jada.2003.10.019Google Scholar
Caton, S. J., Ahern, S. M., Remy, E., Nicklaus, S., Blundell, P., & Hetherington, M. M. (2013). Repetition counts: Repeated exposure increases intake of a novel vegetable in UK pre-school children compared to flavour–flavour and flavour–nutrient learning. British Journal of Nutrition, 109, 20892097. doi:S0007114512004126[pii]10.1017/S0007114512004126Google Scholar
Chan, S., Pollitt, E., & Leibel, R. (1979). Effect of nutrient cues on formula intake in 5-week-old infants. Infant Behaviour and Development, 2, 201208.Google Scholar
Coldwell, S. E., Oswald, T. K., & Reed, D. R. (2009). A marker of growth differs between adolescents with high vs. low sugar preference. Physiolology and Behavior, 96, 574580. doi:S0031-9384(08)00394-6[pii]10.1016/j.physbeh.2008.12.010Google Scholar
Couch, S. C., Glanz, K., Zhou, C., Sallis, J. F., & Saelens, B. E. (2014). Home food environment in relation to children’s diet quality and weight status. Journal of the Academy of Nutrition and Dietetics, 114, 15691579. doi:10.1016/j.jand.2014.05.015S2212-2672(14)00600-5[pii]Google Scholar
Davis, C. M. (1928). Self-selection of diet by newly weaned infants: An experimental study. American Journal of Diseases of Childhood, 36, 361659.Google Scholar
Davis, C. M. (1939). Results of the self-selection of diets by young children. Canadian Medical Association Journal, 41(3), 257261.Google Scholar
Debiec, J., & Sullivan, R. M. (2014). Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear. Proceedings of the National Academy of the Sciences of the United States of America, 111(33), 1222212227. doi:10.1073/pnas.1316740111Google Scholar
Delaunay-El Allam, M., Soussignan, R., Patris, B., Marlier, L., & Schaal, B. (2010). Long-lasting memory for an odor acquired at the mother’s breast. Developmental Science, 13(6), 849863. doi:10.1111/j.1467-7687.2009.00941.xGoogle Scholar
Deming, D. M., Briefel, R. R., & Reidy, K. C. (2014). Infant feeding practices and food consumption patterns of children participating in WIC. Journal of Nutrition Education and Behavior, 46, S29–37. doi:10.1016/j.jneb.2014.02.020Google Scholar
Deming, D. M., Reidy, K. C., Fox, M. K., Briefel, R. R., Jacquier, E., & Eldridge, A. L. (2017). Cross-sectional analysis of eating patterns and snacking in the US Feeding Infants and Toddlers Study 2008. Public Health Nutrition, 20(9), 15841592. doi:10.1017/S136898001700043XGoogle Scholar
Denney, L., Reidy, K. C., & Eldridge, A. L. (2016). Differences in complementary feeding of 6 to 23 month olds in China, US and Mexico. Journal of Nutritional Health and Food Science, 4(3), 18. doi: http://dx.doi.org/10.15226/jnhfs.2016.00181Google Scholar
Denzer, M. Y., Kirsch, F., & Buettner, A. (2015). Are odorant constituents of herbal tea transferred into human milk? Journal of Agriculture and Food Chemistry, 63(1), 104111. doi:10.1021/jf504073dGoogle Scholar
Derks, I. P., Tiemeier, H., Sijbrands, E. J., Nicholson, J. M., Voortman, T., Verhulst, F. C., … Jansen, P. W. (2017). Testing the direction of effects between child body composition and restrictive feeding practices: Results from a population-based cohort. American Journal of Clinical Nutrition, 106(3), 783790. doi:10.3945/ajcn.117.156448Google Scholar
Desor, J. A., & Beauchamp, G. K. (1987). Longitudinal changes in sweet preferences in humans. Physiology and Behavior, 39(5), 639641.Google Scholar
Desor, J. A., Maller, O., & Andrews, K. (1975). Ingestive responses of human newborns to salty, sour, and bitter stimuli. Journal of Comparative and Physiological Psychology, 89, 966970.Google Scholar
Domjan, M., & Gillan, D. (1976). Role of novelty in the aversion for increasingly concentrated saccharin solutions. Physiology and Behavior, 16(5), 537542.Google Scholar
Draxten, M., Fulkerson, J. A., Friend, S., Flattum, C. F., & Schow, R. (2014). Parental role modeling of fruits and vegetables at meals and snacks is associated with children’s adequate consumption. Appetite, 78, 17. doi:10.1016/j.appet.2014.02.017Google Scholar
Faas, A. E., March, S. M., Moya, P. R., & Molina, J. C. (2015). Alcohol odor elicits appetitive facial expressions in human neonates prenatally exposed to the drug. Physiology and Behavior, 148, 7886. doi:10.1016/j.physbeh.2015.02.031Google Scholar
Faas, A. E., Sponton, E. D., Moya, P. R., & Molina, J. C. (2000). Differential responsiveness to alcohol odor in human neonates: Effects of maternal consumption during gestation. Alcohol, 22(1), 717.Google Scholar
Fisher, J. O., Mitchell, D. C., Smiciklas-Wright, H., & Birch, L. L. (2002). Parental influences on young girls’ fruit and vegetable, micronutrient, and fat intakes. Journal of the American Dietetic Association, 102, 5864.Google Scholar
Flynn, M. A., McNeil, D. A., Maloff, B., Mutasingwa, D., Wu, M., Ford, C., & Tough, S. C. (2006). Reducing obesity and related chronic disease risk in children and youth: A synthesis of evidence with “best practice” recommendations. Obesity Review, 7(Suppl. 1), 766. doi:10.1111/j.1467-789X.2006.00242.xGoogle Scholar
Fomon, S. J. (1980). Factors influencing food consumption in the human infant. International Journal of Obesity, 4(4), 348350.Google Scholar
Fomon, S. J., Filmer, L. J., Jr., Thomas, L. N., Anderson, T. A., & Nelson, S. E. (1975). Influence of formula concentration on caloric intake and growth of normal infants. Acta Paediatrica, 64(2), 172181.Google Scholar
Fomon, S. J., Filer, L. J., Jr., Thomas, L. N., Rogers, R. R., & Proksch, A. M. (1969). Relationship between formula concentration and rate of growth of normal infants. Journal of Nutrition, 98(2), 241254. doi:10.1093/jn/98.2.241Google Scholar
Fomon, S. J., Thomas, L. N., Filer, L. J., Jr., Anderson, T. A., & Nelson, S. E. (1976). Influence of fat and carbohydrate content of diet on food intake and growth of male infants. Acta Paediatrica, 65(2), 136144.Google Scholar
Fomon, S. J., Ziegler, E. E., Nelson, S. E., & Edwards, B. B. (1983). Sweetness of diet and food consumption by infants. Proceedings of the Society for Experimental Biology and Medicine, 173(2), 190193.Google Scholar
Forestell, C. A., & LoLordo, V. M. (2003). Palatability shifts in taste and flavour preference conditioning. Quarterly Journal of Experimental Psychology B, 56, 140160. doi:10.1080/02724990244000232Google Scholar
Forestell, C. A., & Mennella, J. A. (2005). Children’s hedonic judgments of cigarette smoke odor: effects of parental smoking and maternal mood. Psychology of Addictive Behaviors, 19(4), 423432.Google Scholar
Forestell, C. A., (2007). Early determinants of fruit and vegetable acceptance. Pediatrics, 120(6), 12471254.Google Scholar
Forestell, C. A., (2008). Food, folklore and flavor preference development. In Lammi-Keefe, C. (Ed.), Handbook of nutrition and pregnancy (pp. 5564). Totowa, NJ.: Humana Press.Google Scholar
Forestell, C. A., (2015). The ontogeny of taste perception and preference throughout childhood. In Doty, R. L. (Ed.), Handbook of olfaction and gustation (3rd ed., pp. 797830). New York, NY: Wiley-Liss.Google Scholar
Foterek, K., Hilbig, A., & Alexy, U. (2015). Associations between commercial complementary food consumption and fruit and vegetable intake in children. Results of the DONALD study. Appetite, 85, 8490. doi:10.1016/j.appet.2014.11.015Google Scholar
Fox, M. K., Devaney, B., Reidy, K., Razafindrakoto, C., & Ziegler, P. (2006). Relationship between portion size and energy intake among infants and toddlers: Evidence of self-regulation. Journal of the American Dietetic Association, 106(Suppl. 1), S77–83.Google Scholar
Galef, B. G. J., & Sherry, D. F. (1973). Mother’s milk: A medium for transmission of cues reflecting the flavor of mother’s diet. Journal of Comparative and Physiological Psychology, 83(3), 374378.Google Scholar
Garcia, J., Hankins, W. G., & Rusiniak, K. W. (1974). Behavioral regulation of the milieu interne in man and rat. Science, 185(4154), 824831.Google Scholar
Gerrish, C. J., & Mennella, J. A. (2001). Flavor variety enhances food acceptance in formula-fed infants. American Journal of Clinical Nutrition, 73, 10801085.Google Scholar
Grimes, C. A., Szymlek-Gay, E. A., Campbell, K. J., & Nicklas, T. A. (2015). Food sources of total energy and nutrients among U.S. infants and toddlers: National Health and Nutrition Examination Survey 2005–2012. Nutrients, 7(8), 67976836. doi:10.3390/nu7085310Google Scholar
Gross, R. S., Fierman, A. H., Mendelsohn, A. L., Chiasson, M. A., Rosenberg, T. J., Scheinmann, R., & Messito, M. J. (2010). Maternal perceptions of infant hunger, satiety, and pressuring feeding styles in an urban Latina WIC population. Academic Pediatrics, 10(1), 2935. doi:10.1016/j.acap.2009.08.001Google Scholar
Grummer-Strawn, L. M., Scanlon, K. S., & Fein, S. B. (2008). Infant feeding and feeding transitions during the first year of life. Pediatrics, 122(Suppl. 2), S36S42. doi:10.1542/peds.2008-1315dGoogle Scholar
Hausner, H., Bredie, W. L., Molgaard, C., Petersen, M. A., & Moller, P. (2008). Differential transfer of dietary flavour compounds into human breast milk. Physiology and Behavior, 95(1–2), 118124.Google Scholar
Hepper, P. G. (1995). Human fetal ‘‘olfactory’’ learning International Journal of Prenatal and Perinatal Psychology and Medicine, 7, 147151.Google Scholar
Hepper, P. G., Wells, D. L., Dornan, J. C., & Lynch, C. (2013). Long-term flavor recognition in humans with prenatal garlic experience. Developmental Psychobiology, 55(5), 568574. doi:10.1002/dev.21059Google Scholar
Hetherington, M. M., Schwartz, C., Madrelle, J., Croden, F., Nekitsing, C., Vereijken, C. M., & Weenen, H. (2015). A step-by-step introduction to vegetables at the beginning of complementary feeding. The effects of early and repeated exposure. Appetite, 84, 280290. doi:10.1016/j.appet.2014.10.014S0195-6663(14)00494-2Google Scholar
Hodges, E. A., Hughes, S. O., Hopkinson, J., & Fisher, J. O. (2008). Maternal decisions about the initiation and termination of infant feeding. Appetite, 50(2–3), 333339.Google Scholar
Hodges, E. A., Johnson, S. L., Hughes, S. O., Hopkinson, J. M., Butte, N. F., & Fisher, J. O. (2013). Development of the responsiveness to child feeding cues scale. Appetite, 65, 210219. doi:10.1016/j.appet.2013.02.010Google Scholar
Holley, C. E., Haycraft, E., & Farrow, C. (2015). “Why don’t you try it again?” A comparison of parent led, home based interventions aimed at increasing children’s consumption of a disliked vegetable. Appetite, 87, 215222. doi:10.1016/j.appet.2014.12.216Google Scholar
Kent, J. C., Mitoulas, L. R., Cregan, M. D., Ramsay, D. T., Doherty, D. A., & Hartmann, P. E. (2006). Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics, 117(3), e387–395. doi:10.1542/peds.2005-1417Google Scholar
Kirsch, F., Beauchamp, J., & Buettner, A. (2012). Time-dependent aroma changes in breast milk after oral intake of a pharmacological preparation containing 1, 8-cineole. Clinical Nutrition, 31(5), 682692. doi:10.1016/j.clnu.2012.02.002Google Scholar
Kolb, B., & Gibb, R. (2011). Brain plasticity and behaviour in the developing brain. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 20, 265276.Google Scholar
Korner, A. K., Chuck, B., & Dontchos, S. (1968). Organismic determinants of spontaneous oral behavior in neonates. Child Development, 39, 11471157.Google Scholar
Kyureghian, G., Stratton, J., Bianchini, A., & Albrecht, J. (2010). Nutritional comparison of frozen and non-frozen fruits and vegetables: Literature review. Retrieved from https://pdfs.semanticscholar.org/fd90/0931812081bff85f304a557906852b9add90.pdf.Google Scholar
Laing, D. G., Oram, N., Burgess, J., Ram, P. R., Moore, G., Rose, G., … Skurray, G. R. (1999). The development of meat-eating habits during childhood in Australia. International Journal of Food Sciences and Nutrition, 50, 2937.Google Scholar
Larsen, J. K., Hermans, R. C., Sleddens, E. F., Engels, R. C., Fisher, J. O., & Kremers, S. P. (2015). How parental dietary behavior and food parenting practices affect children’s dietary behavior. Interacting sources of influence? Appetite, 89, 246257. doi: 10.1016/j.appet.2015.02.012Google Scholar
Lipchock, S. V., Reed, D. R., & Mennella, J. A. (2011). The gustatory and olfactory systems during infancy: Implications for development of feeding behaviors in the high-risk neonate. Clinics in Perinatology, 38(4), 627641Google Scholar
Lundy, B., Field, T., Carraway, K., Hart, S., Malphurs, J., Rosenstein, M., … Hernandez-Reif, M. (1998). Food texture preferences in infants versus toddlers. Early Child Development and Care, 146, 6985.Google Scholar
Maalouf, J., Cogswell, M. E., Bates, M., Yuan, K., Scanlon, K. S., Pehrsson, P., … Merritt, R. K. (2017). Sodium, sugar, and fat content of complementary infant and toddler foods sold in the United States, 2015. American Journal of Clinical Nutrition, 105(6), 14431452. doi:10.3945/ajcn.116.142653Google Scholar
McDaniel, M. R. (1980). Off-flavors in human milk. In Charalambous, G. (Ed.), The analysis and control of less desirable flavors in foods and beverages (pp. 267291). New York, NY: Academic Press.Google Scholar
McNally, J., Hugh-Jones, S., Caton, S., Vereijken, C., Weenen, H., & Hetherington, M. (2016). Communicating hunger and satiation in the first 2 years of life: A systematic review. Maternal Child Nutrition, 12(2), 205228. doi:10.1111/mcn.12230Google Scholar
Meltzoff, A. N. (2007). Infants’ causal learning: Intervention, observation, imitation. In Gopnik, A. & Schulz, L. (Eds.), Causal learning: Psychology, philosophy, and computation (pp. 3741). Oxford: Oxford University Press.Google Scholar
Mennella, J. A. (1997). Infants’ suckling responses to the flavor of alcohol in mothers’ milk. Alcohol: Clinical and Experimental Research, 21(4), 581585.Google Scholar
Mennella, J. A. (2007). The chemical senses and the development of flavor preferences in humans. In Hale, T. W. & Hartmann, P. E. (Eds.), Textbook on human lactation (pp. 403414). Amarillo, TX: Hale.Google Scholar
Mennella, J. A. (2012). Alcohol use during lactation: Effects on the mother–infant dyad. In Watson, R. R. & Preedy, V. R. (Eds.), Nutrition and alcohol: Linking nutrient interactions and dietary intake (pp. 6382). New York, NY: Springer.Google Scholar
Mennella, J. A., & Beauchamp, G. K. (1991a). Maternal diet alters the sensory qualities of human milk and the nursling’s behavior. Pediatrics, 88(4), 737744.Google Scholar
Mennella, J. A., (1991b). The transfer of alcohol to human milk. Effects on flavor and the infant’s behavior. New England Journal of Medicine, 325(14), 981985.Google Scholar
Mennella, J. A., (1993a). Beer, breast feeding, and folklore. Developmental Psychobiology, 26(8), 459466.Google Scholar
Mennella, J. A., (1993b). The effects of repeated exposure to garlic-flavored milk on the nursling’s behavior. Pediatric Research, 34, 805808.Google Scholar
Mennella, J. A., (1994). The infant’s response to flavored milk. Infant Behavior and Development, 19(1), 119.Google Scholar
Mennella, J. A., (1996). The human infants’ responses to vanilla flavors in mother’s milk and formula. Infant Behavior and Development, 19, 1319.Google Scholar
Mennella, J. A., (1998a). The infant’s response to scented toys: Effects of exposure. Chemical Senses, 23, 1117.Google Scholar
Mennella, J. A., (1998b). Smoking and the flavor of breast milk. New England Journal of Medicine, 339, 15591560.Google Scholar
Mennella, J. A., (1999). Experience with a flavor in mother’s milk modifies the infant’s acceptance of flavored cereal. Developmental Psychobiology, 35(3), 197203.Google Scholar
Mennella, J. A., (2002). Flavor experiences during formula feeding are related to preferences during childhood. Early Human Development, 68(2), 7182.Google Scholar
Mennella, J. A., (2015). The sweetness and bitterness of childhood: Insights from basic research on taste preferences. Physiology and Behavior, 152(Pt. B), 502507. doi:10.1016/j.physbeh.2015.05.015Google Scholar
Mennella, J. A., Daniels, L. M., & Reiter, A. R. (2017). Learning to like vegetables during breastfeeding: A randomized clinical trial of lactating mothers and infants. American Journal of Clinical Nutrition, 106, 6776. doi:10.3945/ajcn.116.143982Google Scholar
Mennella, J. A., Finkbeiner, S., Lipchock, S. V., Hwang, L. D., & Reed, D. R. (2014). Preferences for salty and sweet tastes are elevated and related to each other during childhood. PLoS One, 9(3), e92201. doi:10.1371/journal.pone.0092201Google Scholar
Mennella, J. A., Forestell, C. A., Morgan, L. K., & Beauchamp, G. K. (2009). Early milk feeding influences taste acceptance and liking during infancy. American Journal of Clinical Nutrition, 90(3), 780–788S. doi:10.3945/ajcn.2009.27462OGoogle Scholar
Mennella, J. A., Inamdar, L., Pressman, N., Schall, J., Papas, M. A., Schoeller, D., … Trabulsi, J. C. (2018). Type of infant formula increases early weight gain and impacts energy balance: A randomized controlled trial. American Journal of Clinical Nutrition, 108, 111. doi: 10.1093/ajcn/nqy188Google Scholar
Mennella, J. A., Jagnow, C. P., & Beauchamp, G. K. (2001). Prenatal and postnatal flavor learning by human infants. Pediatrics, 107, E88.Google Scholar
Mennella, J. A., Johnson, A., & Beauchamp, G. K. (1995). Garlic ingestion by pregnant women alters the odor of amniotic fluid. Chemical Senses, 20(2), 207209.Google Scholar
Mennella, J. A., Nicklaus, S., Jagolino, A. L., & Yourshaw, L. M. (2008). Variety is the spice of life: Strategies for promoting fruit and vegetable acceptance during infancy. Physiology and Behavior, 94(1), 2938.Google Scholar
Mennella, J. A., Papas, M. A., Reiter, A. R., Stallings, V. A., & Trabulsi, J. C. (2019). Early rapid weight gain among formula-fed infants: Impact of formula type and maternal feeding styles. Pediatric Obesity, e12503. doi:10.1111/ijpo.12503Google Scholar
Mennella, J. A., Pepino, M. Y., Duke, F. F., & Reed, D. R. (2010). Age modifies the genotype–phenotype relationship for the bitter receptor TAS2R38. BMC Genetics, 11, 60. doi:10.1186/1471-2156-11-60Google Scholar
Mennella, J. A., Reiter, A. R., & Daniels, L. M. (2016). Vegetable and fruit acceptance during infancy: Impact of ontogeny, genetics, and early experiences. Advances in Nutrition, 7, 211S-219S. doi:10.3945/an.115.008649Google Scholar
Mennella, J. A., Ventura, A. K., & Beauchamp, G. K. (2011). Differential growth patterns among healthy infants fed protein hydrolysate or cow-milk formulas. Pediatrics, 127, 110118. doi:10.1542/peds.2010-1675Google Scholar
Moding, K. J., Ferrante, M. J., Bellows, L. L., Bakke, A. J., Hayes, J. E., & Johnson, S. L. (2018). Variety and content of commercial infant and toddler vegetable products manufactured and sold in the United States. American Journal of Clinical Nutrition, 107(4), 576583. doi:10.1093/ajcn/nqx079Google Scholar
Montanari, M. (2006). Food is culture (A. Sonnenfeld, Trans.). New York, NY: Columbia University Press.Google Scholar
Myers, K. P., & Sclafani, A. (2006). Development of learned flavor preferences. Developmental Psychobiology, 48(5), 380388.Google Scholar
Nagasawa, M., Okabe, S., Mogi, K., & Kikusui, T. (2012). Oxytocin and mutual communication in mother–infant bonding. Frontiers in Human Neuroscience, 6, 31. doi:10.3389/fnhum.2012.00031Google Scholar
Naylor, A. J., & Morrow, A. L. (2001). Developmental readiness of normal full-term infants to progress from exclusive breastfeeding to the introduction of complementary foods Reviews of the Relevant Literature Concerning Infantimmunologic, Gastrointestinal, Oral Motor and Maternal Reproductive and Lactational Development. Retrieved from www.pronutrition.org/files/Developmental%20Readiness.pdfGoogle Scholar
Negayama, K. (1993). Weaning in Japan: A longitudinal study of mother and child behaviours during milk- and solid-feeding. Infant Child Development, 2, 2937.Google Scholar
Neville, M. C., Anderson, S. M., McManaman, J. L., Badger, T. M., Bunik, M., Contractor, N., … Williamson, P. (2012). Lactation and neonatal nutrition: Defining and refining the critical questions. Journal of Mammary Gland Biology and Neoplasia, 17, 167188. doi:10.1007/s10911-012-9261-5Google Scholar
Nishitani, S., Kuwamoto, S., Takahira, A., Miyamura, T., & Shinohara, K. (2014). Maternal prefrontal cortex activation by newborn infant odors. Chemical Senses, 39(3), 195202. doi:10.1093/chemse/bjt068Google Scholar
Obbagy, J. E., Blum-Kemelor, D. M., Essery, E. V., Lyon, J. M., & Spahn, J. M. (2014). USDA Nutrition Evidence Library: Methodology used to identify topics and develop systematic review questions for the birth-to-24-mo population. American Journal of Clinical Nutrition, 99(3), 692S-696S. doi:10.3945/ajcn.113.071670Google Scholar
Paul, I. M., Savage, J. S., Anzman, S. L., Beiler, J. S., Marini, M. E., Stokes, J. L., & Birch, L. L. (2011). Preventing obesity during infancy: A pilot study. Obesity (Silver Spring), 19(2), 353361. doi:10.1038/oby.2010.182Google Scholar
Prentice, P., Ong, K. K., Schoemaker, M. H., van Tol, E. A., Vervoort, J., Hughes, I. A., … Dunger, D. B. (2016). Breast milk nutrient content and infancy growth. Acta Paediatrica, 105(6), 641647. doi:10.1111/apa.13362Google Scholar
Pritchard, J. A. (1965). Deglutition by normal and anencephalic fetuses. Obstetrics and Gynecology, 25, 289297.Google Scholar
Provenza, F. (2018). Nourishment: What animals can teach us about rediscovering our nutritional wisdom. White River Junction, VT: Chelsea Green Publishing.Google Scholar
Raiten, D. J., Raghavan, R., Porter, A., Obbagy, J. E., & Spahn, J. M. (2014). Executive summary: Evaluating the evidence base to support the inclusion of infants and children from birth to 24 mo of age in the Dietary Guidelines for Americans – “the B-24 Project.” American Journal of Clinical Nutrition, 99(3), 663S691S. doi:10.3945/ajcn.113.072140Google Scholar
Reidy, K. C., Bailey, R. L., Deming, D. M., O’Neill, L., Carr, B. T., Lesniauskas, R., & Johnson, W. (2018). Food consumption patterns and micronutrient density of complementary foods consumed by infants fed commercially prepared baby foods. Nutrition Today, 53(2), 6878. doi:10.1097/NT.0000000000000265Google Scholar
Remington, A., Anez, E., Croker, H., Wardle, J., & Cooke, L. (2012). Increasing food acceptance in the home setting: A randomized controlled trial of parent-administered taste exposure with incentives. American Journal of Clinical Nutrition, 95, 7277. doi:10.3945/ajcn.111.024596Google Scholar
Remy, E., Issanchou, S., Chabanet, C., & Nicklaus, S. (2013). Repeated exposure of infants at complementary feeding to a vegetable puree increases acceptance as effectively as flavor–flavor learning and more effectively than flavor–nutrient learning. Journal of Nutrition, 143(7), 11941200. doi:10.3945/jn.113.175646Google Scholar
Roess, A. A., Jacquier, E. F., Catellier, D. J., Carvalho, R., Lutes, A. C., Anater, A. S., & Dietz, W. H. (2018). Food consumption patterns of infants and toddlers: Findings from the Feeding Infants and Toddlers Study (FITS) 2016. Journal of Nutrition, 148(Suppl. 3), 1525S1535S. doi:10.1093/jn/nxy171Google Scholar
Rosenstein, D., & Oster, H. (1988). Differential facial responses to four basic tastes in newborns. Child Development, 59, 15551568.Google Scholar
Rother, K. I., Sylvetsky, A. C., Walter, P. J., Garraffo, H. M., & Fields, D. A. (2018). Pharmacokinetics of sucralose and acesulfame-potassium in breast milk following ingestion of diet soda. Journal of Pediatric Gastroenterology and Nutrition, 66(3), 466470. doi:10.1097/MPG.0000000000001817Google Scholar
Rozin, E. (1973). The flavor-principle cookbook. New York, NY: Hawthorn Books.Google Scholar
Rozin, P. (1982). “Taste-smell confusions” and the duality of the olfactory sense. Perception and Psychophysics, 31(4), 397401.Google Scholar
Rozin, P. (1984). The acquisition of food habits and preferences. In Mattarazzo, J. D., Weiss, S. M., Herd, J. A., Miller, N. E., & Weiss, S. M. (Eds.), Behavioral health: A handbook of health enhancement and disease prevention (pp. 590607). New York, NY: John Wiley & Sons.Google Scholar
San Gabriel, A., & Uneyama, H. (2013). Amino acid sensing in the gastrointestinal tract. Amino Acids, 45, 451461. doi:10.1007/s00726-012-1371-2Google Scholar
Schaal, B., & Marlier, L. (1998). Maternal and paternal perception of individual odor signatures in human amniotic fluid – potential role in early bonding? Biology of the Neonate, 74(4), 266273.Google Scholar
Schaal, B., Marlier, L., & Soussignan, R. (2000). Human foetuses learn odours from their pregnant mother’s diet. Chemical Senses, 25(6), 729737.Google Scholar
Scheffler, L., Sauermann, Y., Zeh, G., Hauf, K., Heinlein, A., Sharapa, C., & Buettner, A. (2016). Detection of volatile metabolites of garlic in human breast milk. Metabolites, 6(2). doi:10.3390/metabo6020018Google Scholar
Sclafani, A., & Ackroff, K. (1994). Glucose- and fructose-conditioned flavor preferences in rats: Taste versus postingestive conditioning. Physiology and Behavior, 56(2), 399405.Google Scholar
Shipe, W. F., Bassette, R., Deane, D. D., Dunkley, W. L., Hammond, E. G., Harper, W. J., … Scanlan, R. A. (1978). Off-flavors of milk: Nomenclature, standards and bibliography. Journal of Dairy Science, 61, 855868.Google Scholar
Shipe, W. F., Ledford, R. A., Peterson, R. D., Scanlan, R. A., Geerken, H. F., Dougherty, R. W., & Morgan, M. E. (1962). Physiological mechanisms involved in transmitting flavors and odors to milk. II: Transmission of some flavor components of silage. Journal of Dairy Science, 45, 477480.Google Scholar
Shloim, N., Vereijken, C., Blundell, P., & Hetherington, M. M. (2017). Looking for cues: Infant communication of hunger and satiation during milk feeding. Appetite, 108, 7482. doi:10.1016/j.appet.2016.09.020Google Scholar
Siega-Riz, A. M., Kinlaw, A., Deming, D. M., & Reidy, K. C. (2011). New findings from the Feeding Infants and Toddlers Study 2008. Nestle Nutrition Workshop Series Pediatric Program, 68, 83100. doi:10.1159/000325667Google Scholar
Skinner, J. D., Carruth, B. R., Houck, K., Moran, J., III, Reed, A., Coletta, F., & Ott, D. (1998). Mealtime communication patterns of infants from 2 to 24 months of age. JNE, 30, 816.Google Scholar
Spjut, R. W. (1994). A systematic treatment of fruit types. New York, NY: New York Botanical Garden.Google Scholar
Stein, L. J., Cowart, B. J., & Beauchamp, G. K. (2012). The development of salty taste acceptance is related to dietary experience in human infants: A prospective study. American Journal of Clinical Nutrition, 95(1), 123129. doi:10.3945/ajcn.111.014282Google Scholar
Stein, L. J., Nagai, H., Nakagawa, M., & Beauchamp, G. K. (2003). Effects of repeated exposure and health-related information on hedonic evaluation and acceptance of a bitter beverage. Appetite, 40(2), 119129.Google Scholar
Steiner, J. E. (1987). What the neonate can tell us about umami. In Kawamura, Y. & Kare, M. R. (Eds.), Umami: A basic taste (pp. 97103). New York, NY: Marcel Dekker.Google Scholar
Strauss, S. (2006). Clara M. Davis and the wisdom of letting children choose their own diets. Canadian Medical Association Journal, 175(10), 1199. doi:10.1503/cmaj.060990Google Scholar
Sullivan, R., Perry, R., Sloan, A., Kleinhaus, K., & Burtchen, N. (2011). Infant bonding and attachment to the caregiver: Insights from basic and clinical science. Clinics in Perinatology, 38(4), 643655. doi:10.1016/j.clp.2011.08.011Google Scholar
Sullivan, S. A., & Birch, L. L. (1994). Infant dietary experience and acceptance of solid foods. Pediatrics, 93(2), 271277.Google Scholar
Sumonja, S., & Novakovic, B. (2013). Determinants of fruit, vegetable, and dairy consumption in a sample of schoolchildren, northern Serbia, 2012. Preventing Chronic Disease, 10, E178. doi:10.5888/pcd10.130072Google Scholar
Swinburn, B. A., Caterson, I., Seidell, J. C., & James, W. P. (2004). Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutrition, 7, 123146.Google Scholar
Taber, D. R., Chriqui, J. F., & Chaloupka, F. J. (2013). State laws governing school meals and disparities in fruit/vegetable intake. American Journal of Preventative Medicine, 44, 365372. doi:10.1016/j.amepre.2012.11.038Google Scholar
Thompson, A. L., Mendez, M. A., Borja, J. B., Adair, L. S., Zimmer, C. R., & Bentley, M. E. (2009). Development and validation of the Infant Feeding Style Questionnaire. Appetite, 53(2), 210221. doi:10.1016/j.appet.2009.06.010Google Scholar
Uneyama, H., Niijima, A., San Gabriel, A., & Torii, K. (2006). Luminal amino acid sensing in the rat gastric mucosa. American Journal of Physiology: Gastrointestinal and Liver Physiology, 291(6), G1163–1170. doi:10.1152/ajpgi.00587.2005Google Scholar
USDA (2010). Report of the Dietary Guidelines Advisory Committee on the dietary guidelines for Americans. Retrieved from www.nutriwatch.org/05Guidelines/dga_advisory_2010.pdf.Google Scholar
van den Engel-Hoek, L., van Hulst, K. C., van Gerven, M. H., van Haaften, L., & de Groot, S. A. (2014). Development of oral motor behavior related to the skill assisted spoon feeding. Infant Behaviour and Development, 37(2), 187191. doi:10.1016/j.infbeh.2014.01.008Google Scholar
Ventura, A. K., Beauchamp, G. K., & Mennella, J. A. (2012). Infant regulation of intake: The effect of free glutamate content in infant formulas. American Journal of Clinical Nutrition, 95(4), 875881. doi:10.3945/ajcn.111.024919Google Scholar
Ventura, A. K., Inamdar, L. B., & Mennella, J. A. (2015). Consistency in infants’ behavioural signalling of satiation during bottle-feeding. Pediatric Obesity, 10, 180187. doi:10.1111/ijpo.250Google Scholar
Ventura, A. K., & Mennella, J. A. (2017). An experimental approach to study individual differences in infants’ intake and satiation behaviors during bottle-feeding. Child Obesity, 13(1), 4452. doi:10.1089/chi.2016.0122Google Scholar
Wahlqvist, M. L., & Lee, M. S. (2007). Regional food culture and development. Asia Pacific Journal of Clinical Nutrition, 16 (Suppl. 1), 27.Google Scholar
Wardle, J., Carnell, S., & Cooke, L. (2005). Parental control over feeding and children’s fruit and vegetable intake: How are they related? Journal of the American Dietetic Association, 105(2), 227232.Google Scholar
Welker, E., Jacquier, E. F., Catellier, D. J., Anater, A. S., & Story, M. T. (2016). Room for improvement remains in food consumption patterns of young children aged 2–4 years. Journal of Nutrition, 148, 111.Google Scholar
Welsh, J. A., & Cunningham, S. A. (2011). The role of added sugars in pediatric obesity. Pediatric Clinics of North America, 58(6), 14551466. doi:10.1016/j.pcl.2011.09.009Google Scholar
Welsh, J. A., Sharma, A., Cunningham, S. A., & Vos, M. B. (2011). Consumption of added sugars and indicators of cardiovascular disease risk among US adolescents. Circulation, 123, 249257. doi:10.1161/CIRCULATIONAHA.110.972166Google Scholar
Willander, J., & Larsson, M. (2006). Smell your way back to childhood: Autobiographical odor memory. Psychosomatic Bulletin and Review, 13(2), 240244.Google Scholar
Wilson, D., Best, A., & Sullivan, R. (2004). Plasticity in the olfactory system: Lessons for the neurobiology of memory. Neuroscientist, 10, 513524.Google Scholar
Woolridge, M. W., Baum, J. D., & Drewett, R. F. (1980). Does a change in the composition of human milk affect sucking patterns and milk intake? Lancet, 2(8207), 12921293.Google Scholar
Woolridge, M. W., Baum, J. D., (1982 ). Individual patterns of milk intake during breast-feeding. Early Human Development, 7(3), 265272.Google Scholar
Worobey, H., Ostapkovich, K., Yudin, K., & Worobey, J. (2010). Trying versus liking fruits and vegetables: Correspondence between mothers and preschoolers. Ecology of Food and Nutrition, 49, 8797. doi:10.1080/03670240903433261Google Scholar
Yang, Q., Zhang, Z., Gregg, E. W., Flanders, W. D., Merritt, R., & Hu, F. B. (2014). Added sugar intake and cardiovascular diseases mortality among US adults. JAMA Internal Medicine, 174(4), 516524. doi:10.1001/jamainternmed.2013.13563Google Scholar

References

Bahrick, L. E. (1987). Infants’ intermodal perception of two levels of temporal structure in natural events. Infant Behavior and Development, 10, 387416. doi:10.1016/0163-6383(87)90039-7Google Scholar
Bahrick, L. E. (1988). Intermodal learning in infancy: Learning on the basis of two kinds of invariant relations in audible and visible events. Child Development, 59, 197209. doi:10.2307/1130402Google Scholar
Bahrick, L. E. (1992). Infants’ perceptual differentiation of amodal and modality-specific audio-visual relations. Journal of Experimental Child Psychology, 53, 180199. doi:10.1016/0022-0965(92)90048-BGoogle Scholar
Bahrick, L. E. (2001). Increasing specificity in perceptual development: Infants’ detection of nested levels of multimodal stimulation. Journal of Experimental Child Psychology, 79, 253270. doi:10.1006/jecp.2000.2588Google Scholar
Bahrick, L. E. (2010). Intermodal perception and selective attention to intersensory redundancy: Implications for typical social development and autism. In Bremner, J. G. & Wachs, T. D. (Eds.), The Wiley-Blackwell handbook of infant development (Vol. 1, 2nd ed., pp. 120165). Malden, MA: Wiley-Blackwell. doi:10.1002/9781444327564.ch4Google Scholar
Bahrick, L. E., Flom, R., & Lickliter, R. (2002). Intersensory redundancy facilitates discrimination of tempo in 3-month-old infants. Developmental Psychobiology, 41, 352363. doi:10.1002/dev.10049Google Scholar
Bahrick, L. E., Gogate, L. J., & Ruiz, I. (2002). Attention and memory for faces and actions in infancy: The salience of actions over faces in dynamic events. Child Development, 73, 16291643. doi:10.1111/1467–8624.00495Google Scholar
Bahrick, L. E., & Lickliter, R. (2000). Intersensory redundancy guides attentional selectivity and perceptual learning in infancy. Developmental Psychology, 36, 190201. doi:10.1037//0012-1649.36.2.190Google Scholar
Bahrick, L. E., (2002). Intersensory redundancy guides early perceptual and cognitive development. In Kail, R. V (Ed.), Advances in child development and behavior (Vol. 30, pp. 153187). San Diego, CA: Academic Press.Google Scholar
Bahrick, L. E., (2012). The role of intersensory redundancy in early perceptual, cognitive, and social development. In Bremner, A. J., Lewkowicz, D. J., & Spence, C. (Eds.), Multisensory development (pp. 183206). New York, NY: Oxford University Press.Google Scholar
Bahrick, L. E., (2014). Learning to attend selectively: The dual role of intersensory redundancy. Current Directions in Psychological Science, 23, 414420. doi:10.1177/0963721414549187Google Scholar
Bahrick, L. E., Lickliter, R., & Castellanos, I. (2013). The development of face perception in infancy: Intersensory interference and unimodal visual facilitation. Developmental Psychology, 49, 19191930. doi:10.1037/a0031238Google Scholar
Bahrick, L. E., Lickliter, R., (2020). Educating infant attention to the amodal property of tempo: The role of intersensory redundancy. Manuscript submitted for publication.Google Scholar
Bahrick, L. E., Lickliter, R., Castellanos, I., & Vaillant-Molina, M. (2010). Increasing task difficulty enhances effects of intersensory redundancy: Testing a new prediction of the Intersensory Redundancy Hypothesis. Developmental Science, 13, 731737. doi:10.1111/j.1467-7687.2009.00928.xGoogle Scholar
Bahrick, L. E., Lickliter, R., & Flom, R. (2006). Up versus down: The role of intersensory redundancy in the development of infants’ sensitivity to the orientation of moving objects. Infancy, 9, 7396. doi:10.1207/s15327078in0901_4Google Scholar
Bahrick, L. E., McNew, M. E., Pruden, S. M., & Castellanos, I. (2019). Intersensory redundancy promotes infant detection of prosody in infant-directed speech. Journal of Experimental Child Psychology, 183, 295309. doi:10.1016/j.jecp.2019.02.008Google Scholar
Bahrick, L. E., McNew, M. E., Todd, J. T., Martinez, J., Mira, S., Cheatham-Johnson, R., & Hart, K. C. (2017). Individual differences in intersensory processing predict pre-literacy skills in young children. Poster presented at the meeting of the Society for Research in Child Development, Austin, TX.Google Scholar
Bahrick, L. E., & Pickens, J. N. (1994). Amodal relations: The basis for intermodal perception and learning. In Lewkowicz, D. J. & Lickliter, R. (Eds.), The development of intersensory perception: Comparative perspectives (pp. 204233). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Bahrick, L. E., Soska, K. C., & Todd, J. T. (2018). Assessing individual differences in the speed and accuracy of intersensory processing in young children: The Intersensory Processing Efficiency Protocol. Developmental Psychology, 54, 22262239. doi:10.1037/dev0000575Google Scholar
Bahrick, L. E., & Todd, J. T. (2012). Multisensory processing in autism spectrum disorders: Intersensory processing disturbance as a basis for atypical development. In Stein, B. E. (Ed.), The new handbook of multisensory processes (pp. 14531508). Cambridge, MA: MIT Press.Google Scholar
Bahrick, L. E., Todd, J. T., Castellanos, I., & Sorondo, B. M. (2016). Enhanced attention to speaking faces versus other event types emerges gradually across infancy. Developmental Psychology, 52, 17051720. doi:10.1037/dev0000157Google Scholar
Bahrick, L. E., Todd, J. T., & Soska, K. C. (2018). The Multisensory Attention Assessment Protocol (MAAP): Characterizing individual differences in multisensory attention skills in infants and children and relations with language and cognition. Developmental Psychology, 54, 22072225. doi:10.1037/dev0000594Google Scholar
Barutchu, A., Crewther, S. G., Fifer, J., Shivdasani, M. N., Innes-Brown, H., Toohey, S., … Paolini, A. G. (2010). The relationship between multisensory integration and IQ in children. Developmental Psychology, 47, 877885. doi:10.1037/a0021903Google Scholar
Bebko, J. M., Weiss, J. A., Demark, J. L., & Gomez, P. (2006). Discrimination of temporal synchrony in intermodal events by children with autism and children with developmental disabilities without autism. Journal of Child Psychology and Psychiatry, 47, 8898. doi:10.1111/j.1469-7610.2005.01443.xGoogle Scholar
Beebe, B., Messinger, D., Bahrick, L. E., Margolis, A., Buck, K. A., & Chen, H. (2016). A systems view of mother–infant face-to-face communication. Developmental Psychology, 52, 556571. doi:10.1037/a0040085Google Scholar
Birch, H. G., & Lefford, A. (1963). Intersensory development in children. Monographs of the Society for Research in Child Development, 28, 148. doi:10.2307/1165681Google Scholar
Blair, C., & Raver, C. C. (2012). Child development in the context of adversity: Experiential canalization of brain and behavior. American Psychologist, 67(4), 309318. doi:10.1037/a0027493Google Scholar
Blair, C., (2015). School readiness and self-regulation: A developmental psychobiological approach. Annual Review of Psychology, 66, 711731. doi:10.1146/annurev-psych-010814-015221Google Scholar
Bower, T. G. R. (1974). Development in infancy. Oxford: W. H. Freeman.Google Scholar
Bremner, A. J., Lewkowicz, D. J., & Spence, C. (2012). Multisensory development. Oxford: Oxford University Press.Google Scholar
Calvert, G. A., Spence, C., & Stein, B. E. (2004). The handbook of multisensory processes. Cambridge, MA: MIT Press.Google Scholar
Carter, A. S., & Briggs-Gowan, M. (2000). Infant toddler social and emotional assessment. New Haven, CT: Yale University, Connecticut Early Development Project.Google Scholar
Colombo, J. (2001). The development of visual attention in infancy. Annual Review of Psychology, 51, 337367. doi:10.1146/annurev.psych.52.1.337Google Scholar
Colombo, J., Shaddy, D. J., Richman, W. A., Maikranz, J. M., & Blaga, O. M. (2004). The developmental course of habituation in infancy and preschool outcome. Infancy, 5, 138. doi:10.1207/s15327078in0501_1Google Scholar
Constantino, J. N., & Gruber, , Charles, P. (2005). The social responsiveness scale. Los Angeles. CA: Western Psychological Services.Google Scholar
Curtindale, L. M., Bahrick, L. E., Lickliter, R., & Colombo, J. (2019). Effects of multimodal synchrony on infant attention and heart rate during events with social and nonsocial stimuli. Journal of Experimental Child Psychology, 178, 283294. doi:10.1016/j.jecp.2018.10.006Google Scholar
Dawson, G., Meltzoff, A. N., Osterling, J., Rinaldi, J., & Brown, E. (1998). Children with autism fail to orient to naturally occurring social stimuli. Journal of Autism and Developmental Disorders, 28, 479485. doi:10.1023/A:1026043926488Google Scholar
DeCasper, A. J., & Spence, M. J. (1991). Auditorily mediated behavior during the perinatal period: A cognitive view. In Salomon Weiss, M. J. & Zelazo, P. R. (Eds.), Newborn attention: Biological constraints and the influence of experience (pp. 142176). Westport, CT: Ablex.Google Scholar
Eyberg, S. M., Nelson, M. M., Duke, M., & Boggs, S. R. (2004). Manual for the dyadic parent–child interaction coding system (3rd ed.). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.627.4254&rep=rep1&type=pdfGoogle Scholar
Fagan, J. F., Holland, C. R., & Wheeler, K. (2007). The prediction, from infancy, of adult IQ and achievement. Intelligence, 35, 225231. doi:10.1016/j.intell.2006.07.007Google Scholar
Falck-Ytter, T., Nyström, P., Gredebäck, G., Gliga, T., & Bölte, S. (2018). Reduced orienting to audiovisual synchrony in infancy predicts autism diagnosis at 3 years of age. Journal of Child Psychology and Psychiatry, 59, 872880. doi:10.1111/jcpp.12863Google Scholar
Feldman, R. (2007). Parent–infant synchrony: Biological foundations and developmental outcomes. Current Directions in Psychological Science, 16, 340345. doi:10.1111/j.1467-8721.2007.00532.xGoogle Scholar
Feng, W., Stormer, V. S., Martinez, A., McDonald, J. J., & Hillyard, S. A. (2014). Sounds activate visual cortex and improve visual discrimination. Journal of Neuroscience, 34, 98179824. doi:10.1523/JNEUROSCI.4869-13.2014Google Scholar
Fernald, A., & Marchman, V. A. (2012). Individual differences in lexical processing at 18 months predict vocabulary growth in typically developing and late-talking toddlers. Child Development, 83, 203222. doi:10.1111/j.1467-8624.2011.01692.xGoogle Scholar
Fernald, A., Perfors, A., & Marchman, V. A. (2006). Picking up speed in understanding: Speech processing efficiency and vocabulary growth across the 2nd year. Developmental Psychology, 42, 98116. doi:10.1037/0012-1649.42.1.98Google Scholar
Fernald, A., Pinto, J. P., Swingley, D., Weinberg, A., & McRoberts, G. W. (1998). Rapid gains in speed of verbal processing by infants in the 2nd year. Psychological Science, 9, 228231. doi:10.1111/1467–9280.00044Google Scholar
Flom, R., & Bahrick, L. E. (2007). The development of infant discrimination of affect in multimodal and unimodal stimulation: The role of intersensory redundancy. Developmental Psychology, 43, 238252. doi:10.1037/0012-1649.43.1.238Google Scholar
Foxe, J. J., Molholm, S., Del Bene, V. A., Frey, H. -P. P., Russo, N. N., Blanco, D., … Ross, L. A. (2013). Severe multisensory speech integration deficits in high-functioning school-aged children with autism spectrum disorder (ASD) and their resolution during early adolescence. Cerebral Cortex, 25, 298312. doi:10.1093/cercor/bht213Google Scholar
Frank, M. C., Vul, E., & Johnson, S. P. (2009). Development of infants’ attention to faces during the first year. Cognition, 110, 160170.Google Scholar
Fredrickson, B. L. (2000). Cultivating positive emotions to optimize health and well-being. Prevention & Treatment, 3, Article 0001a. doi:10.1037/1522-3736.3.1.31aGoogle Scholar
Fuchs, L. S., Fuchs, D., & Hosp, M. K. (2001). Oral reading fluency as an indicator of reading competence: A theoretical, empirical, and historical analysis. Scientific Studies of Reading, 5, 257288. doi:10.1207/S1532799XSSR0503Google Scholar
Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends in Cognitive Sciences, 10, 278285.Google Scholar
Gibson, E. J. (1969). Principles of perceptual learning and development. East Norwalk, CT: Appleton-Century-Crofts.Google Scholar
Gibson, E. J. (1988). Exploratory behavior in the development of perceiving, acting, and the acquiring of knowledge. Annual Review of Psychology, 39, 141. doi:10.1146/annurev.psych.39.1.1Google Scholar
Gibson, J. J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.Google Scholar
Gogate, L. J. (2010). Learning of syllable–object relations by preverbal infants: The role of temporal synchrony and syllable distinctiveness. Journal of Experimental Child Psychology, 105, 178197. doi:10.1016/j.jecp.2009.10.007Google Scholar
Gogate, L. J., & Bahrick, L. E. (1998). Intersensory redundancy facilitates learning of arbitrary relations between vowel sounds and objects in seven-month-old infants. Journal of Experimental Child Psychology, 69, 133149. doi:10.1006/jecp.1998.2438Google Scholar
Gogate, L. J., & Bahrick, L. E. (2001). Intersensory redundancy and 7-month-old infants’ memory for arbitrary syllable-object relations. Infancy, 2, 219231. doi:10.1207/S15327078IN0202_7Google Scholar
Gogate, L. J., & Hollich, G. (2010). Invariance detection within an interactive system: A perceptual gateway to language development. Psychological Review, 117, 496516. doi:10.1037/a0019049Google Scholar
Gogate, L. J., & Maganti, M. (2016). The dynamics of infant attention: Implications for crossmodal perception and word-mapping research. Child Development, 87, 345364. doi:10.1111/cdev.12509Google Scholar
Gogate, L. J., Walker-Andrews, A. S., & Bahrick, L. E. (2001). The intersensory origins of word comprehension: An ecological–dynamic systems view. Developmental Science, 4, 137. doi:10.1111/1467–7687.00143Google Scholar
Goldstein, M. H., & Schwade, J. A. (2008). Social feedback to infants’ babbling facilitates rapid phonological learning. Psychological Science, 19, 515523. doi:10.1111/j.1467-9280.2008.02117.xGoogle Scholar
Hairston, W. D., Burdette, J. H., Flowers, D. L., Wood, F. B., & Wallace, M. T. (2005). Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Experimental Brain Research, 166, 474480. doi:10.1007/s00221-005-2387-6Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: Brookes.Google Scholar
Hill, E. L., Crane, L., & Bremner, A. J. (2012). Developmental disorders and multisensory perception. In Bremner, A. J., Lewkowicz, D. J., & Spence, C. (Eds.), Multisensory development (pp. 273300). Oxford: Oxford University Press.Google Scholar
Hirsh-Pasek, K., Adamson, L. B., Bakeman, R., Owen, M. T., Golinkoff, R. M., Pace, A., … Suma, K. (2015). The contribution of early communication quality to low-income children’s language success. Psychological Science, 26, 10711083. doi:10.1177/0956797615581493Google Scholar
Hollich, G., Newman, R. S., & Jusczyk, P. W. (2005). Infants’ use of synchronized visual information to separate streams of speech. Child Development, 76, 598613. doi:10.1111/j.1467-8624.2005.00866.xGoogle Scholar
Jesse, A., & Johnson, E. K. (2016). Audiovisual alignment of co-speech gestures to speech supports word learning in 2-year-olds. Journal of Experimental Child Psychology, 145, 110. doi:10.1016/j.jecp.2015.12.002Google Scholar
Jordan, K. E., Suanda, S. H., & Brannon, E. M. (2008). Intersensory redundancy accelerates preverbal numerical competence. Cognition, 108, 210221. doi:10.1016/j.cognition.2007.12.001Google Scholar
Karmiloff-Smith, A. (1998). Development itself is the key to understanding developmental disorders. Trends in Cognitive Sciences, 2, 389398. doi:10.1016/S1364-6613(98)01230-3Google Scholar
Kuhl, P. K., & Meltzoff, A. N. (1982). The bimodal perception of speech in infancy. Science, 218, 11381141. doi:10.1126/science.7146899Google Scholar
Leffel, K., & Suskind, D. (2013). Parent-directed approaches to enrich the early language environments of children living in poverty. Seminars in Speech and Language, 34, 267277. doi:10.1055/s-0033-1353443Google Scholar
Lerner, R. M., Agans, J. P., DeSouza, L. M., & Hershberg, R. M. (2014). Developmental science in 2025: A predictive review. Research in Human Development, 11, 255272. doi:10.1080/15427609.2014.967046Google Scholar
Lewis, R., & Noppeney, U. (2010). Audiovisual synchrony improves motion discrimination via enhanced connectivity between early visual and auditory areas. Journal of Neuroscience, 30, 1232912339. doi:10.1523/JNEUROSCI.5745-09.2010Google Scholar
Lewkowicz, D. J. (1992). Infants’ response to temporally based intersensory equivalence: The effect of synchronous sounds on visual preferences for moving stimuli. Infant Behavior & Development, 15, 297324.Google Scholar
Lewkowicz, D. J. (1994). Development of intersensory perception in human infants. In Lewkowicz, D. J. & Lickliter, R. (Eds.), The development of intersensory perception: Comparative perspectives (pp. 165204). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Lewkowicz, D. J. (2000). The development of intersensory temporal perception: An epigenetic systems/limitations view. Psychological Bulletin, 126, 281308. doi:10.1037//0033-2909.126.2.281Google Scholar
Lewkowicz, D. J. (2004). Perception of serial order in infants. Developmental Science, 7, 175184. doi:10.1111/j.1467-7687.2004.00336.xGoogle Scholar
Lewkowicz, D. J. (2014). Early experience and multisensory perceptual narrowing. Developmental Psychobiology, 56, 292315. doi:10.1002/dev.21197Google Scholar
Lewkowicz, D. J., Leo, I., & Simion, F. (2010). Intersensory perception at birth: Newborns match nonhuman primate faces and voices. Infancy, 15, 4660. doi:10.1111/j.1532-7078.2009.00005.xGoogle Scholar
Lewkowicz, D. J., & Lickliter, R. (1994). The development of intersensory perception: Comparative perspectives. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Lewkowicz, D. J., & Turkewitz, G. (1980). Cross-modal equivalence in early infancy: Auditory-visual intensity matching. Developmental Psychology, 16, 597607. doi:10.1037/0012-1649.16.6.597Google Scholar
Lickliter, R. (1993). Timing and the development of perinatal perceptual organization. In Turkewitz, G. & Devenny, D. A. (Eds.), Developmental time and timing (pp. 105124). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Lickliter, R. (2000). Atypical perinatal sensory stimulation and early perceptual development: Insights from developmental psychobiology. Journal of Perinatology, 20, S45S54. doi:10.1016/B978-1-4557-7566-8.00096-XGoogle Scholar
Lickliter, R. (2011). The integrated development of sensory organization. Clinics in Perinatology, 38, 591603. doi:10.1016/j.clp.2011.08.007Google Scholar
Lickliter, R., & Bahrick, L. E. (2000). The development of infant intersensory perception: Advantages of a comparative convergent-operations approach. Psychological Bulletin, 126, 260280. doi:10.1037/0033-2909.126.2.260Google Scholar
Lickliter, R., Bahrick, L. E., & Honeycutt, H. (2002). Intersensory redundancy facilitates prenatal perceptual learning in bobwhite quail (Colinus virginianus) embryos. Developmental Psychology, 38, 1523. doi:10.1037/0012-1649.38.1.15Google Scholar
Lickliter, R., Bahrick, L. E., & Markham, R. G. (2006). Intersensory redundancy educates selective attention in bobwhite quail embryos. Developmental Science, 9, 604615. doi:10.1111/j.1467-7687.2006.00539.xGoogle Scholar
Lockman, J. J., & Kahrs, B. A. (2017). New insights into the development of human tool use. Current Directions in Psychological Science, 26, 330334. doi:10.1177/0963721417692035Google Scholar
Lord, C., Rutter, M., DiLavore, P., & Risi, S. (2002). Autism diagnostic observation schedule: Manual. Los Angeles, CA: Western Psychological Services.Google Scholar
Macaluso, E. (2006). Multisensory processing in sensory-specific cortical areas. Neuroscientist, 12, 327338. doi:10.1177/1073858406287908Google Scholar
Marchman, V. A., & Fernald, A. (2008). Speed of word recognition and vocabulary knowledge in infancy predict cognitive and language outcomes in later childhood. Developmental Science, 11, F9F16. doi:10.1111/j.1467-7687.2008.00671.xGoogle Scholar
McNew, M. E., Todd, J. T., Edgar, E. V, & Bahrick, L. E. (2018). Development of intersensory perception of social events: Longitudinal trajectories across 6–24 months of age. Poster presented at the meeting of the International Society for Developmental Psychobiology, San Diego, CA.Google Scholar
McNew, M. E., Todd, J. T., Zambrana, K., Hart, K. C., & Bahrick, L. E. (2019). Individual differences in intersensory processing predicts executive functioning and preliteracy skills. Poster presented at the meeting of the Society for Research in Child Development, Baltimore, MD.Google Scholar
Mellon, R. C., Kraemer, P. J., & Spear, N. E. (1991). Development of intersensory function: Age-related differences in stimulus selection of multimodal compounds in rats as revealed by Pavlovian conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 17, 448464. doi:10.1037/0097-7403.17.4.448Google Scholar
Mendelson, M. J., & Haith, M. M. (1976). The relation between audition and vision in the human newborn. Monographs of the Society for Research and Child Development, 41, 172. doi:10.2307/1165922Google Scholar
Muir, D., & Field, J. (1979). Newborn infants orient to sounds. Child Development, 50, 431436. doi:10.2307/1129419Google Scholar
Mullen, E. M. (1995). Mullen scales of early learning (AGS ed.). Circle Pines, MN: American Guidance Service.Google Scholar
Mundy, P., & Burnette, C. (2005). Joint attention and neurodevelopmental models of autism. In Volkmar, F. R., Paul, R., Klin, A., & Cohen, D. (Eds.), Handbook of autism and pervasive developmental disorders. Vol. 1: Diagnosis, development, neurobiology, and behavior (3rd ed., pp. 650681). Hoboken, NJ: John Wiley & Sons.Google Scholar
Mundy, P., Delgado, C., Block, J., Venezia, M., Hogan, A., & Seibert, J. (2003). A manual for the abridged Early Social Communication Scales (ESCS). Retrieved from www.ucdmc.ucdavis.edu/mindinstitute/ourteam/faculty_staff/ESCS.pdf.Google Scholar
National Early Literacy Panel (2008). Developing early literacy: Report of the National Early Literacy Panel. Washington, DC: National Institute for Early Literacy.Google Scholar
Nomikou, I., Koke, M., & Rohlfing, K. J. (2017). Verbs in mothers’ input to six-month-olds: Synchrony between presentation, meaning, and actions is related to later verb acquisition. Brain Sciences, 7, 119. doi:10.3390/brainsci7050052Google Scholar
Otsuka, Y., Konishi, Y., Kanazawa, S., Yamaguchi, M. K., Abdi, H., & O’Toole, A. J. (2009). Recognition of moving and static faces by young infants. Child Development, 80, 12591271. doi:10.1111/j.1467-8624.2009.01330.xGoogle Scholar
Overton, W. F. (2014). Relational developmental systems and developmental science: A focus on methodology. In Molenaar, P. C. M., Lerner, R. M., & Newell, K. M. (Eds.), Handbook of developmental systems: Theory and methodology (7th ed, pp. 1965). New York, NY: Guilford Press.Google Scholar
Piaget, J. (1952). The origins of intelligence in children. New York, NY: International Universities Press.Google Scholar
Pizur-Barnekow, K., Kraemer, G. W., & Winters, J. M. (2008). Pilot study investigating infant vagal reactivity and visual behavior during object perception. American Journal of Occupational Therapy, 62(2), 198205. doi:10.5014/ajot.62.2.198Google Scholar
Ponitz, C. C., McClelland, M. M., Matthews, J. S., & Morrison, F. J. (2009). A structured observation of behavioral self-regulation and its contribution to kindergarten outcomes. Developmental Psychology, 45, 605619. doi:10.1037/a0015365Google Scholar
Pons, F., Bosch, L., & Lewkowicz, D. J. (2019). Twelve-month-old infants’ attention to the eyes of a talking face is associated with communication and social skills. Infant Behavior and Development, 54, 8084. doi:10.1016/j.infbeh.2018.12.003Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542. doi:10.1146/annurev.neuro.13.1.25Google Scholar
Reynolds, G. D., Bahrick, L. E., Lickliter, R., & Guy, M. W. (2014). Neural correlates of intersensory processing in five-month-old infants. Developmental Psychobiology, 56, 355372. doi:10.1002/dev.21104Google Scholar
Rose, S. A., Feldman, J. F., & Jankowski, J. J. (2011). Modeling a cascade of effects: The role of speed and executive functioning in preterm/full-term differences in academic achievement. Developmental Science, 14, 11611175. doi:10.1111/j.1467-7687.2011.01068.xGoogle Scholar
Rose, S. A., & Ruff, H. A. (1987). Cross-modal abilities in human infants. In Osofsky, J. D. (Ed.), The Handbook of infant development (2nd ed., pp. 318362). Oxford: John Wiley & Sons.Google Scholar
Rowe, M. L. (2018). Understanding socioeconomic differences in parents’ speech to children. Child Development Perspectives, 12, 122127. doi:10.1111/cdep.12271Google Scholar
Ruff, H. A., & Rothbart, M. K. (1996). Attention in early development: Themes and variations. New York, NY: Oxford University Press.Google Scholar
Rutter, M., Bailey, A., & Lord, C. (2003). The social communication questionnaire. Los Angeles, CA: Western Psychological Services.Google Scholar
Schroeder, C. E., & Foxe, J. (2005). Multisensory contributions to low-level, “unisensory” processing. Current Opinion in Neurobiology, 15, 454458. doi:10.1016/j.conb.2005.06.008Google Scholar
Seligman, M. E. P., & Csikszentmihalyi, M. (2000). Positive psychology: An introduction. American Psychologist, 55, 514. doi:10.1007/978-94-017-9088-8_18Google Scholar
Slater, A., Quinn, P. C., Brown, E., & Hayes, R. (1999). Intermodal perception at birth: Intersensory redundancy guides newborn infants’ learning of arbitrary auditory-visual pairings. Developmental Science, 2, 333338. doi:10.1111/1467–7687.00079Google Scholar
Slavich, G. M., & Cole, S. W. (2012). The emerging field of human social genomics. Clinical Psychological Science, 1, 233245. doi:10.1016/j.dcn.2011.01.002.Google Scholar
Spear, N. E., & McKinzie, D. L. (1994). Intersensory integration in the infant rat. In Lewkowicz, D. J. & Lickliter, R. (Eds.), The development of intersensory perception: Comparative perspectives (pp. 133–161). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Stein, B. E. (2012). The new handbook of multisensory processing. Cambridge, MA: MIT Press.Google Scholar
Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. Cambridge, MA: MIT Press.Google Scholar
Stevenson, R. A., Segers, M., Ncube, B. L., Black, K. R., Bebko, J. M., Ferber, S., & Barense, M. D. (2018). The cascading influence of multisensory processing on speech perception in autism. Autism, 22, 609624. doi:10.1177/1362361317704413Google Scholar
Stevenson, R. A., Siemann, J. K., Schneider, B. C., Eberly, H. E., Woynaroski, T. G., Camarata, S. M., & Wallace, M. T. (2014). Multisensory temporal integration in autism spectrum disorders. Journal of Neuroscience, 34, 691697. doi:10.1523/JNEUROSCI.3615-13.2014Google Scholar
Suanda, S. H., Smith, L. B., & Yu, C. (2016). The multisensory nature of verbal discourse in parent-toddler interactions. Developmental Neuropsychology, 41, 324341. doi:10.1080/87565641.2016.1256403Google Scholar
Suarez-Rivera, C., Smith, L. B., & Yu, C. (2018). Multimodal parent behaviors within joint attention support sustained attention in infants. Developmental Psychology, 55, 96109. doi:10.1037/dev0000628Google Scholar
Tamis-LeMonda, C. S., Kuchirko, Y., & Song, L. (2014). Why is infant language learning facilitated by parental responsiveness? Current Directions in Psychological Science, 23, 121126. doi:10.1177/0963721414522813Google Scholar
Tamis-LeMonda, C. S., Kuchirko, Y., & Tafuro, L. (2013). From action to interaction: Infant object exploration and mothers’ contingent responsiveness. IEEE Transactions on Autonomous Mental Development, 5, 202209. doi:10.1109/TAMD.2013.2269905Google Scholar
Todd, J. T., & Bahrick, L. E. (in preparation). Individual differences in multisensory attention skills in children with autism spectrum disorder predict language functioning and symptom severity: Evidence from the Multisensory Attention Assessment Protocol. Manuscript in preparation.Google Scholar
Todd, J. T., McNew, M. E., Edgar, E. V., Miller, J., Barroso, N. E., Bahrick, L. E., & Bagner, D. M. (2018). Speed, accuracy, and duration of multisensory attention to social events at 6 months predicts social competence at 18 months. Poster presented at the meeting of the International Congress on Infant Studies, Philadelphia, PA.Google Scholar
Todd, J. T., McNew, M. E., Soska, K. C., & Bahrick, L. E. (2016). Assessing the cost of competing stimulation on attention to multimodal events: Longitudinal findings from 3 to 12 months. Poster presented at the meeting of the Society for Research in Child Development, Austin, TX.Google Scholar
Vaillant-Molina, M., & Bahrick, L. E. (2012). The role of intersensory redundancy in the emergence of social referencing in 5½-month-old infants. Developmental Psychology, 48, 19. doi:10.1037/a0025263Google Scholar
Walker-Andrews, A. S. (1997). Infants’ perception of expressive behaviors: Differentiation of multimodal information. Psychological Bulletin, 121, 437456. doi:10.1037//0033-2909.121.3.437Google Scholar
Wallace, M. T. (2009). Dyslexia: Bridging the gap between hearing and reading. Current Biology, 19, R260R262. doi:10.1016/j.cub.2009.01.025Google Scholar
Warlaumont, A. S., Richards, J. A., Gilkerson, J., & Oller, D. K. (2014). A social feedback loop for speech development and its reduction in autism. Psychological Science, 25, 13141324. doi:10.1177/0956797614531023Google Scholar
Weisleder, A., & Fernald, A. (2013). Talking to children matters: Early language experience strengthens processing and builds vocabulary. Psychological Science, 24, 21432152. doi:10.1177/0956797613488145Google Scholar
Werchan, D. M., Baumgartner, H. A., Lewkowicz, D. J., & Amso, D. (2018). The origins of cortical multisensory dynamics: Evidence from human infants. Developmental Cognitive Neuroscience, 34, 7581. doi:10.1016/j.dcn.2018.07.002Google Scholar
Whitehurst, G. J., & Lonigan, C. J. (1998). Child development and emergent literacy. Child Development, 69, 848872. doi:10.1111/j.1467–8624.1998.tb06247.xGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×