Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T02:11:12.108Z Has data issue: false hasContentIssue false

21 - Infant Speech Perception

from Part V - Language

Published online by Cambridge University Press:  26 September 2020

Jeffrey J. Lockman
Affiliation:
Tulane University, Louisiana
Catherine S. Tamis-LeMonda
Affiliation:
New York University
Get access

Summary

Human infants are born well prepared to acquire language, with impressive speech perception abilities well before the onset of productive language. Over the first years of life, these perceptual capacities are tuned to the native language. Rich social experience interacts with intrinsic neurobiological systems to scaffold perceptual abilities that support language acquisition. At birth – indeed, as early as 26 weeks gestation, prior to input from developing auditory pathways – the basic neural architecture is in place for processing language. Experience and further development lead to an elaboration and refinement of this architecture. At birth, perceptual biases are in place that predispose infants to listen more attentively when they hear speech and to look toward human faces – two core communicative sensitivities that lay the foundation for acquiring the native language. A variety of learning mechanisms are operative that enable infants to become experts at perceiving and ultimately producing their native language(s).

Type
Chapter
Information
The Cambridge Handbook of Infant Development
Brain, Behavior, and Cultural Context
, pp. 579 - 601
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. L., Morgan, J. L., & White, K. S. (2003). A statistical basis for speech sound discrimination. Language and Speech, 46, 155182.Google Scholar
Archer, S. L., & Curtin, S. (2016). Nine-month-olds use frequency of onset clusters to segment novel words. Journal of Experimental Child Psychology, 148, 131141.CrossRefGoogle ScholarPubMed
Bergelson, E., & Swingley, D. (2012). At 6–9 months, human infants know the meanings of many common nouns. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 32533258.Google Scholar
Bialystok, E., & Viswanathan, M. (2009). Components of executive control with advantages for bilingual children in two cultures. Cognition, 112(3), 494500.Google Scholar
Bortfeld, H., Morgan, J., Golinkoff, R., & Rathbun, K. (2005). Mommy and me: Familiar names help launch babies into speech stream segmentation. Psychological Science, 16, 298304.Google Scholar
Bosch, L., & Sebastián-Gallés, N. (2003). Simultaneous bilingualism and the perception of a language-specific vowel contrast in the first year of life. Language and Speech, 46, 217243.Google Scholar
Bruderer, A. G., Danielson, D. K., Kandhadai, P., & Werker, J. F. (2015). Sensorimotor influences on speech perception in infancy. Proceedings of the National Academy of Sciences, 112(44), 1353113536.Google Scholar
Byers-Heinlein, K., & Fennell, C. T. (2014). Perceptual narrowing in the context of increased variation: Insights from bilingual infants. Developmental Psychobiology, 56(2), 274291.Google Scholar
Cheour, M., Ceponiene, R., Lehtokoski, A., Luuk, A., Allik, J., Alho, K., & Näätänen, R. (1998). Development of language-specific phoneme representations in the infant brain. Nature Neuroscience, 1, 351353.Google Scholar
Cheour-Luhtanen, M., Alho, K., Kujala, T., Sainio, K., Reinikainen, K., Renlund, M., … Näätänen, R. (1995). Mismatch negativity indicates vowel discrimination in newborns. Hearing Research, 82(1), 5358.Google Scholar
Cristia, A., Minagawa, Y., & Dupoux, E. (2014). Responses to vocalizations and auditory controls in the human newborn brain. PLOS ONE, 9(12), e115162.Google Scholar
Curtin, S., Mintz, T. H., & Christiansen, M. H. (2005). Stress changes the representational landscape: Evidence from word segmentation. Cognition, 96, 233262.CrossRefGoogle ScholarPubMed
Danielson, D. K., Bruderer, A. G., Kandhadai, P., Vatikiotis-Bateson, E., & Werker, J. F. (2017) The organization and reorganization of audiovisual speech perception in the first year of life. Cognitive Development, 42, 3748.Google Scholar
DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers’ voices. Science, 208(4448), 11741176.Google Scholar
DeCasper, A. J., & Spence, M. J. (1986). Prenatal maternal speech influences newborns’ perception of speech sounds. Infant Behavior & Development, 9(2), 133150.Google Scholar
Dehaene-Lambertz, G., & Baillet, S. (1998). A phonological representation in the infant brain. NeuroReport, 9(8), 18851888.Google Scholar
Dehaene-Lambertz, G., Dehaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of speech perception in infants. Science, 298(5600), 20132015.Google Scholar
Dehaene-Lambertz, G., Hertz-Pannier, L., Dubois, J., Mériaux, S., Roche, A., Sigman, M., & Dehaene, S. (2006). Functional organization of perisylvian activation during presentation of sentences in preverbal infants. Proceedings of the National Academy of Sciences of the United States of America, 103(38), 1424014245.Google Scholar
Dehaene-Lambertz, G., & Peña, M. (2001). Electrophysiological evidence for automatic phonetic processing in neonates. NeuroReport, 12(14), 31553158.CrossRefGoogle ScholarPubMed
DePaolis, R. A., Vihman, M. M., & Keren-Portnoy, T. (2011). Do production patterns influence the processing of speech in prelinguistic infants? Infant Behavior & Development, 34(4), 590601.Google Scholar
Dietrich, C., Swingley, D., & Werker, J. F. (2007). Native language governs interpretation of salient speech sound differences at 18 months. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 1602716031.CrossRefGoogle ScholarPubMed
Dubois, J., Poupon, C., Thirion, B., Simonnet, H., Kulikova, S., Leroy, F., … Dehaene-Lambertz, G. (2016). Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cerebral Cortex, 26(5), 22832298.Google Scholar
Emerson, R. W., Gao, W., & Lin, W. (2016). Longitudinal study of the emerging functional connectivity asymmetry of primary language regions during infancy. Journal of Neuroscience, 36(42), 1088310892.Google Scholar
Feldman, N. H., Griffiths, T. L., Goldwater, S., & Morgan, J. L. (2013). A role for the developing lexicon in phonetic category acquisition. Psychological Review, 120(4), 751778.Google Scholar
Fennell, C. T., Byers-Heinlein, K., & Werker, J. F. (2007). Using speech sounds to guide word learning: The case of bilingual infants. Child Development, 78(5), 15101525.Google Scholar
Fennell, C. T., & Waxman, S. R. (2010). What paradox? Referential cues allow for infant use of phonetic detail in word learning. Child Development, 81(5), 13761383.Google Scholar
Gonzalez-Gomez, N., & Nazzi, T. (2012). Phonotactic acquisition in healthy preterm infants. Developmental Science, 15(6), 885894.Google Scholar
Graf Estes, K., Evans, J. L., Alibali, M. W., & Saffran, J. R. (2007). Can infants map meaning to newly segmented words? Statistical segmentation and word learning. Psychological Science, 18(3), 254260.Google Scholar
Hay, J. F., Graf Estes, K., Wang, T., & Saffran, J. R. (2015). From flexibility to constraint: The contrastive use of lexical tone in early word learning. Child Development, 86(1), 1022.Google Scholar
Hay, J. F., Pelucchi, B., Graf Estes, K., & Saffran, J. R. (2011). Linking sounds to meanings: Infant statistical learning in a natural language. Cognitive Psychology, 63(2), 93106.Google Scholar
Hoff, E. (2006). How social contexts support and shape language development. Developmental Review, 26(1), 5588.Google Scholar
Hoff, E. (2015). Language development in bilingual children. In Bavin, E. & Naigles, L. (Eds.), The Cambridge handbook of child language (2nd ed., pp. 483503). Cambridge, UK: Cambridge University Press.Google Scholar
Höhle, B., Bijeljac-Babic, R., Herold, B., Weissenborn, J., & Nazzi, T. (2009). Language specific prosodic preferences during the first half year of life: Evidence from German and French infants. Infant Behavior & Development, 32(3), 262274.Google Scholar
Honig, L. S., Herrmann, K., & Shatz, C. J. (1996). Developmental changes revealed by immunohistochemical markers in human cerebral cortex. Cerebral Cortex, 6(6), 794806.Google Scholar
Hu, H., Gan, J, & Jonas, P. (2014). Fast-spiking, parvalbumin⁺ GABAergic interneurons: From cellular design to microcircuit function. Science, 345(6196), 1255263.Google Scholar
Innis, S. M., Gilley, J., & Werker, J. F. (2001). Are human milk long-chain polyunsaturated fatty acids related to visual and neural development in breast-fed term infants? Journal of Pediatrics, 139, 532538.Google Scholar
Johnson, E. K., & Jusczyk, P. W. (2001). Word segmentation by 8-month-olds: When speech cues count more than statistics. Journal of Memory and Language, 44(4), 548567.Google Scholar
Jusczyk, P. W., & Aslin, R. N. (1995). Infants’ detection of the sound patterns of words in fluent speech. Cognitive Psychology, 29(1), 123.Google Scholar
Jusczyk, P. W., Cutler, A., & Redanz, N. J. (1993). Infants’ preference for the predominant stress patterns of English words. Child Development, 64, 675687.Google Scholar
Jusczyk, P. W., Friederici, A. D., Wessels, J. M., Svenkerud, V. Y., & Jusczyk, A. M. (1993). Infants’ sensitivity to the sound patterns of native language words. Journal of Memory and Language, 32(3), 402420.Google Scholar
Jusczyk, P. W., Luce, P. A., & Charles-Luce, J. (1994). Infants′ sensitivity to phonotactic patterns in the native language. Journal of Memory and Language, 33(5), 630645.Google Scholar
Kuhl, P. K., & Meltzoff, A. N. (1982). The bimodal perception of speech in infancy. Science, 218(4577), 11381141.CrossRefGoogle ScholarPubMed
Kuhl, P. K., & Miller, J. D. (1975). Speech perception by the chinchilla: Voiced-voiceless distinction in alveolar plosive consonants. Science, 190(4209), 6972.Google Scholar
Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S., & Iverson, P. (2006). Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 9(2), F13F21.Google Scholar
Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255(5044), 606608.Google Scholar
Kujala, A., Huotilainen, M., Hotakainen, M., Lennes, M., Parkkonen, L., Fellman, V., & Näätänen, R. (2004). Speech-sound discrimination in neonates as measured with MEG. NeuroReport, 15(13), 20892092.Google Scholar
Liu, L., & Kager, R. (2017). Statistical learning of speech sounds is most robust during the period of perceptual attunement. Journal of Experimental Child Psychology, 164, 192208CrossRefGoogle ScholarPubMed
Mahmoudzadeh, M., Dehaene-Lambertz, G., Fournier, M., Kongolo, G., Goudjil, S., Dubois, J., … Wallois, F. (2013). Syllabic discrimination in premature human infants. Proceedings of the National Academy of Sciences of the United States of America, 110(12), 48464851.Google Scholar
Mattock, K., & Burnham, D. (2006). Chinese and English infants’ tone perception: Evidence for perceptual reorganization. Infancy, 10, 241265.Google Scholar
Mattock, K., Polka, L., Rvachew, S., & Krehm, M. (2010). The first steps in word learning are easier when the shoes fit: Comparing monolingual and bilingual infants. Developmental Science, 13(1), 229243.Google Scholar
Mattys, S. L., & Bortfeld, H. (2016). Speech segmentation. In Gaskell, G., & Mirkovic, J. (Eds.), Speech perception and spoken word recognition (pp. 5575). London: Psychology Press.Google Scholar
Mattys, S. L., & Jusczyk, P. W. (2001). Phonotactic cues for segmentation of fluent speech by infants. Cognition, 78(2), 91121.Google Scholar
May, L., Gervain, J., Carreiras, M., & Werker, J. F. (2017). The specificity of the neural response to speech at birth. Developmental Science, 21(3), e12564.Google Scholar
Maye, J., Weiss, D. J., & Aslin, R. N. (2008). Statistical phonetic learning in infants: Facilitation and feature generalization. Developmental Science, 11(1), 122134.Google Scholar
Maye, J., Werker, J. F., & Gerken, L. A. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82(3), B101B111.Google Scholar
McMurray, B., Aslin, R. N., & Toscano, J. C. (2009). Statistical learning of phonetic categories: Insights from a computational approach. Developmental Science, 12(3), 369378.Google Scholar
Mehler, J., Jusczyk, P., Lambertz, G., Halsted, N., Bertoncini, J., & Amiel-Tison, C. (1988). A precursor of language acquisition in young infants. Cognition, 29(2), 143178.Google Scholar
Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic feature encoding in human superior temporal gyrus. Science, 343(6174), 10061010.CrossRefGoogle ScholarPubMed
Mills, D. L., Prat, C., Zangl, R., Stager, C. L., Neville, H. J., & Werker, J. F. (2004). Language experience and the organization of brain activity to phonetically similar words: ERP evidence from 14- and 20-month-olds. Journal of Cognitive Neuroscience, 16(8), 113.CrossRefGoogle ScholarPubMed
Molnar, M., Gervain, J., & Carreiras, M. (2014). Within-rhythm class native language discrimination abilities of Basque-Spanish monolingual and bilingual infants at 3.5 months of age. Infancy, 19, 326337.Google Scholar
Morgan, J. L., & Saffran, J. R. (1995). Emerging integration of sequential and suprasegmental information in preverbal speech segmentation. Child Development, 66(4), 911936.CrossRefGoogle ScholarPubMed
Nazzi, T., Jusczyk, P. W., & Johnson, E. K. (2000). Language discrimination by English-learning 5-month-olds: Effects of rhythm and familiarity. Journal of Memory and Language, 43(1), 119.Google Scholar
Nazzi, T., Mersad, K., Sundara, M., Iakimova, G., & Polka, L. (2013). Early word segmentation in infants acquiring Parisian French: Task-dependent and dialect-specific aspects. Journal of Child Language, 41(3), 600633.Google Scholar
Nazzi, T., & Ramus, F. (2003). Perception and acquisition of linguistic rhythm by infants. Speech Communication, 41(1), 233243.Google Scholar
Nespor, M., Shukla, M., van de Vijver, R., Avesani, C., Schraudolf, H., & Donati, C. (2008). Different phrasal prominence realizations in VO and OV languages. Lingue e Linguaggio, 2, 129.Google Scholar
Ortiz-Mantilla, S., Hämäläinen, J. A., Realpe-Bonilla, T., & Benasich, A. A. (2016). Oscillatory dynamics underlying perceptual narrowing of native phoneme mapping from 6 to 12 months of age. Journal of Neuroscience, 36(48), 1209512105.Google Scholar
Palmer, S. B., Fais, L., Golinkoff, R. M., & Werker, J. F. (2012). Perceptual narrowing of linguistic sign occurs in the first year of life. Child Development, 83(2), 543–53.Google Scholar
Paredes, M. F., James, D., Gil-Perotin, S., Kim, H., Cotter, J. A., Ng, C., … Alvarez-Buylla, A. (2016). Extensive migration of young neurons into the infant human frontal lobe. Science, 354(6308), aaf7073.Google Scholar
Peña, M., Pittaluga, E., & Mehler, J. (2010). Language acquisition in premature and full-term infants. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 38233828.Google Scholar
Peña, M., Werker, J. F., & Dehaene-Lambertz, G. (2012). Earlier speech exposure does not accelerate speech acquisition. Journal of Neuroscience, 32(33), 1115911163.Google Scholar
Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., … Friederici, A. D. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 1605616061.Google Scholar
Perani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Roveli, R., … Koelsch, S. (2010). Functional specializations for music processing in the human newborn brain. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 47584763.Google Scholar
Petanjek, Z., Kostovic, I., & Esclapez, M. (2009). Primate-specific origins and migration of cortical GABAergic neurons. Frontiers in Neuroanatomy, 3, 26Google Scholar
Poeppel, D. (2003). The analysis of speech in different temporal integration windows: cerebral lateralization as “asymmetric sampling in time.” Speech Communication, 41, 2452555.Google Scholar
Pons, F., Lewkowicz, D. J., Soto-Faraco, S., & Sebastián-Gallés, N. (2009). Narrowing of intersensory speech perception in infancy. Proceedings of the National Academy of Sciences of the United States of America, 106(26), 1059810602.Google Scholar
Rosenblum, L. D., Schmuckler, M. A., & Johnson, J. A. (1997). The McGurk effect in infants. Perception & Psychophysics, 59(3), 347357.Google Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 19261928.Google Scholar
Sato, H., Hirabayashi, Y., Tsubokura, H., Kanai, M., Ashida, T., Konishi, I., … Maki, A. (2012). Cerebral hemodynamics in newborn infants exposed to speech sounds: A whole-head optical topography study. Human Brain Mapping, 33, 20922103.Google Scholar
Schmale, R., Cristià, A., Seidl, A., & Johnson, E. K. (2010) Developmental changes in infants’ ability to cope with dialect variation in word recognition. Infancy, 15(6), 650662.Google Scholar
Sebastián-Gallés, N., Albareda-Castellot, B., Weikum, W. M., & Werker, J. F. (2012). A bilingual advantage in visual language discrimination in infancy. Psychological Science, 23(9), 994999.Google Scholar
Schatz, T., Feldman, N., Goldwater, S., Cao, X., & Dupoux, E. (2019). Early phonetic learning without phonetic categories: Insights from large-scale simulations on realistic input. https://doi.org/10.31234/osf.io/fc4whGoogle Scholar
Shultz, S., Vouloumanos, A., Bennett, R. H., & Pelphrey, K. (2014). Neural specialization for speech in the first months of life. Developmental Science, 17(5), 766774.Google Scholar
Sundara, M., Polka, L., & Genesee, F. (2006). Language-experience facilitates discrimination of /d-th/ in monolingual and bilingual acquisition of English. Cognition, 100(2), 369388.Google Scholar
Sundara, M., Polka, L., & Molnar, M. (2008). Development of coronal stop perception: bilingual infants keep pace with their monolingual peers. Cognition, 108(1), 232242.Google Scholar
Takesian, A. E., & Hensch, T. K. (2013). Balancing plasticity/stability across brain development. Progress in Brain Research, 207, 334.CrossRefGoogle ScholarPubMed
Teinonen, T., Aslin, R. N., Alku, P., & Csibra, G. (2008). Visual speech contributes to phonetic learning in 6-month-old infants. Cognition, 108(3), 850855.Google Scholar
Telkemeyer, S., Rossi, S., Koch, S. P., Nierhaus, T., Steinbrink, J., Poeppel, D., … Wartenburger, I. (2009). Sensitivity of newborn auditory cortex to the temporal structure of sounds. Journal of Neuroscience, 29(47), 1472614733.Google Scholar
Thiessen, E. D. (2007). The effect of distributional information on children’s use of phonemic contrasts. Journal of Memory and Language, 56(1), 1634.Google Scholar
Tincoff, R., & Jusczyk, P. W. (1999). Some beginnings of word comprehension in 6-month-olds. Psychological Science, 10(2), 172175.Google Scholar
Trainor, L. J., & Adams, B. (2000). Infants’ and adults’ use of duration and intensity cues in the segmentation of tone patterns. Perception & Psychophysics, 62, 333340.Google Scholar
Uhlhaas, P. J., Roux, F., Singer, W., Haenschel, C., Sireteanu, R., & Rodriguez, E. (2009). The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 98669871.Google Scholar
van Heugten, M., & Johnson, E. K. (2017) Input matters: Multi-accent language exposure affects word recognition from infancy. Journal of the Acoustical Society of America, 142(2), EL196–200.Google Scholar
van Noort-van der Spek, I. L., Franken, M. C., & Weisglas-Kuperus, N. (2012). Language functions in preterm-born children: A systematic review and meta-analysis. Pediatrics, 129, 745754.Google Scholar
Vouloumanos, A., Hauser, M. D., Werker, J. F., & Martin, A. (2010). The tuning of human neonates’ preference for speech. Child Development, 81(2), 517527.Google Scholar
Vouloumanos, A., & Werker, J. F. (2007). Listening to language at birth: Evidence for a bias for speech in neonates. Developmental Science, 10(2), 159164.Google Scholar
Wanner, E., & Gleitman, L. R. (Eds.) (1982). Language acquisition: The state of the art. Cambridge, UK: Cambridge University Press.Google Scholar
Weatherhead, D., & White, K. S. (2018) And then I saw her race: Race-based expectations affect infants’ word processing. Cognition, 177, 8797.Google Scholar
Weikum, W. M., Oberlander, T. F., Hensch, T. K., & Werker, J. F. (2012). Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception. Proceedings of the National Academy of Sciences of the United States of America, 109(2), 1722117227.Google Scholar
Weikum, W., Vouloumanos, A., Navarra, J., Soto-Faraco, S., Sebastián-Gallés, N., & Werker, J. F. (2007). Visual language discrimination in infancy. Science, 316(5828), 1159.Google Scholar
Werker, J. F. (2018). Perceptual beginnings to language acquisition. Applied Psycholinguistics, 39(4), 703728.Google Scholar
Werker, J. F., Fennell, C. T., Corcoran, K., & Stager, C. L. (2002). Infants’ ability to learn phonetically similar words: Effects of age and vocabulary size. Infancy, 3(1), 130.Google Scholar
Werker, J. F., & Hensch, T. K. (2015). Critical periods in speech perception: New directions. Annual Review of Psychology, 66, 173–96.Google Scholar
Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7(1), 4963.Google Scholar
Werker, J. F., Yeung, H. H., & Yoshida, K. A. (2012). How do infants become experts at native speech perception? Current Directions in Psychological Science, 21(4), 224226.Google Scholar
Yeung, H. H., & Nazzi, T. (2014). Object labeling influences infant phonetic learning and generalization. Cognition, 132(2), 151163.Google Scholar
Yeung, H. H., & Werker, J. F. (2009). Learning words’ sounds before learning how words sound: 9-month-olds use distinct objects as cues to categorize speech information. Cognition, 113, 234243.Google Scholar
Yeung, H. H., (2013). Lip movements affect infant audiovisual speech perception. Psychological Science, 24(5), 603612.Google Scholar
Yoshida, K. A., Iversen, J. R., Patel, A. D., Mazuka, R., Nito, H., Gervain, J., & Werker, J. F. (2010). The development of perceptual grouping biases in infancy: A Japanese-English cross-linguistic study. Cognition, 115(2), 356361.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×