Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T23:57:14.212Z Has data issue: false hasContentIssue false

9 - Copulatory Thrusting

from Part II - Copulatory Adaptations

Published online by Cambridge University Press:  30 June 2022

Todd K. Shackelford
Affiliation:
Oakland University, Michigan
Get access

Summary

The role of the female in copulation as long been studied exclusively as a response to male behavior, if not completely disregarded. Nevertheless, from the establishment of physical contact until penis withdrawal, mammalian females implement a number of hormonal, physiological, and behavioral adaptations to maximize and optimize sperm capture. The initiation of copulation is mostly dependent on female receptivity and the display of behavioral estrus, including the lordotic posture. During this period, the series of copulatory acts emitted by the female is based on a sequence of inhibitory-excitatory events at the initiative of both members of the copulating pair. The significance of female interference with copulatory thrusting has been highlighted in naturalistic conditions that give the female the possibility to pace sexual interaction. In such settings, male intromission, thrusting, and eventually ejaculation are rendered physically possible by female posture, as well as optimized by somatosensory feedback from the female vulva to the penis. Genital interaction during intromission, including female pelvic, perineal, and vaginal contractions, stimulate ejaculation and may increase insemination probability by improving sperm transfer through the cervix. In addition, females can provide direct copulatory stimulation during thrusting through visual and olfactory cues, or vocalizations. The neuroendocrinological mechanisms responsible for mammal sexual adaptations are similar across species, and some basic behaviors such a lordosis present a certain interspecific rigidity. However, many qualitative aspects vary between species, notably the structure of the pattern sequence in a copulatory series, or the characteristic of sensory stimuli and their relative importance for enhancing sperm capture. In particular, human adaptations to copulatory thrusting show a wide diversity that evolutionary tools do not entirely comprehend.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afonso, V. M., & Pfaus, J. G. (2006). Hormonal and experiential control of female-male mounting in the female rat. Hormones and Behavior, 49(1), 3037. https://doi.org/10.1016/j.yhbeh.2005.04.013CrossRefGoogle ScholarPubMed
Afonso, V. M., Woehrling, A., & Pfaus, J. G. (2006). Sensory mediation of female-male mounting in the rat: I. Role of olfactory cues. Physiology and Behavior, 87(5), 857862. https://doi.org/10.1016/j.physbeh.2006.01.009Google Scholar
Ågmo, A. (2007). Functional and dysfunctional sexual behavior: A synthesis of neuroscience and comparative psychology. London: Academic Press.Google Scholar
Ågmo, A., & Snoeren, E. M. S. (2015). Silent or vocalizing rats copulate in a similar manner. PLoS One, 10(12), e0144164. https://doi.org/10.1371/journal.pone.0144164Google Scholar
Allen, M. L., & Lemmon, W. B. (1981). Orgasm in female primates. American Journal of Primatology, 1(1), 1534. https://doi.org/10.1002/ajp.1350010104Google Scholar
Arletti, R., & Bertolini, A. (1985). Oxytocin stimulates lordosis behavior in female rats. Neuropeptides, 6(3), 247253. https://doi.org/10.1016/0143-4179(85)90095-2CrossRefGoogle ScholarPubMed
Asa, C. S., Seal, U. S., Plotka, E. D., Letellier, M. A., & Mech, L. D. (1986). Effect of anosmia on reproduction in male and female wolves (Canis lupus). Behavioral and Neural Biology, 46(3), 272284. https://doi.org/10.1016/S0163-1047(86)90212-8Google Scholar
Bailey, N. W., & Zuk, M. (2009). Same-sex sexual behavior and evolution. Trends in Ecology & Evolution, 24(8), 439446. https://doi.org/10.1016/j.tree.2009.03.014Google Scholar
Ball, J. (1934). Sex behavior of the rat after removal of the uterus and vagina. Journal of Comparative Psychology, 18(3), 419422. https://doi.org/10.1037/h0075243Google Scholar
Barfield, R. J., Rubin, B. S., Glaser, J. H., & Davis, P. G. (1983). Sites of action of ovarian hormones in the regulation of oestrous responsiveness in rats. In Balthazart, J., Pröve, E., & Gilles, R. (Eds.), Hormones and behavior in higher vertebrates (pp. 217). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69216-1_1Google Scholar
Beach, F. A. (1942). Execution of the complete masculine copulatory pattern by sexually receptive female rats. Pedagogical Seminary and Journal of Genetic Psychology, 60(1), 137142. https://doi.org/10.1080/08856559.1942.10534627CrossRefGoogle Scholar
Beach, F. A. (1947). Evolutionary changes in the physiological control of mating behavior in mammals. Psychological Review, 54(6), 297315. https://doi.org/10.1037/h0056549Google Scholar
Beach, F. A. (1976). Sexual attractivity, proceptivity, and receptivity in female mammals. Hormones and Behavior, 7(1), 105138. https://doi.org/10.1016/0018-506X(76)90008-8Google Scholar
Beach, F. A., & Jordan, L. (1956). Sexual exhaustion and recovery in the male rat. Quarterly Journal of Experimental Psychology, 8(3), 121133. https://doi.org/10.1080/17470215608416811CrossRefGoogle Scholar
Beach, F. A., & Rasquin, P. (1942). Masculine copulatory behavior in intact and castrated female rats. Endocrinology, 31(4), 393409. https://doi.org/10.1210/endo-31-4-393CrossRefGoogle Scholar
Bendas, J., Hummel, T., & Croy, I. (2018). Olfactory function relates to sexual experience in adults. Archives of Sexual Behavior, 47(5), 13331339. https://doi.org/10.1007/s10508-018-1203-xGoogle Scholar
Bennett, A. L., Blasberg, M. E., & Blaustein, J. D. (2001). Sensory cues mediating mating-induced potentiation of sexual receptivity in female rats. Hormones and Behavior, 40, 7783. https://doi.org/10.1006/hbeh.2001.1664Google Scholar
Bermant, G., & Taylor, L. (1969). Interactive effects of experience and olfactory bulb lesions in male rat copulation. Physiology and Behavior, 4(1), 1317. https://doi.org/10.1016/0031-9384(69)90005-5CrossRefGoogle Scholar
Blandau, R. J. (1945). On the factors involved in sperm transport through the cervix uteri of the albino rat. American Journal of Anatomy, 77(2), 253272. https://doi.org/10.1002/aja.1000770205Google Scholar
Blaustein, J. D., King, J. C., Toft, D. O., & Turcotte, J. (1988). Immunocytochemical localization of estrogen-induced progestin receptors in guinea pig brain. Brain Research, 474(1), 115. https://doi.org/10.1016/0006-8993(88)90664-6CrossRefGoogle ScholarPubMed
Brennan, P. L. R., & Orbach, D. N. (2020). Copulatory behavior and its relationship to genital morphology. In Naguib, M., Barrett, L., Healy, S. D., Podos, J., Simmons, L. W., & Zuk, M. (Eds.), Advances in the study of behavior, 1st ed. (Vol. 52, Issue March). Elsevier. https://doi.org/10.1016/bs.asb.2020.01.001Google Scholar
Brennan, P. L. R., Prum, R. O., McCracken, K. G., Sorenson, M. D., Wilson, R. E., & Birkhead, T. R. (2007). Coevolution of male and female genital morphology in waterfowl. PLoS One, 2(5), e418. https://doi.org/10.1371/journal.pone.0000418Google Scholar
Cain, D. P., & Paxinos, G. (1974). Olfactory bulbectomy and mucosal damage: Effects on copulation, irritability, and interspecific aggression in male rats. Journal of Comparative and Physiological Psychology, 86(2), 202212. https://doi.org/10.1037/h0035932Google Scholar
Caldwell, J. D., Jirikowski, G. F., Greer, E. R., & Pedersen, C. A. (1989). Medial preoptic area oxytocin and female sexual receptivity. Behavioral Neuroscience, 103(3), 655662. https://doi.org/10.1037/0735-7044.103.3.655Google Scholar
Carmichael, M. S., Warburton, V. L., Dixen, J., & Davidson, J. M. (1994). Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity. Archives of Sexual Behavior, 23(1), 5979. https://doi.org/10.1007/BF01541618Google Scholar
Cherry, J. A., & Baum, M. J. (2020). Sex differences in main olfactory system pathways involved in psychosexual function. Genes, Brain and Behavior, 19(2), e12618. https://doi.org/10.1111/gbb.12618Google Scholar
Chu, X., & Ågmo, A. (2015). Sociosexual behaviors of male rats (Rattus norvegicus) in a seminatural environment. Journal of Comparative Psychology, 129(2), 132144. https://doi.org/10.1037/a0038722Google Scholar
Chu, X., & Ågmo, A. (2016). Sociosexual interactions in rats: Are they relevant for understanding human sexual behavior? International Journal of Psychological Research, 9(2), 7695. https://doi.org/10.21500/20112084.2339Google Scholar
Chu, X., Snoeren, E., & Ågmo, A. (2017). Functions of vocalization in sociosexual behaviors in rats (Rattus norvegicus) in a seminatural environment. Journal of Comparative Psychology, 131(1), 1018. https://psycnet.apa.org/buy/2017-00527-001Google Scholar
Contreras, J. L., & Ågmo, A. (1993). Sensory control of the male rat’s copulatory thrusting patterns. Behavioral and Neural Biology, 60(3), 234240. https://doi.org/10.1016/0163-1047(93)90447-PGoogle Scholar
Coombes, H. A., Stockley, P., & Hurst, J. L. (2018). Female chemical signalling underlying reproduction in mammals. Journal of Chemical Ecology, 44(9), 851873. https://doi.org/10.1007/s10886-018-0981-xCrossRefGoogle ScholarPubMed
Cooper, E. B., Fenigstein, A., & Fauber, R. L. (2014). The faking orgasm scale for women: Psychometric properties. Archives of Sexual Behavior, 43(3), 423435. https://doi.org/10.1007/s10508-013-0212-zGoogle Scholar
Corneille, P. (1643). Polyeucte, martyr. In Masson, G. (Ed.), Polyeucte, martyr. Tragédie chrétienne, 1887th ed. (pp. 266). Hachette.Google Scholar
Dagg, A. (1984). Homosexual behaviour and female-male mounting in mammals – a first survey. Mammal Review, 14(4), 155185. https://doi.org/10.1111/j.1365-2907.1984.tb00344.xCrossRefGoogle Scholar
Dangoor, D., Giladi, E., Fridkin, M., & Gozes, I. (2005). Neuropeptide receptor transcripts are expressed in the rat clitoris and oscillate during the estrus cycle in the rat vagina. Peptides, 26(12), 25792584. https://doi.org/10.1016/j.peptides.2005.06.005Google Scholar
Deputte, B. L., & Goustard, M. (1980). Copulatory vocalizations of female macaques (Macaca fascicularis): Variability factors analysis. Primates, 21(1), 8399. https://doi.org/10.1007/BF02383826CrossRefGoogle Scholar
Dewsbury, D. A. (1972). Patterns of copulatory behavior in male mammals. The Quarterly Review of Biology, 47(1), 133.Google Scholar
Dewsbury, D. A., & Pierce, J. D. (1989). Copulatory patterns of primates as viewed in broad mammalian perspective. American Journal of Primatology, 17, 5172. https://onlinelibrary.wiley.com/doi/pdf/10.1002/ajp.1350170106CrossRefGoogle ScholarPubMed
Diakow, C., & Dewsbury, D. A. (1978). A comparative description of the mating behaviour of female rodents. Animal Behaviour, 26(part 4), 10911097. https://doi.org/10.1016/0003-3472(78)90098-2Google Scholar
Doncarlos, L. L., Monroy, E., & Morrell, J. I. (1991). Distribution of estrogen receptor-immunoreactive cells in the forebrain of the female guinea pig. Journal of Comparative Neurology, 305(4), 591612. https://doi.org/10.1002/cne.903050406CrossRefGoogle ScholarPubMed
Eberhard, W. G. (1996). Female control: Sexual selection by cryptic female choice (Vol. 69). Princeton, NJ: Princeton University Press.Google Scholar
Ewer, R. F. (1968). Courtship and mating. In Ethology of mammals (pp. 199233). Boston, MA: Springer. https://doi.org/https://doi.org/10.1007/978-1-4899-4656-0_9Google Scholar
Fang, J., & Clemens, L. G. (1999). Contextual determinants of female-female mounting in laboratory rats. Animal Behaviour, 57(3), 545555. https://doi.org/10.1006/anbe.1998.1025Google Scholar
Fatton, B., Cayrac, M., Letouzey, V., Masia, F., Mousty, E., Marès, P., Prudhomme, M., & de Tayrac, R. (2014). Anatomie fonctionnelle du plancher pelvien. EMC–Gynécologie. https://doi.org/10.1016/S0246-1064(13)45453-1Google Scholar
Finton, C. J., Keesom, S. M., Hood, K. E., & Hurley, L. M. (2017). What’s in a squeak? Female vocal signals predict the sexual behaviour of male house mice during courtship. Animal Behaviour, 126, 163175. https://doi.org/10.1016/j.anbehav.2017.01.021Google Scholar
Firman, R. C., Gasparini, C., Manier, M. K., & Pizzari, T. (2017). Postmating female control: 20 years of cryptic female choice. Trends in Ecology & Evolution, 32(5), 368382. https://doi.org/10.1016/j.tree.2017.02.010Google Scholar
Fitzpatrick, J. L., Willis, C., Devigili, A., Young, A., Carroll, M., Hunter, H. R., & Brison, D. R. (2020). Chemical signals from eggs facilitate cryptic female choice in humans. Proceedings of the Royal Society of London. Series B: Biological Sciences, 287(1928), 20200805. https://doi.org/10.1098/rspb.2020.0805Google Scholar
Goodall, J. (1986). The chimpanzees of Gombe. American Journal of Physical Anthropology, 3. The Belknap Press of Harvard University Press. https://doi.org/10.1002/ajpa.1330730313Google Scholar
Gouzoules, H., & Goy, R. W. (1983). Physiological and social influences on mounting behavior of troop-living female monkeys (Macaca fuscata). American Journal of Primatology, 5(1), 3949. https://doi.org/10.1002/ajp.1350050105Google Scholar
Graur, D. (2017). Rubbish DNA: The functionless fraction of the human genome. In Saitou, N. (Ed.), Evolution of the human genome I (Evolutionary Studies, pp. 1960). Tokyo: Springer. https://doi.org/10.1007/978-4-431-56603-8_2Google Scholar
Grueter, C. C., & Stoinski, T. S. (2016). Homosexual behavior in female mountain gorillas: Reflection of dominance, affiliation, reconciliation or arousal? PLoS One, 11(5), e0154185. https://doi.org/10.1371/journal.pone.0154185Google Scholar
Gunst, N., Casarrubea, M., Vasey, P. L., & Leca, J. B. (2020). Is female-male mounting functional? An analysis of the temporal patterns of sexual behaviors in Japanese macaques. Physiology and Behavior, 223, 112983. https://doi.org/10.1016/j.physbeh.2020.112983Google Scholar
Hardy, D. F. (1972). Sexual behavior in continuously cycling rats. Behaviour, 41(3–4), 288297. https://brill.com/view/journals/beh/41/3-4/article-p288_6.xmlGoogle Scholar
Hardy, I., Ode, P., & Siva-Jothy, M. (2005). Mating behaviour. In Jervis, M. A. (Ed.), Insects as natural enemies: A practical perspective (pp. 219260). Springer. https://doi.org/10.1007/978-1-4020-2625-6_4Google Scholar
Hare, R. M., Schlatter, S., Rhodes, G., & Simmons, L. W. (2017). Putative sex-specific human pheromones do not affect gender perception, attractiveness ratings or unfaithfulness judgements of opposite sex faces. Royal Society Open Science, 4(3), 160831. https://doi.org/10.1098/rsos.160831Google Scholar
Hays, W. S. T. (2003). Human pheromones: Have they been demonstrated? Behavioral Ecology and Sociobiology, 54(2), 8997. https://doi.org/10.1007/s00265-003-0613-4Google Scholar
Heimer, L., & Larsson, K. (1967). Mating behavior of male rats after olfactory bulb lesions. Physiology and Behavior, 2(2), 207209. https://doi.org/10.1016/0031-9384(67)90035-2Google Scholar
Huijgens, P. T., Guarraci, F. A., Olivier, J. D. A., & Snoeren, E. M. (2021). Male rat sexual behavior: Insights from inter-copulatory intervals. Behavioral Processes, 190, 104458. https://doi.org/10.1016/j.beproc.2021.104458Google Scholar
Hurley, L. M., & Kalcounis-Rueppell, M. C. (2018). State and context in vocal communication of rodents. In Dent, M. L., Richard, R. F., & Popper, A. N. (Eds.), Rodent bioacoustics (Vol. 67, pp. 191221). Springer, ASA Press. https://doi.org/10.1007/978-3-319-92495-3_8Google Scholar
Ishida, Y., Yahara, T., Kasuya, E., & Yamane, A. (2001). Female control of paternity during copulation: Inbreeding avoidance in feral cats. Behaviour, 138(2), 235250. https://doi.org/10.1163/15685390151074401Google Scholar
Johnson, O. W. (1961). Reproductive cycle of the mallard duck. The Condor, 63(5), 351364. https://doi.org/10.2307/1365295Google Scholar
Johnston, R. E. (1975). Sexual excitation function of hamster vaginal secretion. Animal Learning & Behavior, 3(3), 161166.Google Scholar
Kaupp, U. B., Kashikar, N. D., & Weyand, I. (2008). Mechanisms of sperm chemotaxis. The Annual Review of Physiology, 70, 93117. https://doi.org/10.1146/annurev.physiol.70.113006.100654Google Scholar
Kippin, T. E., Talianakis, S., Schattmann, L., Bartholomew, S., & Pfaus, J. G. (1998). Olfactory conditioning of sexual behavior in the male rat (Rattus norvegicus). Journal of Comparative Psychology, 112(4), 389399. https://doi.org/10.1037/0735-7036.112.4.389Google Scholar
Kow, L. M., & Pfaff, D. W. (1973). Effects of estrogen treatment on the size of receptive field and response threshold of pudendal nerve in the female rat. Neuroendocrinology, 13(4–5), 299313. https://doi.org/10.1159/000122214Google Scholar
Kow, L. M., & Pfaff, D. W. (1976). Sensory requirements for the lordosis reflex in female rats. Brain Research, 101, 4766.Google Scholar
Kratochvíl, S. (1994). Vaginal contractions in female orgasm. Ceskoslovenská Psychiatrie, 90(1), 2833. http://europepmc.org/article/med/8174183Google Scholar
Kret, M. E., & Tomonaga, M. (2016). Getting to the bottom of face processing: Species-specific inversion effects for faces and behinds in humans and chimpanzees (Pan Troglodytes). PLoS One, 11(11), e0165357. https://doi.org/10.1371/journal.pone.0165357CrossRefGoogle Scholar
Le Moëne, O., & Ågmo, A. (2019). Modeling human sexual motivation in rodents: Some caveats. Frontiers in Behavioral Neuroscience, 13, 187. https://doi.org/10.3389/FNBEH.2019.00187Google Scholar
Le Moëne, O., Hernández-Arteaga, E., Chu, X., & Ågmo, A. (2020). Rapid changes in sociosexual behaviors around transition to and from behavioral estrus, in female rats housed in a seminatural environment. Behavioural Processes, 174. https://doi.org/10.1016/j.beproc.2020.104101CrossRefGoogle Scholar
Leca, J.-B., Gunst, N., Carrier, L. O., & Vasey, P. L. (2014). Inter-group variation in non-conceptive sexual activity in female Japanese macaques: Could it be cultural? Animal Behavior and Cognition, 1(3), 387. https://doi.org/10.12966/abc.08.12.2014Google Scholar
Levin, R. J. (1998). Sex and the human female reproductive tract – what really happens during and after coitus. International Journal of Impotence Research, 10(suppl. 1), S14–21. https://europepmc.org/article/med/9669216Google Scholar
Levin, R. J. (2003). The ins and outs of vaginal lubrication. Sexual and Relationship Therapy, 18(4), 509513. https://doi.org/10.1080/14681990310001609859Google Scholar
Levin, R. J. (2004). An orgasm is… Who defines what an orgasm is? Sexual and Relationship Therapy, 19(1), 101107. https://doi.org/10.1080/14681990410001641663Google Scholar
Levin, R. J. (2006). Vocalised sounds and human sex. Sexual and Relationship Therapy, 21(1), 99107. https://doi.org/10.1080/14681990500438014Google Scholar
Levin, R. J. (2011). Can the controversy about the putative role of the human female orgasm in sperm transport be settled with our current physiological knowledge of coitus? Journal of Sexual Medicine, 8(6), 15661578. https://doi.org/10.1111/j.1743-6109.2010.02162.xCrossRefGoogle ScholarPubMed
Levin, R. J. (2020). The clitoris – an appraisal of its reproductive function during the fertile years: Why was it, and still is, overlooked in accounts of female sexual arousal. Clinical Anatomy, 33(1), 136145. https://doi.org/10.1002/ca.23498CrossRefGoogle ScholarPubMed
Lisk, R. D. (1970). Mechanisms regulating sexual activity in mammals. Journal of Sex Research, 6(3), 220228. https://doi.org/10.1080/00224497009550668Google Scholar
Long, J. A., & Evans, H. M. (1922). The oestrous cycle in the rat and its associated phenomena. Memoirs of the University of California, 6, 1148.Google Scholar
Macrides, F., Johnson, P. A., & Schneider, S. P. (1977). Responses of the male golden hamster to vaginal secretion and dimethyl disulfide: Attraction versus sexual behavior. Behavioral Biology, 20(3), 377386. https://doi.org/10.1016/S0091–6773(77)90931-2Google Scholar
Macrides, F., Singer, A. G., Clancy, A. N., Goldman, B. D., & Agosta, W. C. (1984). Male hamster investigatory and copulatory responses to vaginal discharge: Relationship to the endocrine status of females. Physiology and Behavior, 33(4), 633637. https://doi.org/10.1016/0031-9384(84)90383-4Google Scholar
Masters, W. H., & Johnson, V. E. (1966). Human sexual response. https://psycnet.apa.org/record/1966-35042-000Google Scholar
McClintock, M. K., & Adler, N. T. (1978). The role of the female during copulation in wild and domestic Norway rats (Rattus norvegicus). Behaviour, 67(1/2), 6796.Google Scholar
McClintock, M. K., Anisko, J. J., & Adler, N. T. (1982). Group mating among Norway rats II. The social dynamics of copulation: Competition, cooperation, and mate choice. Animal Behaviour, 30(2), 410425. https://doi.org/10.1016/S0003-3472(82)80052-3Google Scholar
Meunier, É. (2014). No attitude, no standing around: The organization of social and sexual interaction at a gay male private sex party in New York City. Archives of Sexual Behavior, 43(4), 685695. https://doi.org/10.1007/s10508-013-0182-1Google Scholar
Micevych, P. E., Mermelstein, P. G., & Sinchak, K. (2017). Estradiol membrane-initiated signaling in the brain mediates reproduction. Trends in Neurosciences, 40(11), 654666. https://doi.org/10.1016/J.TINS.2017.09.001Google Scholar
Micevych, P. E., & Sinchak, K. (2018). Extranuclear signaling by ovarian steroids in the regulation of sexual receptivity. Hormones and Behavior, 104, 414. https://doi.org/10.1016/j.yhbeh.2018.05.001CrossRefGoogle ScholarPubMed
Min, K., Munarriz, R., Kim, N. N., Goldstein, I., & Traish, A. (2002). Effects of ovariectomy and estrogen and androgen treatment on sildenafil-mediated changes in female genital blood flow and vaginal lubrication in the animal model. American Journal of Obstetrics and Gynecology, 187(5), 13701376. https://doi.org/10.1067/mob.2002.126641Google Scholar
Neunuebel, J. P., Taylor, A. L., Arthur, B. J., & Roian Egnor, S. E. (2015). Female mice ultrasonically interact with males during courtship displays. ELife, 4(May), 124. https://doi.org/10.7554/eLife.06203Google Scholar
Noble, R. G. (1980). Sex responses of the female hamster: Effects on male performance. Physiology and Behavior, 24(2), 237242. https://doi.org/10.1016/0031-9384(80)90080-3Google Scholar
Ogawa, S., Eng, V., Taylor, J., Lubahn, D. B., Korach, K. S., Pfaff, D. W., & Carolina, N. (1998). Roles of estrogen receptor-alpha gene expression in reproduction-related behaviors in female mice. Endocrinology, 139(12), 50705081. https://doi.org/10.1210/endo.139.12.6357Google Scholar
Orbach, D. N., Kelly, D. A., Solano, M., & Brennan, P. L. R. (2017). Genital interactions during simulated copulation among marine mammals. Proceedings of the Royal Society of London. Series B: Biological Sciences, 284(1864), 20171265. https://doi.org/10.1098/rspb.2017.1265Google Scholar
Orbach, D. N., Marshall, C. D., Mesnick, S. L., & Würsig, B. (2017). Patterns of cetacean vaginal folds yield insights into functionality. PLoS One, 12(3), e0175037. https://doi.org/10.1371/journal.pone.0175037Google Scholar
Ottesen, B., Pedersen, B., Nielsen, J., Dalgaard, D., Wagner, G., & Fahrenkrug, J. (1987). Vasoactive intestinal polypeptide (VIP) provokes vaginal lubrication in normal women. Peptides, 8(5), 797800. https://doi.org/10.1016/0196-9781(87)90061-1Google Scholar
Paredes, R. G., & Vazquez, B. (1999). What do female rats like about sex? Paced mating. Behavioural Brain Research, 105(1), 117127. https://doi.org/10.1016/S0166-4328(99)00087-XGoogle Scholar
Pauls, R. N. (2015). Anatomy of the clitoris and the female sexual response. Clinical Anatomy, 28(3), 376384. https://doi.org/10.1002/ca.22524Google Scholar
Pavličev, M., & Wagner, G. (2016). The evolutionary origin of female orgasm. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 326(6), 326337. https://doi.org/10.1002/jez.b.22690Google Scholar
Pedersen, C. A., & Boccia, M. L. (2002). Oxytocin maintains as well as initiates female sexual behavior: Effects of a highly selective oxytocin antagonist. Hormones and Behavior, 41(2), 170177. https://doi.org/10.1006/hbeh.2001.1736Google Scholar
Petrulis, A. (2013). Chemosignals, hormones and mammalian reproduction. Hormones and Behavior, 63(5), 723741. https://doi.org/10.1016/j.yhbeh.2013.03.011Google Scholar
Pfaff, D. W. (1980). Logical and heuristic developments. In Estrogens and brain function (pp. 211234). New York, NY: Springer. https://doi.org/10.1007/978-1-4613-8084-9_12Google Scholar
Pfaff, D. W. (1994). Cellular and molecular mechanisms of female reproductive behaviors. In The physiology of reproduction (Vol. 2, pp. 107220). Raven Press. https://ci.nii.ac.jp/naid/10006177808Google Scholar
Pfaff, D. W., Montgomery, M., & Lewis, C. (1977). Somatosensory determinants of lordosis in female rats: Behavioral definition of the estrogen effect. Journal of Comparative and Physiological Psychology, 91(1), 134145. https://doi.org/10.1037/h0077305Google Scholar
Pfaff, D. W., Phillips, M. I., & Rubin, R. T. (2004). Hormones can act at all levels of the neuraxis to exert behavioral effects; the nature of the behavioral effect depends on the site of action. In Principles of hormone/behavior relations, 2nd ed., (pp. 209218). Elsevier Academic Press. https://doi.org/10.1016/b978-012553149-8/50042-9Google Scholar
Pfaff, D. W., & Sakuma, Y. (1979). Facilitation of the lordosis reflex of female rats from the ventromedial nucleus of the hypothalamus. The Journal of Physiology, 288, 189202. https://physoc.onlinelibrary.wiley.com/doi/pdf/10.1113/jphysiol.1979.sp012690Google Scholar
Pfaff, D. W., Vasudevan, N., Kia, H. K., Zhu, Y.-S., Chan, J., Garey, J., Morgan, M., & Ogawa, S. (2000). Estrogens, brain and behavior: Studies in fundamental neurobiology and observations related to women’s health. The Journal of Steroid Biochemistry and Molecular Biology, 74(5), 365373. https://doi.org/10.1016/S0960-0760(00)00114-XGoogle Scholar
Pfaus, J. G., Erickson, K. A., & Talianakis, S. (2013). Somatosensory conditioning of sexual arousal and copulatory behavior in the male rat: A model of fetish development. Physiology and Behavior, 122, 17. https://doi.org/10.1016/j.physbeh.2013.08.005Google Scholar
Prait, H. L. (1979). Reproduction in the blue shark, Prionace glauca. Fishery Bulletin, 77(2), 445470.Google Scholar
Quintana, G. R., Desbiens, S., Marceau, S., Kalantari, N., Bowden, J., & Pfaus, J. G. (2019). Conditioned partner preference in male and female rats for a somatosensory cue. Behavioral Neuroscience, 133(2), 188197. https://doi.org/10.1037/bne0000300Google Scholar
Reagan, N. (2017). Copulatory postures. In Fuentes, A., Bezanson, M., & Campbell, C. (Eds.), The international encyclopedia of primatology (pp. 12). John Wiley & Sons. https://doi.org/10.1002/9781119179313.wbprim0454Google Scholar
Rissman, E. F., Wersinger, S. R., Taylor, J. A., & Lubahn, D. B. (1997). Estrogen receptor function as revealed by knockout studies: Neuroendocrine and behavioral aspects. Hormones and Behavior, 31(3), 232243. https://doi.org/10.1006/hbeh.1997.1390Google Scholar
Robitaille, J. A., & Bouvet, J. (1976). Field observations on the social behaviour of the Norway rat Rattus norvegicus (Berkenhout). Biology of Behavior, 1, 289308.Google Scholar
Ronald, K. L., Zhang, X., Morrison, M. V., Miller, R., & Hurley, L. M. (2020). Male mice adjust courtship behavior in response to female multimodal signals. PLoS One, 15(4), e0229302. https://doi.org/10.1371/journal.pone.0229302Google Scholar
Sachs, B. D. (1997). Erection evoked in male rats by airborne scent from estrous females. Physiology and Behavior, 62(4), 921924. https://doi.org/10.1016/S0031-9384(97)00307-7Google Scholar
Santoro, N., & Komi, J. (2009). Prevalence and impact of vaginal symptoms among postmenopausal women. Journal of Sexual Medicine, 6(8), 21332142. https://doi.org/10.1111/j.1743-6109.2009.01335.xGoogle Scholar
Savin-Williams, R. C. (2016). Sexual orientation: Categories or continuum? Commentary on Bailey et al. (2016). Psychological Science in the Public Interest, Supplement, 17(2), 3744. https://doi.org/10.1177/1529100616637618Google Scholar
Schjenken, J. E., & Robertson, S. A. (2020). The female response to seminal fluid. Physiological Reviews, 100(3), 10771117. https://doi.org/10.1152/physrev.00013.2018Google Scholar
Scorgie, F., Kunene, B., Smit, J. A., Manzini, N. F., Chersich, M., & Preston-Whyte, E. M. (2009). In search of sexual pleasure and fidelity: Vaginal practices in KwaZulu-Natal, South Africa. Culture, Health and Sexuality, 11(3 Special Issue), 267283. https://doi.org/10.1080/13691050802395915Google Scholar
Scorolli, C., Ghirlanda, S., Enquist, M., Zattoni, S., & Jannini, E. A. (2007). Relative prevalence of different fetishes. International Journal of Impotence Research, 19(4), 432437. https://doi.org/10.1038/sj.ijir.3901547Google Scholar
Semple, S., & McComb, K. (2000). Perception of female reproductive state from vocal cues in a mammal species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267, 707712.CrossRefGoogle Scholar
Sharir, A., Israeli, D., Milgram, J., Currey, J. D., Monsonego-Ornan, E., & Shahar, R. (2011). The canine baculum: The structure and mechanical properties of an unusual bone. Journal of Structural Biology, 175(3), 451456. https://doi.org/10.1016/j.jsb.2011.06.006Google Scholar
Signoret, J. (1970). Reproductive behaviour of pigs. Journal of Reproduction and Fertility, 11(suppl.), 105117. http://wcentre.tours.inra.fr/prc/internet/historique/science/Comportement/Signoret_JRP_1970_suppl11–105.pdfGoogle Scholar
Simerly, R. B., Swanson, L. W., Chang, C., & Muramatsu, M. (1990). Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: An in situ hybridization study. The Journal of Comparative Neurology, 294(1), 7695. https://doi.org/10.1002/cne.902940107Google Scholar
Södersten, P. (1972). Mounting behavior in the female rat during the estrous cycle, after ovariectomy, and after estrogen or testosterone administration. Hormones and Behavior, 3(4), 307320. https://doi.org/10.1016/0018-506X(72)90020-7Google Scholar
Suarez, S. S., & Pacey, A. A. (2006). Sperm transport in the female reproductive tract. Human Reproduction Update, 12(1), 2337. https://doi.org/10.1093/humupd/dmi047Google Scholar
Takahashi, L. K., & Lisk, R. D. (1983). Organization and expression of agonistic and socio-sexual behavior in golden hamsters over the estrous cycle and after ovariectomy. Physiology and Behavior, 31(4), 477482. https://doi.org/10.1016/0031-9384(83)90069-0Google Scholar
Taylor, F. K. (1979). Penis captivus – did it occur? British Medical Journal, 2(6196), 977978. https://doi.org/10.1136/bmj.2.6196.977Google Scholar
Thomas, D. A., & Barfield, R. J. (1985). Ultrasonic vocalization of the female rat (Rattus norvegicus) during mating. Animal Behaviour, 33(3), 720725. https://doi.org/10.1016/S0003–3472(85)80002-6Google Scholar
Vasey, P. L., Chapais, B., & Gauthier, C. (1998). Mounting interactions between female Japanese macaques: Testing the influence of dominance and aggression. Ethology, 104(5), 387398. https://doi.org/10.1111/j.1439-0310.1998.tb00077.xGoogle Scholar
Vatsyayana, M., & Daniélou, A. (1993). The complete Kama Sutra: The first unabridged modern translation of the classic Indian text. New York, NY: Simon & Schuster.Google Scholar
Wallen, K. (1990). Desire and ability: Hormones and the regulation of female sexual behavior. Neuroscience and Biobehavioral Reviews, 14(2), 233241. https://doi.org/10.1016/S0149-7634(05)80223-4Google Scholar
Wallen, K. (1995). The evolution of female sexual desire. In Abramson, P. R. & Pinkerton, S. D. (Eds.), Sexual nature/sexual culture (pp. 5779). Chicago, IL: University of Chicago Press.Google Scholar
Winterbottom, M., Burke, T., & Birkhead, T. R. (1999). A stimulatory phalloid organ in a weaver bird. Nature, 398(6731), 28. https://doi.org/10.1038/19884Google Scholar
Wunsch, S. (2017). Phylogenesis of mammal sexuality. Analysis of the evolution of proximal factors. Sexologies, 26(1), e1e10. https://doi.org/10.1016/j.sexol.2016.12.001Google Scholar
Zietsch, B. P., & Santtila, P. (2013). No direct relationship between human female orgasm rate and number of offspring. Animal Behaviour, 86(2), 253255. https://doi.org/10.1016/j.anbehav.2013.05.011Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×