Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T15:08:19.186Z Has data issue: false hasContentIssue false

5 - Adaptations, By-products, and Spandrels

from Part I - Foundations of Evolution

Published online by Cambridge University Press:  30 June 2022

Todd K. Shackelford
Affiliation:
Oakland University, Michigan
Get access

Summary

Organisms carry a large number of adaptive traits, i.e., traits that enable them to obtain resources and acquire sex partners from their social, biotic, and abiotic environments, and escape the negative factors of these environments. When we recognize an adaptive trait, we typically assume that it is a product of some form of selection, either of natural selection sensu stricto (environmental selection, as, for example, legs and eyes), sexual selection (e.g., antlers or peacock tail), or parental selection (e.g., the colorful interior of the beak of altricial birds’ nestlings). In many cases, the attribution of a biological function to the trait is simple and straightforward. However, even in such cases, we can be wrong – a particular trait could be an exaptation rather than an adaptation or it could be a by-product of processes other than selection. Sometimes we are not able to recognize what function a trait has for its bearer. The trait, including a behavioral pattern, can be a product of the manipulative activity of a biological entity other than the entity we suspect, usually another member of its species or a parasite. Besides, many traits are products of the organism’s own genes but help to spread their own copies at the expense of the biological fitness, viability, or fecundity of their carrier. A trait can also be a product of a different selection process. A trait might be a product of group selection or species selection, for example. Certain complex traits evolved only to keep an old biological adaptation in a functional state, not to evolve a new useful adaptation. And, finally, a trait can fulfill a function that was useful for the ancestors of the present organism but is not useful for the organisms that we study now. Similarly, a particular trait can be useful under special and rare conditions that are unknown to or otherwise not taken into consideration by the researcher.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. D., & Borgia, G. (1978) Group selection, altruism and the levels of organization of life. Annual Review of Ecology and Systematics, 9, 449475.Google Scholar
Ardlie, K. G. (1998). Putting the brake on drive: Meiotic drive of t haplotypes in natural populations of mice. Trends in Genetics, 14, 189193.Google Scholar
Baldwin, J. M. (1896). A new factor in evolution. The American Naturalist, 30, 441451.Google Scholar
Benne, R. (1992). Review: RNA editing in trypanosomes – the us(e) of guide RNAs. Molecular Biology Reports, 16, 217227.Google Scholar
Berdoy, M., Webster, J. P., & Macdonald, D. W. (1995). The manipulation of rat behaviour by Toxoplasma gondii. Mammalia, 59(4), 605613.Google Scholar
Berdoy, M., Webster, J. P., & Macdonald, D. W. (2000). Fatal attraction in rats infected with Toxoplasma gondii. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1452), 15911594.Google Scholar
Blanchard, R., & Bogaert, A. F. (1996). Homosexuality in men and number of older brothers. American Journal of Psychiatry, 153(1), 2731.Google Scholar
Bogaert, A. F., Skorska, M. N., Wang, C., Gabrie, J., MacNeil, A. J., Hoffarth, M. R., … Blanchard, R. (2018). Male homosexuality and maternal immune responsivity to the Y-linked protein NLGN4Y. Proceedings of the National Academy of Sciences, 115, 302306.Google Scholar
Bouayed, J., & Bohn, T. (2020). Behavioral manipulation: Key to the successful global spread of the new coronavirus SARS-CoV-2? Journal of Medical Virology. doi: 10.1002/jmv.26446Google Scholar
Bowman, J. (1997). The management of hemolytic disease in the fetus and newborn. [Review]. Seminars in Perinatology, 21(1), 3944.Google Scholar
Camperio-Ciani, A., Corna, F., & Capiluppi, C. (2004). Evidence for maternally inherited factors favouring male homosexuality and promoting female fecundity. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, 22172221.Google Scholar
Carson, H. L. (1968). The population flush and its genetic consequences. In Lewontin, R. C. (Ed.), Population biology and evolution (pp. 123137). Syracuse, NY: Syracuse University Press.Google Scholar
Ciani, A. C., Battaglia, U., & Zanzotto, G. (2015). Human homosexuality: A paradigmatic arena for sexually antagonistic selection? Cold Spring Harbor Perspectives in Biology, 7(4). doi: 10.1101/cshperspect.a017657Google Scholar
Cloninger, C. R. (1998). The genetics and psychobiology of the seven-factor model of personality. In Silk, K. R. (Ed.), Biology of personality disorders (pp. 6392). Washington, DC: American Psychiatric Press.Google Scholar
Darwin, C. (1860). On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life (Vol. 5). London: Murray.Google Scholar
Dass, S. A. H., & Vyas, A. (2014). Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala. Molecular Ecology, 23(24), 61146122.Google Scholar
Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.Google Scholar
Dawkins, R. (1982). The extended phenotype: The gene as the unit of selection (Vol. 1). Oxford: W.H. Freeman.Google Scholar
Dawkins, R. (1983). The extended phenotype: The long reach of the gene. New York, NY: Oxford University Press.Google Scholar
Dewar, C. S. (2003). An association between male homosexuality and reproductive success. Medical Hypotheses, 60, 225232.Google Scholar
Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In Schopf, T. J. M. (Ed.), Models in paleontology (pp. 82115). San Francisco, CA: W.H. Freeman.Google Scholar
Emiliani, C. (1993). Extinction and viruses. BioSystems, 31, 155159.Google Scholar
Feldman, M. W., Nabholz, M., & Bodmer, W. F. (1969). Evolution of the Rh polymorphism: A model for the interaction of incompatibility, reproductive compensation and heterozygote advantage. American Journal of Human Genetics, 21, 171193.Google Scholar
Filbey, D., Hanson, U., & Wesstrom, G. (1995). The prevalence of red cell antibodies in pregnancy correlated to the outcome of the newborn: A 12 year study in central Sweden. Acta Obstetricia et Gynecologica Scandinavica, 74(9), 687692.Google Scholar
Fisher, R. A., Race, R. R., & Taylor, G. L. (1944). Mutation and the Rhesus reaction. Nature, 153, 106.Google Scholar
Flegr, J. (1994). Chemostat-turbidostat discontinuum, r–K continuum and population-size regulating mechanism. Acta Societatis Zoologica Bohemica, 58, 143149.Google Scholar
Flegr, J. (1998). On the “origin” of natural selection by means of speciation. Rivista di Biologia – Biology Forum, 91(2), 291304.Google Scholar
Flegr, J. (2010). Elastic, not plastic species: Frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms. Biology Direct, 5, 2.Google Scholar
Flegr, J. (2013). Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution. Biology Direct, 8, 1.Google Scholar
Flegr, J. (2016). Heterozygote advantage probably maintains Rhesus factor blood group polymorphism: Ecological regression study. PLoS One, 11(1). doi: 10.1371/journal.pone.0147955Google Scholar
Flegr, J. (2017). Does Toxoplasma infection increase sexual masochism and submissiveness? Yes and no. Communicative & Integrative Biology. doi: 10.1080/19420889.2017.1303590Google Scholar
Flegr, J., & Escudero, D. Q. (2016). Impaired health status and increased incidence of diseases in Toxoplasma-seropositive subjects: An explorative cross-sectional study. Parasitology, 143(14), 19741989.Google Scholar
Flegr, J., Hoffmann, R., & Dammann, M. (2015). Worse health status and higher incidence of health disorders in Rhesus negative subjects. PLoS One, 10(10). doi: 10.1371/journal.pone.0141362Google Scholar
Flegr, J., & Kuba, R. (2016). The relation of Toxoplasma infection and sexual attraction to fear, danger, pain, and submissiveness. Evolutionary Psychology, 14(3). doi: 10.1177/1474704916659746Google Scholar
Flegr, J., Kuba, R., & Kopecký, R. (2020). Rhesus-minus phenotype as a predictor of sexual desire and behavior, wellbeing, mental health, and fecundity. PLoS One, 15(7), e0236134.Google Scholar
Flegr, J., Lenochová, P., Hodný, Z., & Vondrová, M. (2011). Fatal attraction phenomenon in humans: Cat odour attractiveness increased for Toxoplasma-infected men while decreased for infected women. PLoS Neglected Tropical Diseases, 5(11), e1389.Google Scholar
Flegr, J., & Markoš, A. (2014). Masterpiece of epigenetic engineering: How Toxoplasma gondii reprogrammes host brains to change fear to sexual attraction. Molecular Ecology, 23(24), 59345936.Google Scholar
Flegr, J., Milinski, M., Kaňková, Š., Hůla, M., Hlaváčová, J., & Sýkorová, K. (2018). Latent toxoplasmosis and olfactory functions of Rh positive and Rh negative subjects. PLoS One, 13(12). doi: 10.1371/journal.pone.0209773Google Scholar
Flegr, J., Novotná, M., Lindová, J., & Havlíček, J. (2008). Neurophysiological effect of the Rh factor: Protective role of the RhD molecule against Toxoplasma-induced impairment of reaction times in women. Neuroendocrinology Letters, 29, 475481.Google Scholar
Flegr, J., Prandota, J., Sovičková, M., & Israili, Z. H. (2014). Toxoplasmosis: A global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS One, 9(3). doi: 10.1371/journal.pone.0090203Google Scholar
Flegr, J., Preiss, M., Klose, J., Havlíček, J., Vitáková, M., & Kodym, P. (2003). Decreased level of psychobiological factor novelty seeking and lower intelligence in men latently infected with the protozoan parasite Toxoplasma gondii. Dopamine, a missing link between schizophrenia and toxoplasmosis? Biological Psychology, 63, 253268.Google Scholar
Flegr, J., Toman, J., Hůla, M., & Kaňková, Š. (2020). The role of balancing selection in maintaining human RhD blood group polymorphism: A preregistered cross-sectional study. Journal of Evolutionary Biology. doi: 10.1111/jeb.13745Google Scholar
Flegr, J., Zitkova, S., Kodym, P., & Frynta, D. (1996). Induction of changes in human behaviour by the parasitic protozoan Toxoplasma gondii. Parasitology, 113, 4954.Google Scholar
Gaskell, E. A., Smith, J. E., Pinney, J. W., Westhead, D. R., & McConkey, G. A. (2009). A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PLoS One, 4, e4801.Google Scholar
Gerbault, P., Liebert, A., Itan, Y., Powell, A., Currat, M., Burger, J., … Thomas, M. G. (2011). Evolution of lactase persistence: An example of human niche construction. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1566), 863877.Google Scholar
González-Forero, M. (2015). Stable eusociality via maternal manipulation when resistance is costless. Journal of Evolutionary Biology, 28(12), 22082223.Google Scholar
Gould, S. J. (1989). Wonderful life. New York, NY: W.W. Norton.Google Scholar
Gould, S. J. (1997). Evolution: The pleasures of pluralism. New York Review of Books, 44(11), 4752.Google Scholar
Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B: Biological Sciences, 205, 581598.Google Scholar
Haldane, J. B. S. (1922). Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics, 12, 101109.Google Scholar
Hamilton, W. D. (1964a). The genetical evolution of social behaviour: I. Journal of Theoretical Biology, 7, 116.Google Scholar
Hamilton, W. D. (1964b). The genetical evolution of social behaviour: II. Journal of Theoretical Biology, 7, 1752.Google Scholar
Hardin, G. (1968). The tragedy of the commons. Science, 162, 12431248.Google Scholar
Heerwagen, J. H., & Orians, G. H. (1993). Humans, habitats and aesthetics. In Kellert, S. R. & Wilson, E. O. (Eds.), The Biophilia Hypothesis (pp. 138172). Washington, DC: Island Press.Google Scholar
Herrmann, B., Thoni, C., & Gachter, S. (2008). Antisocial punishment across societies. Science, 319(5868), 13621367.Google Scholar
Hueffer, K., Khatri, S., Rideout, S., Harris, M. B., Papke, R. L., Stokes, C., & Schulte, M. K. (2017). Rabies virus modifies host behaviour through a snake-toxin like region of its glycoprotein that inhibits neurotransmitter receptors in the CNS. Scientific Reports, 7. doi: 10.1038/S41598-017-12726-4Google Scholar
Kaňková, Š., Flegr, J., Toman, J., & Calda, P. (2020). Maternal RhD heterozygous genotype is associated with male biased secondary sex ratio. Early Human Development, 140, 104864.Google Scholar
Kirkpatrick, R. C. (2000). The evolution of human homosexual behavior. Current Anthropology, 41(3), 385413.Google Scholar
Kuběna, A. A., Houdek, P., Lindová, J., Příplatová, L., & Flegr, J. (2014). Justine effect: Punishment of the unduly self-sacrificing cooperative individuals. PLoS One, 9(3). doi: 10.1371/journal.pone.0092336Google Scholar
Lewis, P. D. Jr. (1974). Helminths of terrestrial molluscs in Nebraska. II. Life cycle of Leucochloridium variae McIntosh, 1932 (Digenea: Leucochloridiidae). Journal of Parasitology, 60, 251255.Google Scholar
Lieberman, B. S., & Vrba, E. S. (2005). Stephen Jay Gould on species selection: 30 years of insight. Paleobiology, 31, 113121.Google Scholar
Lindová, J., Kuběna, A. A., Šturcová, A., Křivohlavá, R., Novotná, M., Rubešová, A., … Flegr, J. (2010). Pattern of money allocation in experimental games supports the stress hypothesis of gender differences in Toxoplasma gondii-induced behavioural changes. Folia Parasitologica, 57, 136142.Google Scholar
Lindová, J., Novotná, M., Havlíček, J., Jozífková, E., Skallová, A., Kolbeková, P., … Flegr, J. (2006). Gender differences in behavioural changes induced by latent toxoplasmosis. International Journal for Parasitology, 36, 14851492.Google Scholar
Maynard Smith, J. (1964). Group selection and kin selection. Nature, 201(4924), 11451147.Google Scholar
Mayr, E. (1954). Change of genetic environment and evolution. In Ford, E. B., Huxley, J., & Hardy, A. C. (Eds.), Evolution as a process (pp. 157180). Princeton, NJ: Princeton University Press.Google Scholar
Mayr, E. (1963). Animal species and evolution. Cambridge, MA: Harvard University Press.Google Scholar
Miller, E. M. (2000). Homosexuality, birth order, and evolution: Toward an equilibrium reproductive economics of homosexuality. Archives of Sexual Behavior, 29(1), 134.Google Scholar
Mourant, A. E. (1954). The distribution of the human blood groups, 2nd ed. Oxford: Blackwell Scientific.Google Scholar
Novotná, M., Hanušová, J., Klose, J., Preiss, M., Havlíček, J., Roubalová, K., & Flegr, J. (2005). Probable neuroimmunological link between Toxoplasma and cytomegalovirus infections and personality changes in the human host. BMC Infectious Diseases, 5, 54.Google Scholar
Novotná, M., Havlíček, J., Smith, A. P., Kolbeková, P., Skallová, A., Klose, J., … Flegr, J. (2008). Toxoplasma and reaction time: Role of toxoplasmosis in the origin, preservation and geographical distribution of Rh blood group polymorphism. Parasitology, 135, 12531261.Google Scholar
Pleasant, A., & Barclay, P. (2018). Why hate the good guy? Antisocial punishment of high cooperators is greater when people compete to be chosen. Psychological Science, 29(6), 868876.Google Scholar
Poirotte, C., Kappeler, P. M., Ngoubangoye, B., Bourgeois, S., Moussodji, M., & Charpentier, M. J. E. (2016). Morbid attraction to leopard urine in Toxoplasma-infected chimpanzees. Current Biology, 26(3), R98R99.Google Scholar
Prandovszky, E., Gaskell, E., Martin, H., Dubey, J. P., Webster, J. P., & McConkey, G. A. (2011). The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS One, 6(9), e23866.Google Scholar
Roberts, P., Boivin, N., Lee-Thorp, J., Petraglia, M., & Stock, J. (2016). Tropical forests and the genus Homo. Evolutionary Anthropology, 25(6), 306317.Google Scholar
Rozsa, L. (1999). Influencing random transmission is a neutral character in hosts. Journal of Parasitology, 85(6), 10321035.Google Scholar
Rozsa, L. (2000). Spite, xenophobia, and collaboration between hosts and parasites. Oikos, 91(2), 396400.Google Scholar
Ruse, M. (1988). Homosexuality: A philosophical inquiry. New York, NY: Blackwell.Google Scholar
Shanahan, T. (1997). Pluralism, antirealism, and the units of selection. Acta Biotheoretica, 45, 117126.Google Scholar
Shanley, D. P., Sear, R., Mace, R., & Kirkwood, T. B. L. (2007). Testing evolutionary theories of menopause. Proceedings of the Royal Society of London. Series B: Biological Sciences, 274, 29432949.Google Scholar
Sherman, P. W. (1998). Animal behavior: The evolution of menopause. Nature, 392(6678), 759761.Google Scholar
Skutch, A. F. (1935). Helpers at the nest. The Auk, 52(3), 257273.Google Scholar
Slater, E. (1962). Birth order and maternal age of homosexuals. The Lancet, 1(7220), 6971.Google Scholar
Stoltzfus, A. (1999). On the possibility of constructive neutral evolution. Journal of Molecular Evolution, 49(2), 169181.Google Scholar
Sylwester, K., Herrmann, B., & Bryson, J. J. (2013). Homo homini lupus? Explaining antisocial punishment. Journal of Neuroscience, Psychology, and Economics, 6(3), 167188.Google Scholar
Templeton, A. R. (2008). The reality and importance of founder speciation in evolution. BioEssays, 30, 470479.Google Scholar
Tenter, A. M., Heckeroth, A. R., & Weiss, L. M. (2000). Toxoplasma gondii: From animals to humans. International Journal for Parasitology, 30(12–13), 12171258.Google Scholar
Thanukos, A. (2009). How the adaptation got its start. Evolution: Education and Outreach, 2(4), 612616.Google Scholar
Toman, J., & Flegr, J. (2017). Stability-based sorting: The forgotten process behind (not only) biological evolution. Journal of Theoretical Biology, 435, 2941.Google Scholar
Tooby, J., & Cosmides, L. (1990). The past explains the present: Emotional adaptations and the structure of ancestral environments. Ethology and Sociobiology, 11(4–5), 375424.Google Scholar
Torrey, E. F., Bartko, J. J., Lun, Z. R., & Yolken, R. H. (2007). Antibodies to Toxoplasma gondii in patients with schizophrenia: A meta-analysis. Schizophrenia Bulletin, 33, 729736.Google Scholar
Torrey, E. F., Bartko, J. J., & Yolken, R. H. (2012). Toxoplasma gondii and other risk factors for schizophrenia: An update. Schizophrenia Bulletin, 38(3), 642647.Google Scholar
Torrey, E. F., & Yolken, R. H. (1995). Could schizophrenia be a viral zoonosis transmitted from house cats. Schizophrenia Bulletin, 21(2), 167171.Google Scholar
Trivers, R. L. (1974). Parent–offspring conflict. American Zoologist, 14(1), 249264.Google Scholar
Vanboven, M., Weissing, F. J., Heg, D., & Huisman, J. (1996). Competition between segregation distorters: Coexistence of “superior” and “inferior” haplotypes at the t complex. Evolution, 50, 24882498.Google Scholar
Vrba, E. S. (1984). What is species selection? Systematic Zoology, 33, 318328.Google Scholar
Vrba, S., & Gould, S. J. (1986). The hierarchical expansion of sorting and selection: Sorting and selection cannot be equated. Paleobiology, 12, 217228.Google Scholar
Wagner, F. F., & Flegel, W. A. (2000). RHD gene deletion occurred in the Rhesus box. Blood, 95(12), 36623668.Google Scholar
Williams, G. C. (1966). Adaptation and natural selection. Princeton, NJ: Princeton University Press.Google Scholar
Wilson, D. S., & Sober, E. (1994). Reintroducing group selection to the human behavioral-sciences. Behavioral and Brain Sciences, 17(4), 585608.Google Scholar
Wilson, E. O. (1975). Sociobiology: The new synthesis. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×