Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T15:23:25.712Z Has data issue: false hasContentIssue false

Part I - Neurobiological Constraints and Laws of Cognitive Development

Published online by Cambridge University Press:  24 February 2022

Olivier Houdé
Affiliation:
Université de Paris V
Grégoire Borst
Affiliation:
Université de Paris V
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bernard, C. (1879). Leçons sur les Phénomènes de la Vie Communs aux Animaux et aux Végétaux. Paris: Librarie J. B. Baillière et Fils, Reprints from the Collection of the University of Michigan Library.Google Scholar
Berridge, K. C., & Kringelbach, M. L. (2015). Pleasure Systems in the Brain. Neuron, 86(3), 646664.Google Scholar
Cannon, W. B. (1932). The Wisdom of the Body. New York: Norton.CrossRefGoogle Scholar
Cannon, W. B. (1929). Organization for physiological homeostasis. Physiological Review, 9(3), 399431.CrossRefGoogle Scholar
Carvalho, G. B., & Damasio, A. (2019). Non-synaptic transmission and the foundations of affect. Preprints, doi: 10.20944/preprints201901.0252.v1.CrossRefGoogle Scholar
Carvalho, G. & Damasio, A. (2021). Interoception and the Origin of Feelings: A New Synthesis, BioEssays, https://doi.org/10.1002/bies.202000261.CrossRefGoogle Scholar
Carvalho, G. B., Mulpuri, Y., Damasio, A., & Spigelman, I. (2019). A role for the P2Y1 receptor in nonsynaptic cross-depolarization in the rat dorsal root ganglia. Neuroscience, 423, 98108.CrossRefGoogle ScholarPubMed
Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8), 655666.CrossRefGoogle Scholar
Craig, A. D. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13(4), 500505.Google Scholar
Craig, A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 5970.Google Scholar
Crick, F. (1981). Life Itself: Its Origins and Nature. New York: Simon and Schuster.Google Scholar
Damasio, A. (2018). The Strange Order of Things: Life, Feeling, and the Making of Cultures. New York: Pantheon Books.Google Scholar
Damasio, A. (2021). Feeling and Knowing, New York: Pantheon Books.Google Scholar
Damasio, A. & Carvalho, G. B. (2013). The nature of feelings: Evolutionary and neurobiological origins. Nature Reviews Neuroscience, 14, 143152.CrossRefGoogle ScholarPubMed
Damasio, A. & Damasio, H. (2021). Are there two kinds of consciousness or will one kind suffice? Journal of Consciousness Studies.Google Scholar
De Duve, C. (1995). Vital Dust: The Origin and Evolution of Life on Earth. New York: Basic Books.Google Scholar
De Duve, C. (2005). Singularities: Landmarks in the Pathways of Life. New York: Cambridge University Press.CrossRefGoogle Scholar
De Preester, H. (2019). Subjectivity as a sentient perspective and the role of interoception. In Tsakiris, M., & De Preester, H. (eds.), The Interoceptive Mind (1st ed., pp. 293306). Oxford: Oxford University Press.Google Scholar
Diggle, S. P., Griffin, A. S., Campbell, G. S., & West, S. A. (2007). Cooperation and conflict in quorum-sensing bacterial populations. Nature, 450, 411414.Google Scholar
Dyson, F. (1999). Origins of Life. New York: Cambridge University Press.CrossRefGoogle Scholar
Gantí, T. (2003). The Principles of Life. New York: Oxford University Press.CrossRefGoogle Scholar
Henry, M. (1963). L’Essence de la Manifestation (1st ed.). Paris: Presses Universitaires de France.Google Scholar
Hughes, D. T., & Sperandio, V. (2008). Inter-kingdom signaling: Communication between bacteria and their hosts. Nature Reviews Microbiology, 6(2), 111120.CrossRefGoogle ScholarPubMed
Jousset, A., Eisenhauer, N., Materne, E., & Scheu, S. (2013). Evolutionary history predicts the stability of cooperation in microbial communities. Nature Communications, 4, 2573.Google Scholar
Kaplan, J., Gimbel, S. I., Dehghani, M., Immordino-Yang, M. H., Sagae, K., Wong, J. D., … Damasio, A. (2016). Processing narratives concerning protected values: A cross-cultural investigation of neural correlates. Cerebral Cortex, 27(2), 14281438.Google Scholar
Man, K., & Damasio, A. (2019). Homeostasis and soft robotics in the design of feeling machines. Nature Machine Intelligence, 1, 446452.CrossRefGoogle Scholar
Marciano, A., & Pelissier, M. (2000). The influence of Scottish enlightenment on Darwin’s theory of cultural evolution. Journal of the History of Economic Thought, 22(2), 239249.CrossRefGoogle Scholar
Naviaux, R. K. (2014). Metabolic features of the cell danger response. Mitochondrion, 16, 717.CrossRefGoogle ScholarPubMed
Nealson, K. H., & Hastings, J. W. (2006). Quorum sensing on a global scale: Massive numbers of bioluminescent bacteria make milky seas. Applied and Environmental Microbiology, 72(4), 22952297.CrossRefGoogle ScholarPubMed
Persat, A., Nadell, C. D., Kim, M. K., Ingremeau, F., Siryaporn, A., Drescher, K., … Stone, H. A. (2015). The mechanical world of bacteria. Cell, 161(5), 988997.CrossRefGoogle ScholarPubMed
Rainey, P. B., & Rainey, K. (2003). Evolution of cooperation and conflict in experimental bacterial populations. Nature, 425, 7274.CrossRefGoogle ScholarPubMed
Reber, A. (2019). The First Minds: Caterpillars, Karyotes, and Consciousness. New York: Oxford University Press.Google Scholar
Richter, C. P. (1943). Total self-regulatory functions in animals and human beings. Harvey Lecture Series, 38(63), 1942.Google Scholar
Schrodinger, E. (1944). What Is Life? Dublin: Institute for Advanced Studies at Trinity College.Google Scholar
Torday, J. S. (2015). A central theory of biology. Medical Hypotheses, 85(1), 4957.Google Scholar
Verweij, M., & Damasio, A. (2019). The somatic marker hypothesis and political life. Oxford Research Encyclopedia of Politics. https://doi.org/10.1093/acrefore/9780190228637.013.928.CrossRefGoogle Scholar
Wilson, E. O. (2012). The Social Conquest of the Earth. New York: Liveright Publishing Corporation.Google Scholar

References

Antonini, A., & Stryker, M. (1996). Plasticity of geniculocortical afferents following brief or prolonged monocular occlusion in the cat. Journal of Comparative Neurology, 369, 6482.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Antonini, A., & Stryker, M. (1998). Effect of sensory disuse on geniculate afferents to cat visual cortex. Visual Neuroscience, 15, 401409.Google Scholar
Arcaro, M., & Livingstone, M. (2017). Retinotopic organization of scene areas in Macaque inferior temporal cortex. Journal of Neuroscience, 37, 73737389.CrossRefGoogle ScholarPubMed
Avale, M. E., Chabout, J., Pons, S., et al. (2011). Prefrontal nicotinic receptors control novel social interaction between mice. The FASEB Journal, 25, 21452155.CrossRefGoogle ScholarPubMed
Baars, J. (1989). A Theory of Consciousness. Cambridge: Cambridge University Press.Google Scholar
Bailly, Y., Rabacchi, S., Sherrard, R. M., et al. (2018). Elimination of all redundant climbing fiber synapses requires granule cells in the postnatal cerebellum. Scientific Reports, 8, Article number: 10017.Google Scholar
Ballesteros-Yáñez, I., Benavides-Piccione, R., Bourgeois, J.-P., Changeux, J.-P., & DeFelipe, J. (2010). Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. PNAS, 107, 1156711572.CrossRefGoogle ScholarPubMed
Barkow, J., Cosmides, L., & Tooby, J. (1992). The Adapted Mind: Evolutionary Psychology and the Generation of Culture. Oxford: Oxford University Press.CrossRefGoogle Scholar
Benoit, P., & Changeux, J. P. (1975). Consequences of tenotomy on the evolution of multiinnervation in developing rat soleus muscle. Brain Research, 99, 354358.Google Scholar
Benoit, P., & Changeux, J. P. (1978). Consequences of blocking the nerve with a local anaesthetic on the evolution of multiinnervation at the regenerating neuromuscular junction of the rat. Brain Research, 149, 8996.Google Scholar
Berridge, M., & Rapp, P. (1979). A comparative survey of the function, mechanism and control of cellular oscillators. Journal of Exprerimental Biology, 81, 217279.CrossRefGoogle ScholarPubMed
Blakemore, C., Garey, L., & Vital-Durand, F. (1981). Orientation preferences in the monkeys visual cortex. Journal of Physiology, 319, 78.Google Scholar
Bourgeois, J. P. (1997). Synaptogenesis, heterochrony, and epigenesis in the mammalian neocortex. Acta Paediatrica, 422, 2733.CrossRefGoogle ScholarPubMed
Bourgeron, T. (2009). A synaptic trek to autism. Current Opinion in Neurobiology, 19, 231234.CrossRefGoogle ScholarPubMed
Buchtal, F., & Schmalbruch, H. (1980). Motor unit of mammalian muscle. Physiological Reviews, 60, 90142.CrossRefGoogle Scholar
Campbell, J. O. (2016). Universal Darwinism as a process of Bayesian inference. Frontiers in System Neuroscience, doi:10.3389/fnsys.2016.00049CrossRefGoogle Scholar
Carreiras, M., Seghier, M. L., Baquero, S., et al. (2009). An anatomical signature for literacy. Nature, 461, 983986.CrossRefGoogle ScholarPubMed
Castro-Caldas, A., Petersson, K. M., Reis, A., Stone-Elander, S., & Ingvar, M. (1998). The illiterate brain. Learning to read and write during childhood influences the functional organization of the adult brain. Brain, 121, 10531063.CrossRefGoogle ScholarPubMed
Changeux, J. P. (1983). L’Homme neuronal. Paris: Fayard. English translation, Neuronal Man: The Biology of Mind. Princeton, NJ: Princeton University Press.Google Scholar
Changeux, J. P. (1985). Neuronal Man: The Biology of Mind. Princeton, NJ: Princeton University Press.Google Scholar
Changeux, J. P. (2006). Les bases neurales de l’habitus. In Fussman, G. (ed.), Croyance, raison et déraison (pp. 143158). Paris: Odile Jacob.CrossRefGoogle Scholar
Changeux, J. P. (2010). Nicotine addiction and nicotinic receptors: Lessons from genetically modified mice. Nature Reviews Neuroscience, 11, 389401.CrossRefGoogle ScholarPubMed
Changeux, J. P. (2017). Climbing brain levels of organization from genes to consciousness. Trends in Cognitive Sciences, 21, 168181.CrossRefGoogle ScholarPubMed
Changeux, J. P. (2018). Mon rêve est qu’il puisse y avoir une éducation laïque universelle. In Colloque Henri Caillavet les libertés en question? (pp. 1–5).Google Scholar
Changeux, J. P. (2019). Two cultures and our encyclopaedic brain. European Review, 27, 5465.CrossRefGoogle Scholar
Changeux, J. P., Courrège, P., & Danchin, A. (1973). A theory of the epigenesis of neuronal networks by selective stabilization of synapses. PNAS, 70, 29742978.CrossRefGoogle ScholarPubMed
Changeux, J. P., & Danchin, A. (1976). Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature, 264, 705712.CrossRefGoogle ScholarPubMed
Changeux, J. P. & Lou, H. (2011). Emergent pharmacology of conscious experience: New perspectives in substance addiction. The FASEB Journal, 25, 20982108.CrossRefGoogle ScholarPubMed
Changeux, J. P., & Mikoshiba, K. (1978). Genetic and “epigenetic” factors regulating synapse formation in vertebrate cerebellum and neuromuscular junction. Progress in Brain Research, 48, 4366.CrossRefGoogle ScholarPubMed
Changeux, J. P., & Ricoeur, P. (2000). What Makes Us Think? A Neuroscientist and a Philosopher Argue about Ethics, Human Nature and the Brain. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Cook, E., & Scherer, S. (2008). Copy-number variations associated with neuropsychiatric conditions. Nature, 455, 919923.CrossRefGoogle ScholarPubMed
Collin, G., & van den Heuvel, M. (2013). The ontogeny of the human connectome: Development and dynamic changes of brain connectivity across the life span. Neuroscientist, 19, 616628.CrossRefGoogle ScholarPubMed
Corriveau, R., Huh, G., & Shatz, C. (1998). Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron, 21, 505520.CrossRefGoogle ScholarPubMed
de Lange, A. M., Kaufmann, T., van der Meer, D., et al. (2019). Population-based neuroimaging reveals traces of childbirth in the maternal brain. PNAS, 116, 2234122346.Google Scholar
Dehaene, S., & Changeux, J. P. (1991). The Wisconsin card-sorting test: Theoretical analysis and modeling in a neuronal network. Cerebral Cortex, 1, 6279.CrossRefGoogle Scholar
Dehaene, S., & Changeux, J. P. (2000). Reward-dependent learning in neuronal networks for planning and decision making. Progress in Brain Research, 126, 217229.Google Scholar
Dehaene, S., & Changeux, J. P. (2011). Experimental and theoretical approaches to conscious processing. Neuron, 70, 200227.CrossRefGoogle ScholarPubMed
Dehaene, S., Kerszberg, M., & Changeux, J. P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. PNAS, 95, 1452914534.CrossRefGoogle ScholarPubMed
Dehaene, S., Pegado, F., Braga, L. W., et al. (2010). How learning to read changes the cortical networks for vision and language. Science, 330, 13591364.CrossRefGoogle ScholarPubMed
Dejerine, J. (1895). Anatomie des centres nerveux. Paris: Rueff et Cie.Google Scholar
Dejerine, J. (1914). Sémiologie des affections du système nerveux. Paris: Masson.Google Scholar
Dubois, J., Poupon, C., Thirion, B., et al. (2006). Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cerebral Cortex, 26, 22832298.CrossRefGoogle Scholar
Dumas, G., Malesys, S., & Bourgeron, T. (2019). Systematic detection of divergent brain protein-coding genes in human evolution and their roles in cognition. BioRxiv. doi: https://doi.org/10.1101/658658CrossRefGoogle Scholar
Edelman, G. (1978). Group selection and phasic reentrant signaling: A theory of higher brain function. In Edelman, G. M., & Mountcastle, V. B. (eds.), The Mindful Brain: Cortical Organization and the Group-Selective Theory of Higher Brain Function (pp. 5198). Boston, MA: MIT Press.Google Scholar
Edelman, G. (1981). Group selection as the basis for higher brain function. In Schmitt, F. O., Worden, F. G., Adelman, G., & Dennis, S. G. (eds.), The Organization of the Cerebral Cortex (pp. 535563). Boston, MA: MIT Press.Google Scholar
Edelman, G. (1987). Neural Darwinism: The Theory of Neuronal Group Selection. New York: Basic Books.Google Scholar
Edelman, G. (2006). Second Nature: Brain Science and Human Knowledge. New Haven, CT: Yale University Press.Google Scholar
Edelman, G., & Gally, J. (2001). Degeneracy and complexity in biological systems. PNAS, 98, 1376313768.CrossRefGoogle ScholarPubMed
Evers, K., & Changeux, J. P. (2016). Proactive epigenesis and ethical innovation: A neuronal hypothesis for the genesis of ethical rules. EMBO Reports, 17, 13611364.CrossRefGoogle ScholarPubMed
Farisco, M., Salles, A., & Evers, K. (2018). Neuroethics: A conceptual approach. Cambridge Quarterly of Healthcare Ethics, 27, 717727.CrossRefGoogle ScholarPubMed
Feller, M. B., Wellis, D. P., Stellwagen, D., Werblin, F. S., & Shatz, C. J. (1996). Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science, 272, 11821187.CrossRefGoogle ScholarPubMed
Fodor, J. (1983). The Modularity of Mind. An Essay on Faculty Psychology. Boston, MA: MIT Press.CrossRefGoogle Scholar
Fuster, J. (2015). The Prefrontal Cortex. Cambridge, MA: Academic Press.CrossRefGoogle Scholar
Galli-Resta, L., & Maffei, L. (1988). Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science, 242, 9091.CrossRefGoogle Scholar
Geschwind, D., & Rakic, P. (2013). Cortical evolution: Judge the brain by its cover. Neuron, 80, 633647.Google Scholar
Gisiger, T., & Kerszberg, M. (2006). A model for integrating elementary neural functions into delayed-response behavior. PLoS Computational Biology 2(4): e25. https://doi.org/10.1371/journal.pcbi.0020025CrossRefGoogle Scholar
Gisiger, T., Kerszberg, M., & Changeux, J.P. (2005). Acquisition and performance of delayed-response tasks: A neural network model. Cerebral Cortex, 15, 489506.Google Scholar
Goldowitz, D., & Mullen, R. (1982). Nuclear morphology of ichthyosis mutant mice as a cell marker in chimeric brain. Developmental Biology, 89, 261267.Google Scholar
Goldman-Rakic, P. (1988). Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137156.Google Scholar
Goldman-Rakic, P. (1999). The physiological approach: Functional architecture of working memory and disordered cognition in schizophrenia. Biological Psychiatry, 46, 650661.CrossRefGoogle ScholarPubMed
Goulas, A., Betzel, R., & Hilgetag, C. (2019). Spatiotemporal ontogeny of brain wiring. Science Advances, 5, eaav9694.CrossRefGoogle ScholarPubMed
Gouzé, J. L., Lasry, J. M., & Changeux, J. P. (1983). Selective stabilization of muscle innervation during development: A mathematical model. Biological Cybernetics, 46, 207215.CrossRefGoogle ScholarPubMed
Grubb, M. S., Rossi, F. M., Changeux, J. P., & Thompson, I. D. (2003). Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the β2 subunit of the nicotinic acetylcholine receptor. Neuron, 40, 11611172.CrossRefGoogle ScholarPubMed
Hagmann, P., Cammoun, L., Gigandet, X., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6, e159.Google Scholar
Hagmann, P., Sporns, O., Madan, N., et al. (2010). White matter maturation reshapes structural connectivity in the late developing human brain. PNAS, 107, 1906719072.CrossRefGoogle ScholarPubMed
Hamburger, V. (1970). Embryonic motility in vertabrates. In Schmitt, F. (ed.), The Neurosciences: Second Study Program (pp. 210220). New York: Rockefeller University Press.Google Scholar
Hauser, M.D., Yang, C., Berwick, R. C., et al. (2014). The mystery of language evolution. Frontiers in Psychology, 5, doi: 10.3389/fpsyg.2014.00401CrossRefGoogle ScholarPubMed
Henderson, C. E., Benoit, P., Huchet, M., Guenet, J. L., & Changeux, J. P. (1986). Increase of neurite-promoting activity for spinal neurons in muscles of ‘paralysé’ mice and tenotomised rats. Brain Research, 390, 6570.CrossRefGoogle ScholarPubMed
Hensch, T. (2005). Critical period plasticity in local cortical circuits. Nature Reviews Nruroscience, 6, 877888.Google Scholar
Hermoye, L., Saint-Martin, C., Cosnard, G., et al. (2006). Pediatric diffusion tensor imaging: Normal database and observation of the white matter maturation in early childhood. NeuroImage, 29, 493504.Google Scholar
Hokfelt, T., Fuxe, K., & Pernow, P. (eds.) (1986). Coexistence of neuronal messengers: A new principle in chemical transmission. Progress in Brain Research, 68, 1411.Google Scholar
Hokfelt, T., Barde, S., Xu, Z.-Q. D., et al. (2018). Neuropeptide and small transmitter coexistence: Fundamental studies and relevance to mental illness. Frontiers in Neural Circuits, 12(106). doi: 10.3389/fncir.2018.00106CrossRefGoogle ScholarPubMed
Houdé, O. (2000). Inhibition and cognitive development: Object, number, categorization, and reasoning. Cognitive Development, 15, 6373.CrossRefGoogle Scholar
Houdé, O. (2019). 3-System Theory of the Cognitive Brain: A Post-Piagetian Approach. New York: Routledge.CrossRefGoogle Scholar
Houdé, O., Zago, L., Mellet, E., et al. (2000). Shifting from the perceptual brain to the logical brain: The neural impact of cognitive inhibition training. Journal of Cognitive Neuroscience, 12, 721728.CrossRefGoogle Scholar
Houdé, O., Pineau, A., Leroux, G., et al. (2011). Functional MRI study of Piaget’s conservation-of-number task in preschool and school-age children: A neo-Piagetian approach. Journal of Experimental Child Psychology, 110, 332346.CrossRefGoogle ScholarPubMed
Houdé, O., & Tzourio-Mazoyer, N. (2003). Neural foundations of logical and mathematical cognition. Nature Reviews Neuroscience, 4, 507514.Google Scholar
Huang, Z. J., Kirkwood, A., Pizzorusso, T., et al. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell, 98, 739755.CrossRefGoogle ScholarPubMed
Hubel, D., & Wiesel, T. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28, 229289.CrossRefGoogle Scholar
Hubel, D., & Wiesel, T. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology, 206, 419436.CrossRefGoogle Scholar
Hubel, D., Wiesel, T., & LeVay, S. (1977). Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 278, 377409.Google ScholarPubMed
Huguet, G., Benabou, M., & Bourgeron, T. (2016). The genetics of autism spectrum disorders. In Sassone-Corsi, P., & Christen, Y. (eds.), A Time for Metabolism and Hormones (pp. 101129). Berlin: Springer Verlag.CrossRefGoogle Scholar
Huh, G. S., Boulanger, L. M., Du, H., et al. (2000). Functional requirement for class I MHC in CNS development and plasticity. Science, 290, 21552159.CrossRefGoogle ScholarPubMed
Hull, C. (1943). Principles of Behavior: An Introduction to Behavior Theory. New York: Appleton-Century.Google Scholar
Huttenlocher, P. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517527.Google Scholar
Huttenlocher, P., & Dabholkar, A. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Innocenti, G., & Price, D. (2005). Exuberance in the development of cortical networks. Nature Reviews Neuroscience, 6, 955965.Google Scholar
Joutsa, J., Saunavaara, J., Parkkola, R., Niemelä, S., & Kaasinen, V. (2011). Extensive abnormality of brain white matter integrity in pathological gambling. Psychiatry Research: Neuroimaging, 194, 340346.Google Scholar
Kangiser, M. M., Thomas, A. M., Kaiver, C. M., & Lisdahl, K. M. (2019). Nicotine effects on white matter microstructure in young adults. Archives of Clinical Neuropsychology, 35, 1021.CrossRefGoogle ScholarPubMed
Kano, M., & Hashimoto, L. (2012). Activity-dependent maturation of climbing fiber to Purkinje cell synapses during postnatal cerebellar development. Cerebellum, 11, 449450.Google Scholar
Karlsgodt, K. H., van Erp, T. G. M., Poldrack, R. A., et al. (2008). Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biological Psychiatry, 63, 512518.CrossRefGoogle ScholarPubMed
Kasthuri, N., & Lichtman, J. (2003). The role of neuronal identity in synaptic competition. Nature, 424, 426430.CrossRefGoogle ScholarPubMed
Kim, T., Vidal, G. S., Djurisic, M., et al. (2013). Human LilrB2 is a β-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science, 341, 13991404.Google Scholar
Ko, H., Hofer, S. B., Pichler, B., et al. (2011). Functional specificity of local synaptic connections in neocortical networks. Nature, 473, 8791.CrossRefGoogle ScholarPubMed
Kobayashi, S., & Schultz, W. (2014). Reward contexts extend dopamine signals to unrewarded stimuli. Current Biology, 24, 5662.Google Scholar
Koechlin, E. (2016). Prefrontal executive function and adaptive behavior in complex environments. Current Opinion in Neurobiology, 37, 16.Google Scholar
Koukouli, F., Rooy, M., Tziotis, D., et al. (2017). Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nature Medicine, 23, 347354.CrossRefGoogle ScholarPubMed
Lagercrantz, H., Hanson, M. A., Ment, L. R., & Peebles, D. M. (eds.) (2010). The Newborn Brain. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
LaMantia, A., & Rakic, P. (1990). Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. Journal of Neuroscience, 10, 21562175.Google Scholar
LeVay, S., Wiesel, T., & Hubel, D. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. Journal of Comparative Neurology, 191, 151.CrossRefGoogle ScholarPubMed
Levi Montalcini, R. (2000). From Turin to Stockholm via St. Louis and Rio de Janeiro. Science, 287(5454), 809.CrossRefGoogle Scholar
Levi Strauss, C. (1952). Race et histoire. Paris: UNESCO.Google Scholar
Levinthal, F., Macagno, E., & Levinthal, C. (1976). Anatomy and development of identified cells in isogenic organisms. Cold Spring Harbor Symposia on Quantitative Biology, 40, 321331.CrossRefGoogle ScholarPubMed
Li, W., Bellot-Saez, A., Phillips, M. L., et al. (2017). A small-molecule TrkB ligand restores hippocampal synaptic plasticity and object location memory in Rett syndrome mice. Disease Models & Mechanisms, 10, 837845.CrossRefGoogle ScholarPubMed
Lichtman, J. (1977). The reorganization of synaptic connexions in the rat submandibular ganglion during post‐natal development. The Journal of Physiology, 273, 155177.Google Scholar
Lichtman, J. (1980). On the predominantly single innervation of submandibular ganglion cells in the rat. The Journal of Physiology, 302, 121130.CrossRefGoogle ScholarPubMed
Lohof, A., Delhaye-Bouchaud, N., & Mariani, J. (1996). Synapse elimination in the central nervous system: Functional significance and cellular mechanisms. Reviews in Neurosciences, 7, 85101.CrossRefGoogle ScholarPubMed
Lu, J., Tapia, J. C., While, O. L., & Lichtman, J. W. (2009). The interscutularis muscle connectome. PLoS Biology, 7, e1000108.CrossRefGoogle ScholarPubMed
Lucchesi, J. (2019). Epigenetics, Nuclear Organization & Gene Function. Oxford: Oxford University Press.CrossRefGoogle Scholar
Luo, L., & O’Leary, D. (2005). Axon retraction and degeneration in development and disease. The Annual Review of Neuroscience, 28, 127156.CrossRefGoogle ScholarPubMed
Macagno, E., Lopresti, V., & Levinthal, C. (1973). Structure and development of neuronal connections in isogenic organisms: Variations and similarities in the optic system of Daphnia magna. PNAS, 70, 5761.CrossRefGoogle ScholarPubMed
Maffei, L., & Galli-Resta, L. (1990). Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. PNAS, 87, 26612864.CrossRefGoogle ScholarPubMed
Mandolesi, G., Menna, E., Harauzov, A., et al. (2005). A role for retinal brain-derived neurotrophic factor in ocular dominance plasticity. Current Biology, 15, 21192124.CrossRefGoogle ScholarPubMed
Mariani, J., & Changeux, J. P. (1980). Intracellular recordings of the multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the developing rat. Comptes rendus des seances de l'Academie des sciences. Serie D, Sciences naturelles, 291, 97100.Google ScholarPubMed
Markov, N., Ercsey-Ravasz, M., Van Essen, D. C., et al. (2013). Cortical high-density counterstream architectures. Science, 342, 1238406.Google Scholar
Mehler, J. (1982). Dips and drops: A theory of cognitive development. In Bever, T. (ed.), Regressions in Development: Basic Phenomena and Theoretical Alternatives (pp. 133152). Hillsdale, NJ: Erlbaum.Google Scholar
Meister, M., Wong, R. O., Baylor, D. A., & Shatz, C. J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science, 252, 939943.Google Scholar
Morange, M., Wolff, F., & Worms, F. (eds.) (2016). L’Homme neuronal 30 ans après, Dialogue avec Jean-Pierre Changeux. Paris: Rue d’Um.Google Scholar
Movshon, J. (1976). Reversal of the physiological effects of monocular deprivation in the kitten’s visual cortex. The Journal of Physiology, 261, 125174.CrossRefGoogle ScholarPubMed
O’Brien, R., Purves, R., & Vabova, G. (1977). Effect of activity on the elimination of multiple innervation in soleus muscle of rats. Journal of Physiology, 271, 5455.Google ScholarPubMed
Oren-Suissa, M., Bayer, E., & Hobert, O. (2016). Sex-specific pruning of neuronal synapses in Caenorhabditis elegans. Nature, 533, 206211.CrossRefGoogle ScholarPubMed
Oster-Granite, M., & Gearhart, J. (1981). Cell lineage analysis of cerebellar Purkinje cells in mouse chimeras. Developmental Biology, 85, 199208.CrossRefGoogle ScholarPubMed
Paabo, S. (2013). The human condition: A molecular approach? Cell, 157, 216226.Google Scholar
Paolicelli, R. C., Bolasco, G., Pagani, F., et al. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science, 333, 14561458.Google Scholar
Penn, A. A., Riquelme, P. A., Feller, M. B., & Shatz, C. J. (1998). Competition in retinogeniculate patterning driven by spontaneous activity. Science, 279, 21082112.CrossRefGoogle ScholarPubMed
Perdikis, D., Huys, R., & Jirsa, V. (2011). Complex processes from dynamical architectures with time-scale hierarch. PLoS ONE, 6. doi: 10.1371/journal.pone.0016589Google Scholar
Petanjek, Z., Judaš, M., Šimic, G., et al. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. PNAS, 108, 1328113286.CrossRefGoogle ScholarPubMed
Petr, M., Pääbo, S., Kelso, J., & Vernot, B. (2019). Limits of long-term selection against Neandertal introgression. PNAS, 116, 16391644.Google Scholar
Piaget, J. (1976). Le comportement, moteur de l’évolution. Paris: Gallimard.Google Scholar
Picciotto, M. R., Zoli, M., Léna, C., et al. (1995). Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature, 374, 6567.CrossRefGoogle ScholarPubMed
Picciotto, M. R., Zoli, M., Rimondini, R., et al. (1998). Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature, 391, 173177.CrossRefGoogle ScholarPubMed
Pillai, A., & Jirsa, V. (2017). Symmetry breaking in space-time hierarchies shapes brain dynamics and behavior. Neuron, 94, 10101026.Google Scholar
Premack, D. (2007). Human and animal cognition: Continuity and discontinuity. PNAS, 104, 1386113867.CrossRefGoogle ScholarPubMed
Prochiantz, A., & Di Nardo, A. (2015). Homeoprotein signaling in the developing and adult nervous system. Neuron, 85, 911925.CrossRefGoogle ScholarPubMed
Provine, R., & Ripley, K. (1972). Neural correlates of embryonic motility in the chick. Brain Research, 45, 127134.Google Scholar
Pugliese, L., Catani, M., Ameis, S., et al. (2009). The anatomy of extended limbic pathways in Asperger syndrome: A preliminary diffusion tensor imaging tractography study. NeuroImage, 47, 427434.CrossRefGoogle ScholarPubMed
Purves, D., & Lichtman, J. (1980). Elimination of synapses in the developing nervous system. Science, 210, 153157.CrossRefGoogle ScholarPubMed
Quartz, S., & Sejnowski, T. (1997). The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences, 20, 537556.Google Scholar
Rakic, P. (1976). Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature, 261, 467471.CrossRefGoogle ScholarPubMed
Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N., & Goldman-Rakic, P. S. (1986). Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science, 4747, 232235.CrossRefGoogle Scholar
Redfern, P. (1970). Neuromuscular transmission in new‐born rats. The Journal of Physiology, 209, 701709.CrossRefGoogle ScholarPubMed
Rømer Thomsen, K., Joensson, M., Lou, H. C., et al. (2013). Altered paralimbic interaction in behavioral addiction. PNAS, 110, 47444749.CrossRefGoogle ScholarPubMed
Rossi, F. M., Pizzorusso, T., Porciatti, V., et al. (2001). Requirement of the nicotinic acetylcholine receptor β2 subunit for the anatomical and functional development of the visual system. PNAS, 98, 64536458.Google Scholar
Scott, A., Zelenin, S., Malmersjö, S., et al. (2006). Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. PNAS, 103, 762767.CrossRefGoogle ScholarPubMed
Scott-Van Zeeland, A. A., Abrahams, B. S., Alvarez-Retuerto, A. I., et al. (2010). Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Science Translational Medicine, 2, 5680.Google Scholar
Sellgren, C. M., Gracias, J., Watmuff, B., et al. (2019). Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nature Neurosciences, 22, 374385.Google Scholar
Shatz, C. (1996). Emergence of order in visual system development. PNAS, 93, 602608.CrossRefGoogle ScholarPubMed
Shatz, C., & Stryker, M. (1978). Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation. Journal of Physiology, 281, 267283.Google Scholar
Sheu, S.-H., Tapia, J. C., Tsuriel, S., & Lichtman, J. W. (2017). Similar synapse elimination motifs at successive relays in the same efferent pathway during development in mice. eLife, 6, e23193. doi: 10.7554/eLife.23193CrossRefGoogle ScholarPubMed
Skinner, B. (1981). Selection by consequences. Science, 213, 501504.CrossRefGoogle ScholarPubMed
Somel, M., Liu, X., & Khaitovich, P. (2013). Human brain evolution: Transcripts, metabolites and their regulators. Nature Reviews Neuroscience, 14, 112127.CrossRefGoogle ScholarPubMed
Sommer, M., Koch, M. A., Paulus, W., Weiller, C., & Büchel, C. (2002). Disconnection of speech-relevant brain areas in persistent developmental stuttering. Lancet, 360, 380383.CrossRefGoogle ScholarPubMed
Spatazza, J., Lee, H. H. C., Di Nardo, A. A., et al. (2013). Choroid plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Reports, 3, 18151823.CrossRefGoogle ScholarPubMed
Spitzer, N. (2017). Neurotransmitter switching in the developing and adult brain. Annual Review of Neuroscience, 40, 119.CrossRefGoogle ScholarPubMed
Sretavan, D., Shatz, C., & Stryker, M. (1988). Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin. Nature, 336, 468471.CrossRefGoogle ScholarPubMed
Stauffer, W. R., Lak, A., Yang, A., et al. (2016). Dopamine neuron-specific optogenetic stimulation in Rhesus macaques. Cell, 166, 15641571.CrossRefGoogle ScholarPubMed
Steinmetz, H. , Herzog, A., Schlaug, G., Huang, Y., & Jäncke, L. (1995). Brain (A) symmetry in monozygotic twins. Cerebral Cortex, 5, 296300.Google Scholar
Sretavan, W., & Stryker, M. (1988). Modification of retinal ganglion cell morphology by prenatal infusion of tetrodotoxin. Nature, 336, 468471.CrossRefGoogle ScholarPubMed
Suzuki, I. K., Gacquer, D., Van Heurck, R., et al. (2018). Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell, 173, 13701384.Google Scholar
Szwed, M., Qiao, E., Jobert, A., Dehaene, S., & Cohen, L. (2014). Effects of literacy in early visual and occipitotemporal areas of Chinese and French readers. Journal of Cognitive Neurosciences, 26, 459475.CrossRefGoogle ScholarPubMed
Takesian, A., & Hensch, T. (2013). Balancing plasticity/stability across brain development. Progress in Brain Research, 207, 334.CrossRefGoogle ScholarPubMed
Thorndike, E. (1911). Animal Intelligence. New York: Macmillan.Google Scholar
Tononi, G., Sporns, O., & Edelman, G. (1999). Measures of degeneracy and redundancy in biological network. PNAS, 96, 32573262.CrossRefGoogle Scholar
Triller, A., & Choquet, D. (2008). New concepts in synaptic biology derived from single-molecule imaging. Neuron, 59, 359374.Google Scholar
Turney, S., & Lichtman, J. (2012). Reversing the outcome of synapse elimination at developing neuromuscular junctions in vivo: Evidence for synaptic competition and its mechanism. PLoS Biology, 10, e1001352. doi: 10.1371/journal.pbio.1001352Google Scholar
Vallender, E., Mekel-Bobrov, N., & Lahn, B. T. (2006). Genetic basis of human evolution. Trends in Neurosciences, 31, 637644.CrossRefGoogle Scholar
van Sluyters, R. (1978). Reversal of the physiological effects of brief periods of monocular deprivation in the kitten. The Journal of Physiology, 284, 117.Google Scholar
von Economo, C., & Koskinas, G. (1925). Atlas of Cytoarchitectonics of the Adult Human Cerebral Cortex. Basel: Karger. Trans, rev, L. C. Triarhou, 2008.Google Scholar
Waddington, C. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563565.Google Scholar
Wei, Y., de Lange, S. C., Scholtens, L. H., et al. (2019). Genetic mapping and evolutionary analysis of human-expanded cognitive networks. Nature Communications, 10, Article number: 4839.CrossRefGoogle ScholarPubMed
Werker, J., & Hensch, T. (2015). Critical periods in speech perception: New directions. Annual Review of Psychology, 66, 173196.CrossRefGoogle ScholarPubMed
Weyer, S., & Paabo, S. (2016). Functional analyses of transcription factor binding sites that differ between present-day and archaic humans. Molecular Biology and Evolution, 33, 316322.Google Scholar
Weinhard, L., di Bartolomei, G., Bolasco, G., et al. (2018). Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nature Communications, 9, 1228.CrossRefGoogle ScholarPubMed
Wiesel, T., & Hubel, D. (1963). Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. Journal of Neurophysiology, 26, 978993.CrossRefGoogle ScholarPubMed
Wiesel, T., & Hubel, D. (1965). Extend of recovery from the effects of visual deprivation in kittens. Journal of Neurophysiology, 28, 10601072.CrossRefGoogle Scholar
Zoli, M., Léna, C., Picciotta, M. R., & Changeux, J. P. (1998). Identification of four classes of brain nicotinic receptors using β2 mutant mice. Journal of Neuroscience, 18, 44614472.CrossRefGoogle ScholarPubMed

References

Adibpour, P., Dehaene-Lambertz, G., & Dubois, J. (2015). Relating the structural and functional maturation of visual and auditory white matter pathways with diffusion imaging and event-related potentials in infants. Proceedings of ISMRM Meeting, May 30–June 5, 2015, Toronto, p. 645.Google Scholar
Adibpour, P., Dubois, J., & Dehaene-Lambertz, G. (2018a). Right but not left hemispheric discrimination of faces in infancy. Nature Human Behaviour, 2, 6779.CrossRefGoogle Scholar
Adibpour, P., Dubois, J., Moutard, M. L., & Dehaene-Lambertz, G. (2018b). Early asymmetric inter-hemispheric transfer in the auditory network: Insights from infants with corpus callosum agenesis. Brain Structure and Function, 223, 28932905.CrossRefGoogle ScholarPubMed
Adibpour, P., Lebenberg, J., Kabdebon, C., Dehaene-Lambertz, G., & Dubois, J. (2020). Anatomo-functional correlates of auditory development in infancy. Developmental Cognitive Neuroscience, 42, 100752.CrossRefGoogle ScholarPubMed
Alexander, D. C., Dyrby, T. B., Nilsson, M., & Zhang, H. (2019). Imaging brain microstructure with diffusion MRI: Practicality and applications. NMR in Biomedicine, 32, e3841.CrossRefGoogle ScholarPubMed
Amiez, C., Wilson, C. R. E., & Procyk, E. (2018). Variations of cingulate sulcal organization and link with cognitive performance. Scientific Reports, 8, 13988.Google Scholar
Anderson, V., Spencer-Smith, M., & Wood, A. (2011). Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain, 134, 21972221.CrossRefGoogle ScholarPubMed
Andescavage, N. N., du Plessis, A., McCarter, R., Serag, A., Evangelou, I., Vezina, G., Robertson, R., & Limperopoulos, C. (2017). Complex trajectories of brain development in the healthy human fetus. Cerebral Cortex, 27, 52745283.Google ScholarPubMed
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry – The methods. Neuroimage, 11, 805821.CrossRefGoogle ScholarPubMed
Bajic, D., Wang, C., Kumlien, E., Mattsson, P., Lundberg, S., Eeg-Olofsson, O., & Raininko, R. (2008). Incomplete inversion of the hippocampus – A common developmental anomaly. European Radiology, 18, 138142.CrossRefGoogle ScholarPubMed
Ball, G., Aljabar, P., Zebari, S., Tusor, N., Arichi, T., Merchant, N., Robinson, E. C., Ogundipe, E., Rueckert, D., Edwards, A. D., & Counsell, S. J. (2014). Rich-club organization of the newborn human brain. Proceedings of the National Academy of Sciences (USA), 111, 74567461.Google Scholar
Ball, G., Pazderova, L., Chew, A., Tusor, N., Merchant, N., Arichi, T., Allsop, J. M., Cowan, F. M., Edwards, A. D., & Counsell, S. J. (2015). Thalamocortical connectivity predicts cognition in children born preterm. Cerebral Cortex, 25, 43104318.CrossRefGoogle ScholarPubMed
Ball, G., Srinivasan, L., Aljabar, P., Counsell, S. J., Durighel, G., Hajnal, J. V., Rutherford, M. A., & Edwards, A. D. (2013). Development of cortical microstructure in the preterm human brain. Proceedings of the National Academy of Sciences (USA), 110, 95419546.CrossRefGoogle ScholarPubMed
Barkovich, A. J., Kjos, B. O., Jackson, D. E., Jr., & Norman, D. (1988). Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology, 166, 173180.CrossRefGoogle ScholarPubMed
Batalle, D., O’Muircheartaigh, J., Makropoulos, A., Kelly, C. J., Dimitrova, R., Hughes, E. J., Hajnal, J. V., Zhang, H., Alexander, D. C., David Edwards, A., & Counsell, S. J. (2019). Different patterns of cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI in vivo. Neuroimage, 185, 764775.Google Scholar
Baumann, N., & Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological Reviews, 81, 871927.Google Scholar
Betzel, R. F., & Bassett, D. S. (2017). Multi-scale brain networks. Neuroimage, 160, 7383.CrossRefGoogle ScholarPubMed
Borrell, V. (2018). How cells fold the cerebral cortex. Journal of Neuroscience, 38, 776783.CrossRefGoogle ScholarPubMed
Borst, G., Cachia, A., Tissier, C., Ahr, E., Simon, G., & Houdé, O. (2016). Early cerebral constraint on reading skills of 10-years-old children. Mind, Brain and Education, 10, 4754.CrossRefGoogle Scholar
Borst, G., Cachia, A., Vidal, J., Simon, G., Fischer, C., Pineau, A., Poirel, N., Mangin, J. F., & Houde, O. (2014). Folding of the anterior cingulate cortex partially explains inhibitory control during childhood: A longitudinal study. Developmental Cognitive Neuroscience, 9, 126135.CrossRefGoogle ScholarPubMed
Bozek, J., Makropoulos, A., Schuh, A., Fitzgibbon, S., Wright, R., Glasser, M. F., Coalson, T. S., O’Muircheartaigh, J., Hutter, J., Price, A. N., Cordero-Grande, L., Teixeira, R., Hughes, E., Tusor, N., Baruteau, K. P., Rutherford, M. A., Edwards, A. D., Hajnal, J. V., Smith, S. M., Rueckert, D., Jenkinson, M., & Robinson, E. C. (2018). Construction of a neonatal cortical surface atlas using multimodal surface matching in the developing human connectome project. Neuroimage, 179, 1129.CrossRefGoogle ScholarPubMed
Brody, B. A., Kinney, H. C., Kloman, A. S., & Gilles, F. H. (1987). Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. Journal of Neuropathology & Experimental Neurology, 46, 283301.CrossRefGoogle ScholarPubMed
Brown, C. J., Miller, S. P., Booth, B. G., Andrews, S., Chau, V., Poskitt, K. J., & Hamarneh, G. (2014). Structural network analysis of brain development in young preterm neonates. Neuroimage, 101, 667680.Google Scholar
Bui, T., Daire, J. L., Chalard, F., Zaccaria, I., Alberti, C., Elmaleh, M., Garel, C., Luton, D., Blanc, N., & Sebag, G. (2006). Microstructural development of human brain assessed in utero by diffusion tensor imaging. Pediatric Radiology, 36, 11331140.CrossRefGoogle ScholarPubMed
Bultmann, E., Spineli, L. M., Hartmann, H., & Lanfermann, H. (2018). Measuring in vivo cerebral maturation using age-related T2 relaxation times at 3T. Brain and Development, 40, 8593.Google Scholar
Cachia, A., Borst, G., Tissier, C., Fisher, C., Plaze, M., Gay, O., Riviere, D., Gogtay, N., Giedd, J., Mangin, J. F., Houde, O., & Raznahan, A. (2016). Longitudinal stability of the folding pattern of the anterior cingulate cortex during development. Developmental Cognitive Neuroscience, 19, 122127.CrossRefGoogle ScholarPubMed
Cachia, A., Borst, G., Vidal, J., Fischer, C., Pineau, A., Mangin, J. F., & Houde, O. (2014). The shape of the ACC contributes to cognitive control efficiency in preschoolers. Journal of Cognitive Neuroscience, 26, 96106.CrossRefGoogle ScholarPubMed
Cachia, A., Del Maschio, N., Borst, G., Della Rosa, P. A., Pallier, C., Costa, A., Houde, O., & Abutalebi, J. (2017). Anterior cingulate cortex sulcation and its differential effects on conflict monitoring in bilinguals and monolinguals. Brain and Language, 175, 5763.Google Scholar
Cachia, A., Roell, M., Mangin, J. F., Sun, Z. Y., Jobert, A., Braga, L., Houde, O., Dehaene, S., & Borst, G. (2018). How interindividual differences in brain anatomy shape reading accuracy. Brain Structure and Function, 223, 701712.CrossRefGoogle ScholarPubMed
Cao, M., Huang, H., & He, Y. (2017). Developmental connectomics from infancy through early childhood. Trends in Neurosciences, 40, 494506.CrossRefGoogle ScholarPubMed
Chevalier, N., Kurth, S., Doucette, M. R., Wiseheart, M., Deoni, S. C., Dean, D. C., 3rd, O’Muircheartaigh, J., Blackwell, K. A., Munakata, Y., & LeBourgeois, M. K. (2015). Myelination is associated with processing speed in early childhood: Preliminary insights. PLoS ONE, 10, e0139897.CrossRefGoogle ScholarPubMed
Chi, J. G., Dooling, E. C., & Gilles, F. H. (1977). Gyral development of the human brain. Annals of Neurology, 1, 8693.Google Scholar
Cohen, A. L., Fair, D. A., Dosenbach, N. U. F., Miezin, F. M., Dierker, D., Van Essen, D. C., Schlaggar, B. L., & Petersen, S. E. (2008). Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage, 41, 4557.Google Scholar
Croteau-Chonka, E. C., Dean, D. C., 3rd, Remer, J., Dirks, H., O’Muircheartaigh, J., & Deoni, S. C. (2016). Examining the relationships between cortical maturation and white matter myelination throughout early childhood. Neuroimage, 125, 413421.CrossRefGoogle ScholarPubMed
Cury, C., Toro, R., Cohen, F., Fischer, C., Mhaya, A., Samper-Gonzalez, J., Hasboun, D., Mangin, J. F., Banaschewski, T., Bokde, A. L., Bromberg, U., Buechel, C., Cattrell, A., Conrod, P., Flor, H., Gallinat, J., Garavan, H., Gowland, P., Heinz, A., Ittermann, B., Lemaitre, H., Martinot, J. L., Nees, F., Paillere Martinot, M. L., Orfanos, D. P., Paus, T., Poustka, L., Smolka, M. N., Walter, H., Whelan, R., Frouin, V., Schumann, G., Glaunes, J. A., Colliot, O., & Imagen Consortium. (2015). Incomplete hippocampal inversion: A comprehensive MRI study of over 2000 subjects. Frontiers in Neuroanatomy, 9, 160.CrossRefGoogle ScholarPubMed
De Guio, F., Mangin, J. F., Riviere, D., Perrot, M., Molteno, C. D., Jacobson, S. W., Meintjes, E. M., & Jacobson, J. L. (2014). A study of cortical morphology in children with fetal alcohol spectrum disorders. Human Brain Mapping, 35, 22852296.CrossRefGoogle ScholarPubMed
Dean, D. C., 3rd, O’Muircheartaigh, J., Dirks, H., Travers, B. G., Adluru, N., Alexander, A. L., & Deoni, S. C. (2016). Mapping an index of the myelin g-ratio in infants using magnetic resonance imaging. Neuroimage, 132, 225237.Google Scholar
Dean, D. C., 3rd, Planalp, E. M., Wooten, W., Adluru, N., Kecskemeti, S. R., Frye, C., Schmidt, C. K., Schmidt, N. L., Styner, M. A., Goldsmith, H. H., Davidson, R. J., & Alexander, A. L. (2017). Mapping white matter microstructure in the one month human brain. Scientific Reports, 7, 9759.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., & Spelke, E. S. (2015). The infancy of the human brain. Neuron, 88, 93109.CrossRefGoogle ScholarPubMed
Deipolyi, A. R., Mukherjee, P., Gill, K., Henry, R. G., Partridge, S. C., Veeraraghavan, S., Jin, H., Lu, Y., Miller, S. P., Ferriero, D. M., Vigneron, D. B., & Barkovich, A. J. (2005). Comparing microstructural and macrostructural development of the cerebral cortex in premature newborns: Diffusion tensor imaging versus cortical gyration. Neuroimage, 27, 579586.CrossRefGoogle ScholarPubMed
Del Maschio, N., Sulpizio, S., Fedeli, D., Ramanujan, K., Ding, G., Weekes, B. S., Cachia, A., & Abutalebi, J. (2019). ACC sulcal patterns and their modulation on cognitive control efficiency across lifespan: A neuroanatomical study on bilinguals and monolinguals. Cerebral Cortex, 29, 30913101.CrossRefGoogle Scholar
Deoni, S. C., Dean, D. C., 3rd, O’Muircheartaigh, J., Dirks, H., & Jerskey, B. A. (2012). Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping. Neuroimage, 63, 10381053.CrossRefGoogle ScholarPubMed
Deoni, S. C., Dean, D. C., 3rd, Remer, J., Dirks, H., & O’Muircheartaigh, J. (2015). Cortical maturation and myelination in healthy toddlers and young children. Neuroimage, 115, 147161.CrossRefGoogle ScholarPubMed
Deoni, S. C., Mercure, E., Blasi, A., Gasston, D., Thomson, A., Johnson, M., Williams, S. C., & Murphy, D. G. (2011). Mapping infant brain myelination with magnetic resonance imaging. Journal of Neuroscience, 31, 784791.CrossRefGoogle ScholarPubMed
Deoni, S. C., O’Muircheartaigh, J., Elison, J. T., Walker, L., Doernberg, E., Waskiewicz, N., Dirks, H., Piryatinsky, I., Dean, D. C., 3rd, & Jumbe, N. L. (2016). White matter maturation profiles through early childhood predict general cognitive ability. Brain Structure and Function, 221, 11891203.CrossRefGoogle ScholarPubMed
Dockstader, C., Gaetz, W., Rockel, C., & Mabbott, D. J. (2012). White matter maturation in visual and motor areas predicts the latency of visual activation in children. Human Brain Mapping, 33, 179191.CrossRefGoogle ScholarPubMed
Dubois, J., Adibpour, P., Poupon, C., Hertz-Pannier, L., & Dehaene-Lambertz, G. (2016a). MRI and M/EEG studies of the white matter development in human fetuses and infants: Review and opinion. Brain Plasticity, 2, 4969.CrossRefGoogle Scholar
Dubois, J., Benders, M., Borradori-Tolsa, C., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R., Sizonenko, S. V., Warfield, S. K., Mangin, J. F., & Huppi, P. S. (2008a). Primary cortical folding in the human newborn: An early marker of later functional development. Brain, 131, 20282041.Google Scholar
Dubois, J., Benders, M., Cachia, A., Lazeyras, F., Leuchter, R. H. V., Sizonenko, S. V., Borradori-Tolsa, C., Mangin, J. F., & Huppi, P. S. (2008b). Mapping the early cortical folding process in the preterm newborn brain. Cerebral Cortex, 18, 14441454.CrossRefGoogle ScholarPubMed
Dubois, J., & Dehaene-Lambertz, G. (2015). Fetal and postnatal development of the cortex: Insights from MRI and genetics. In Toga, Arthur W. (ed.), Brain Mapping: An Encyclopedic Reference (Vol. 2, pp. 1119). Cambridge, MA: Academic Press.CrossRefGoogle Scholar
Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Huppi, P. S., & Hertz-Pannier, L. (2014). The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience, 276, 4871.Google Scholar
Dubois, J., Dehaene-Lambertz, G., Perrin, M., Mangin, J. F., Cointepas, Y., Duchesnay, E., Le Bihan, D., & Hertz-Pannier, L. (2008c). Asynchrony of the early maturation of white matter bundles in healthy infants: Quantitative landmarks revealed noninvasively by diffusion tensor imaging. Human Brain Mapping, 29, 1427.Google Scholar
Dubois, J., Dehaene-Lambertz, G., Soares, C., Cointepas, Y., Le Bihan, D., & Hertz-Pannier, L. (2008d). Microstructural correlates of infant functional development: Example of the visual pathways. Journal of Neuroscience, 28, 19431948.CrossRefGoogle ScholarPubMed
Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., Cointepas, Y., & Le Bihan, D. (2006). Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: A feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage, 30, 11211132.Google Scholar
Dubois, J., Kostovic, I., & Judas, M. (2015). Development of structural and functional connectivity. In Toga, A. W. (ed.), Brain Mapping: An Encyclopedic Reference (Vol. 2, pp. 423437). Cambridge, MA: Academic Press.CrossRefGoogle Scholar
Dubois, J., Lefevre, J., Angleys, H., Leroy, F., Fischer, C., Lebenberg, J., Dehaene-Lambertz, G., Borradori-Tolsa, C., Lazeyras, F., Hertz-Pannier, L., Mangin, J. F., Huppi, P. S., & Germanaud, D. (2019). The dynamics of cortical folding waves and prematurity-related deviations revealed by spatial and spectral analysis of gyrification. Neuroimage, 185, 934946.Google Scholar
Dubois, J., Poupon, C., Thirion, B., Simonnet, H., Kulikova, S., Leroy, F., Hertz-Pannier, L., & Dehaene-Lambertz, G. (2016b). Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cerebral Cortex, 26, 22832298.CrossRefGoogle ScholarPubMed
Dudink, J., Lequin, M., van Pul, C., Buijs, J., Conneman, N., van Goudoever, J., & Govaert, P. (2007). Fractional anisotropy in white matter tracts of very-low-birth-weight infants. Pediatric Radiology, 37, 12161223.Google Scholar
Dudink, J., Buijs, J., Govaert, P., van Zwol, A. L., Conneman, N., van Goudoever, J. B., & Lequin, M. (2010). Diffusion tensor imaging of the cortical plate and subplate in very-low-birth-weight infants. Pediatric Radiology, 40, 13971404.Google Scholar
Eaton-Rosen, Z., Melbourne, A., Orasanu, E., Cardoso, M. J., Modat, M., Bainbridge, A., Kendall, G. S., Robertson, N. J., Marlow, N., & Ourselin, S. (2015). Longitudinal measurement of the developing grey matter in preterm subjects using multi-modal MRI. Neuroimage, 111, 580589.CrossRefGoogle ScholarPubMed
Eaton-Rosen, Z., Scherrer, B., Melbourne, A., Ourselin, S., Neil, J. J., & Warfield, S. K. (2017). Investigating the maturation of microstructure and radial orientation in the preterm human cortex with diffusion MRI. Neuroimage, 162, 6572.Google Scholar
Eickhoff, S., Walters, N. B., Schleicher, A., Kril, J., Egan, G. F., Zilles, K., Watson, J. D., & Amunts, K. (2005). High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Human Brain Mapping, 24, 206215.CrossRefGoogle ScholarPubMed
Engelbrecht, V., Rassek, M., Preiss, S., Wald, C., & Modder, U. (1998). Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain. AJNR American Journal of Neuroradiology, 19, 19231929.Google ScholarPubMed
Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5, e1000381.CrossRefGoogle Scholar
Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., Barch, D. M., Raichle, M. E., Petersen, S. E., & Schlaggar, B. L. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences, 104, 1350713512.CrossRefGoogle ScholarPubMed
Feess-Higgins, A., & Larroche, J. C. (1987). Development of the Human Foetal Brain. An Anatomical Atlas. Paris: INSERM CNRS.Google Scholar
Ferradal, S. L., Gagoski, B., Jaimes, C., Yi, F., Carruthers, C., Vu, C., Litt, J. S., Larsen, R., Sutton, B., Grant, P. E., & Zollei, L. (2019). System-specific patterns of thalamocortical connectivity in early brain development as revealed by structural and functional MRI. Cerebral Cortex, 29, 12811229.CrossRefGoogle ScholarPubMed
Fields, R. D. (2008). White matter in learning, cognition and psychiatric disorders. Trends in Neurosciences, 31, 361370.Google Scholar
Fischl, B. (2012). FreeSurfer. Neuroimage, 62, 774781.Google Scholar
Flechsig, P. (1920). Anatomie des Menschlichen Gehirn und Rückenmarks, auf myelogenetischer grundlage. Stuttgart: G. Thieme.Google Scholar
Fornito, A., Yucel, M., Wood, S., Stuart, G. W., Buchanan, J. A., Proffitt, T., Anderson, V., Velakoulis, D., & Pantelis, C. (2004). Individual differences in anterior cingulate/paracingulate morphology are related to executive functions in healthy males. Cerebral Cortex, 14, 424431.CrossRefGoogle ScholarPubMed
Foubet, O., Trejo, M., & Toro, R. (2019). Mechanical morphogenesis and the development of neocortical organisation. Cortex, 118, 315326.CrossRefGoogle ScholarPubMed
Friedrichs-Maeder, C. L., Griffa, A., Schneider, J., Huppi, P. S., Truttmann, A., & Hagmann, P. (2017). Exploring the role of white matter connectivity in cortex maturation. PLoS ONE, 12, e0177466.CrossRefGoogle ScholarPubMed
Geng, X., Gouttard, S., Sharma, A., Gu, H., Styner, M., Lin, W., Gerig, G., & Gilmore, J. H. (2012). Quantitative tract-based white matter development from birth to age 2 years. Neuroimage, 61, 542557.CrossRefGoogle Scholar
Germanaud, D., Lefevre, J., Fischer, C., Bintner, M., Curie, A., des Portes, V., Eliez, S., Elmaleh-Berges, M., Lamblin, D., Passemard, S., Operto, G., Schaer, M., Verloes, A., Toro, R., Mangin, J. F., & Hertz-Pannier, L. (2014). Simplified gyral pattern in severe developmental microcephalies? New insights from allometric modeling for spatial and spectral analysis of gyrification. Neuroimage, 102, 317331.CrossRefGoogle ScholarPubMed
Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron, 67, 728734.Google Scholar
Gilles, F., Shankle, W., & Dooling, E. (1983). Myelinated tracts: Growth patterns. In Gilles, F., Leviton, A., & Dooling, E. (eds.), The Developing Human Brain (pp. 117183). Boston, MA: Butterworth Heinemann.Google Scholar
Gilmore, J. H., Lin, W., Prastawa, M. W., Looney, C. B., Vetsa, Y. S., Knickmeyer, R. C., Evans, D. D., Smith, J. K., Hamer, R. M., Lieberman, J. A., & Gerig, G. (2007). Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. Journal of Neuroscience, 27, 12551260.CrossRefGoogle ScholarPubMed
Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., Zhu, H., Hamer, R. M., Styner, M., & Shen, D. (2012). Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex, 22, 24782485.CrossRefGoogle ScholarPubMed
Guevara, M., Román, C., Houenou, J., Duclap, D., Poupon, C., Mangin, J. F., & Guevara, P. (2017). Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography. Neuroimage, 147, 703725.CrossRefGoogle ScholarPubMed
Habas, P. A., Scott, J. A., Roosta, A., Rajagopalan, V., Kim, K., Rousseau, F., Barkovich, A. J., Glenn, O. A., & Studholme, C. (2012). Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cerebral Cortex, 22, 1325.CrossRefGoogle ScholarPubMed
Harding, G. F., Grose, J., Wilton, A., & Bissenden, J. G. (1989). The pattern reversal VEP in short-gestation infants. Electroencephalography and Clinical Neurophysiology, 74, 7680.Google Scholar
Haselgrove, J., Moore, J., Wang, Z., Traipe, E., & Bilaniuk, L. (2000). A method for fast multislice T1 measurement: Feasibility studies on phantoms, young children, and children with Canavan’s disease. Journal of Magnetic Resonance Imaging, 11, 360367.Google Scholar
Hilgetag, C. C., & Barbas, H. (2006). Role of mechanical factors in the morphology of the primate cerebral cortex. PLoS Computational Biology, 2(3), e22.Google Scholar
Hilgetag, C. C., & Barbas, H. (2009). Sculpting the brain. Scientific American, 300, 6671.Google Scholar
Hill, J., Dierker, D., Neil, J., Inder, T., Knutsen, A., Harwell, J., Coalson, T., & Van Essen, D. (2010). A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants. Journal of Neuroscience, 30, 22682276.CrossRefGoogle ScholarPubMed
Horowitz, A., Barazany, D., Tavor, I., Bernstein, M., Yovel, G., & Assaf, Y. (2015). In vivo correlation between axon diameter and conduction velocity in the human brain. Brain Structure and Function, 220, 17771788.Google Scholar
Huang, H., Jeon, T., Sedmak, G., Pletikos, M., Vasung, L., Xu, X., Yarowsky, P., Richards, L. J., Kostovic, I., Sestan, N., & Mori, S. (2013). Coupling diffusion imaging with histological and gene expression analysis to examine the dynamics of cortical areas across the fetal period of human brain development. Cerebral Cortex, 23, 26202631.CrossRefGoogle ScholarPubMed
Huang, H., Xue, R., Zhang, J., Ren, T., Richards, L. J., Yarowsky, P., Miller, M. I., & Mori, S. (2009). Anatomical characterization of human fetal brain development with diffusion tensor magnetic resonance imaging. Journal of Neuroscience, 29, 42634273.Google Scholar
Huang, H., Zhang, J., Wakana, S., Zhang, W., Ren, T., Richards, L. J., Yarowsky, P., Donohue, P., Graham, E., van Zijl, P. C., & Mori, S. (2006). White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage, 33, 2738.Google Scholar
Huppi, P. S., & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal and Neonatal Medicine, 11, 489497.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387, 167178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Innocenti, G. M., Caminiti, R., & Aboitiz, F. (2015). Comments on the paper by Horowitz et al. (2014). Brain Structure and Function, 220, 17891790.CrossRefGoogle ScholarPubMed
Johansen-Berg, H., & Behrens, T. E. J. (2013). Diffusion MRI: From Quantitative Measurement to In Vivo Neuroanatomy. Cambridge, MA: Academic Press.Google Scholar
Judas, M., Rados, M., Jovanov-Milosevic, N., Hrabac, P., Stern-Padovan, R., & Kostovic, I. (2005). Structural, immunocytochemical, and MR imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. AJNR American Journal of Neuroradiology, 26, 26712684.Google Scholar
Kapellou, O., Counsell, S. J., Kennea, N., Dyet, L., Saeed, N., Stark, J., Maalouf, E., Duggan, P., Ajayi-Obe, M., Hajnal, J., Allsop, J. M., Boardman, J., Rutherford, M. A., Cowan, F., & Edwards, A. D. (2006). Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth. PLoS Medicine, 3, e265.CrossRefGoogle ScholarPubMed
Kasprian, G., Brugger, P. C., Weber, M., Krssak, M., Krampl, E., Herold, C., & Prayer, D. (2008). In utero tractography of fetal white matter development. Neuroimage, 43, 213224.Google Scholar
Kersbergen, K. J., Leemans, A., Groenendaal, F., van der Aa, N. E., Viergever, M. A., de Vries, L. S., & Benders, M. J. (2014). Microstructural brain development between 30 and 40 week corrected age in a longitudinal cohort of extremely preterm infants. Neuroimage, 103, 214224.CrossRefGoogle Scholar
Kersbergen, K. J., Leroy, F., Isgum, I., Groenendaal, F., de Vries, L. S., Claessens, N. H. P., van Haastert, I. C., Moeskops, P., Fischer, C., Mangin, J. F., Viergever, M. A., Dubois, J., & Benders, M. (2016). Relation between clinical risk factors, early cortical changes, and neurodevelopmental outcome in preterm infants. Neuroimage, 142, 301310.Google Scholar
Keunen, K., Benders, M. J., Leemans, A., Fieret-Van Stam, P. C., Scholtens, L. H., Viergever, M. A., Kahn, R. S., Groenendaal, F., de Vries, L. S., & van den Heuvel, M. P. (2017a). White matter maturation in the neonatal brain is predictive of school age cognitive capacities in children born very preterm. Developmental Medicine & Child Neurology, 59, 939946.Google Scholar
Keunen, K., Counsell, S. J., & Benders, M. J. (2017b). The emergence of functional architecture during early brain development. Neuroimage, 160, 214.CrossRefGoogle ScholarPubMed
Kinney, H. C., Brody, B. A., Kloman, A. S., & Gilles, F. H. (1988). Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. Journal of Neuropathology & Experimental Neurology, 47, 217234.CrossRefGoogle ScholarPubMed
Klyachko, V. A., & Stevens, C. F. (2003). Connectivity optimization and the positioning of cortical areas. Proceedings of the National Academy of Sciences (USA), 100, 79377941.CrossRefGoogle ScholarPubMed
Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., Hamer, R. M., Lin, W., Gerig, G., & Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28, 1217612182.Google Scholar
Kostovic, I., & Jovanov-Milosevic, N. (2006). The development of cerebral connections during the first 20–45 weeks’ gestation. Seminars in Fetal and Neonatal Medicine, 11, 415422.Google Scholar
Kostovic, I., Jovanov-Milosevic, N., Rados, M., Sedmak, G., Benjak, V., Kostovic-Srzentic, M., Vasung, L., Culjat, M., Huppi, P., & Judas, M. (2014a). Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Structure and Function, 219, 231253.Google Scholar
Kostovic, I., & Judas, M. (2006). Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Developmental Medicine & Child Neurology, 48, 388393.CrossRefGoogle ScholarPubMed
Kostovic, I., & Judas, M. (2015). Embryonic and fetal development of the human cerebral cortex. In Toga, A. W. (ed.), Brain Mapping: An Encyclopedic Reference (Vol. 2, pp. 423437). Cambridge, MA: Academic Press.Google Scholar
Kostovic, I., Kostovic-Srzentic, M., Benjak, V., Jovanov-Milosevic, N., & Rados, M. (2014b). Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates. Frontiers in Neurology, 5, 139.Google ScholarPubMed
Kostovic, I., Petanjek, Z., & Judas, M. (1993). Early areal differentiation of the human cerebral cortex: entorhinal area. Hippocampus, 3, 447458.Google Scholar
Kostovic, I., & Rakic, P. (1990). Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. The Journal of Comparative Neurology, 297, 441470.Google Scholar
Kroenke, C. D., & Bayly, P. V. (2018). How forces fold the cerebral cortex. Journal of Neuroscience, 38, 767775.CrossRefGoogle ScholarPubMed
Krogsrud, S. K., Fjell, A. M., Tamnes, C. K., Grydeland, H., Mork, L., Due-Tonnessen, P., Bjornerud, A., Sampaio-Baptista, C., Andersson, J., Johansen-Berg, H., & Walhovd, K. B. (2015). Changes in white matter microstructure in the developing brain – A longitudinal diffusion tensor imaging study of children from 4 to 11years of age. Neuroimage, 124, 473486.CrossRefGoogle Scholar
Kucharczyk, W., Macdonald, P. M., Stanisz, G. J., & Henkelman, R. M. (1994). Relaxivity and magnetization transfer of white matter lipids at MR imaging: Importance of cerebrosides and pH. Radiology, 192, 521529.CrossRefGoogle ScholarPubMed
Kulikova, S., Hertz-Pannier, L., Dehaene-Lambertz, G., Buzmakov, A., Poupon, C., & Dubois, J. (2015). Multi-parametric evaluation of the white matter maturation. Brain Structure and Function, 220, 36573672.CrossRefGoogle ScholarPubMed
Kulikova, S., Hertz-Pannier, L., Dehaene-Lambertz, G., Poupon, C., & Dubois, J. (2016). A new strategy for fast MRI-based quantification of the myelin water fraction: Application to brain imaging in infants. PLoS ONE, 11, e0163143.CrossRefGoogle ScholarPubMed
Kunz, N., Zhang, H., Vasung, L., O’Brien, K. R., Assaf, Y., Lazeyras, F., Alexander, D. C., & Huppi, P. S. (2014). Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models. Neuroimage, 96, 288299.CrossRefGoogle ScholarPubMed
Kwan, K. Y., Sestan, N., & Anton, E. S. (2012). Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development, 139, 15351546.CrossRefGoogle ScholarPubMed
LaMantia, A. S., & Rakic, P. (1990). Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. Journal of Neuroscience, 10, 21562175.CrossRefGoogle ScholarPubMed
Le Guen, Y., Auzias, G., Leroy, F., Noulhiane, M., Dehaene-Lambertz, G., Duchesnay, E., Mangin, J. F., Coulon, O., & Frouin, V. (2018). Genetic influence on the sulcal pits: On the origin of the first cortical folds. Cerebral Cortex, 28, 19221933.CrossRefGoogle ScholarPubMed
Lebenberg, J., Labit, M., Auzias, G., Mohlberg, H., Fischer, C., Rivière, D., Duchesnay, E., Kabdebon, C., Leroy, F., Labra, N., Poupon, F., Dickscheid, T., Hertz-Pannier, L., Poupon, C., Dehaene-Lambertz, G., Hüppi, P., Amunts, K., Dubois, J., & Mangin, J. F. (2018). A framework based on sulcal constraints to align preterm, infant and adult human brain images acquired in vivo and post mortem. Brain Structure and Function, 223, 41534168.Google Scholar
Lebenberg, J., Mangin, J. F., Thirion, B., Poupon, C., Hertz-Pannier, L., Leroy, F., Adibpour, P., Dehaene-Lambertz, G., & Dubois, J. (2019). Mapping the asynchrony of cortical maturation in the infant brain: A MRI multi-parametric clustering approach. Neuroimage, 185, 641653.CrossRefGoogle Scholar
Lebenberg, J., Poupon, C., Thirion, B., Leroy, F., Mangin, J.-F., Dehaene-Lambertz, G., & Dubois, J. (2015). Clustering the infant brain tissues based on microstructural properties and maturation assessment using multi-parametric MRI. Paper presented at the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).CrossRefGoogle Scholar
Lee, J., Birtles, D., Wattam-Bell, J., Atkinson, J., & Braddick, O. (2012). Latency measures of pattern-reversal VEP in adults and infants: Different information from transient P1 response and steady-state phase. Investigative Ophthalmology & Visual Science, 53, 13061314.CrossRefGoogle ScholarPubMed
Leppert, I. R., Almli, C. R., McKinstry, R. C., Mulkern, R. V., Pierpaoli, C., Rivkin, M. J., & Pike, G. B. (2009). T(2) relaxometry of normal pediatric brain development. Journal of Magnetic Resonance Imaging, 29, 258267.Google Scholar
Leroy, F., Glasel, H., Dubois, J., Hertz-Pannier, L., Thirion, B., Mangin, J. F., & Dehaene-Lambertz, G. (2011). Early maturation of the linguistic dorsal pathway in human infants. Journal of Neuroscience, 31, 15001506.Google Scholar
Li, G., Nie, J., Wang, L., Shi, F., Gilmore, J. H., Lin, W., & Shen, D. (2014). Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces. Neuroimage, 90, 266279.Google Scholar
Li, G., Nie, J., Wang, L., Shi, F., Lin, W., Gilmore, J. H., & Shen, D. (2013). Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cerebral Cortex, 23, 27242733.Google Scholar
Llinares-Benadero, C., & Borrell, V. (2019). Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nature Reviews Neuroscience, 20, 161176.CrossRefGoogle ScholarPubMed
Lohmann, G., von Cramon, D. Y., & Colchester, A. C. (2008). Deep sulcal landmarks provide an organizing framework for human cortical folding. Cerebral Cortex, 18, 14151420.CrossRefGoogle ScholarPubMed
Lyall, A. E., Shi, F., Geng, X., Woolson, S., Li, G., Wang, L., Hamer, R. M., Shen, D., & Gilmore, J. H. (2015). Dynamic development of regional cortical thickness and surface area in early childhood. Cerebral Cortex, 25, 22042212.Google Scholar
Maas, L. C., Mukherjee, P., Carballido-Gamio, J., Veeraraghavan, S., Miller, S. P., Partridge, S. C., Henry, R. G., Barkovich, A. J., & Vigneron, D. B. (2004). Early laminar organization of the human cerebrum demonstrated with diffusion tensor imaging in extremely premature infants. Neuroimage, 22, 11341140.CrossRefGoogle ScholarPubMed
Makropoulos, A., Aljabar, P., Wright, R., Hüning, B., Merchant, N., Arichi, T., Tusor, N., Hajnal, J. V., Edwards, A. D., Counsell, S. J., & Rueckert, D. (2016). Regional growth and atlasing of the developing human brain. Neuroimage, 125, 456478.CrossRefGoogle ScholarPubMed
Mangin, J. F., Jouvent, E., & Cachia, A. (2010). In-vivo measurement of cortical morphology: Means and meanings. Current Opinion in Neurology, 23, 359367.Google Scholar
Mangin, J. F., Le Guen, Y., Labra, N., Grigis, A., Frouin, V., Guevara, M., Fischer, C., Riviere, D., Hopkins, W. D., Regis, J., & Sun, Z. Y. (2019). “Plis de passage” deserve a role in models of the cortical folding process. Brain Topography, 32, 10351048.Google Scholar
Mangin, J. F., Lebenberg, J., Lefranc, S., Labra, N., Auzias, G., Labit, M., Guevara, M., Mohlberg, H., Roca, P., Guevara, P., Dubois, J., Leroy, F., Dehaene-Lambertz, G., Cachia, A., Dickscheid, T., Coulon, O., Poupon, C., Rivière, D., Amunts, K., & Sun, Z. Y. (2016). Spatial normalization of brain images and beyond. Medical Image Analysis, 33, 127133.CrossRefGoogle ScholarPubMed
Manjón, J. V., & Coupé, P. (2016). volBrain: An online MRI brain volumetry system. Frontiers in Neuroinformatics, 10, Article 30, 1–14.Google Scholar
Matsumae, M., Kurita, D., Atsumi, H., Haida, M., Sato, O., & Tsugane, R. (2001). Sequential changes in MR water proton relaxation time detect the process of rat brain myelination during maturation. Mechanisms of Ageing and Development, 122, 12811291.Google Scholar
Matsuzawa, J., Matsui, M., Konishi, T., Noguchi, K., Gur, R. C., Bilker, W., & Miyawaki, T. (2001). Age-related volumetric changes of brain gray and white matter in healthy infants and children. Cerebral Cortex, 11, 335342.Google Scholar
McCart, R. J., & Henry, G. H. (1994). Visual corticogeniculate projections in the cat. Brain Research, 653, 351356.CrossRefGoogle ScholarPubMed
McCulloch, D. L., Orbach, H., & Skarf, B. (1999). Maturation of the pattern-reversal VEP in human infants: A theoretical framework. Vision Research, 39, 36733680.Google Scholar
McCulloch, D. L., & Skarf, B. (1991). Development of the human visual system: Monocular and binocular pattern VEP latency. Investigative Ophthalmology & Visual Science, 32, 23722381.Google Scholar
McGowan, J. C. (1999). The physical basis of magnetization transfer imaging. Neurology, 53, S3S7.Google ScholarPubMed
McKinstry, R. C., Mathur, A., Miller, J. H., Ozcan, A., Snyder, A. Z., Schefft, G. L., Almli, C. R., Shiran, S. I., Conturo, T. E., & Neil, J. J. (2002). Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cerebral Cortex, 12, 12371243.Google Scholar
Melbourne, A., Eaton-Rosen, Z., Orasanu, E., Price, D., Bainbridge, A., Cardoso, M. J., Kendall, G. S., Robertson, N. J., Marlow, N., & Ourselin, S. (2016). Longitudinal development in the preterm thalamus and posterior white matter: MRI correlations between diffusion weighted imaging and T2 relaxometry. Human Brain Mapping, 37, 24792492.CrossRefGoogle ScholarPubMed
Mezer, A., Yeatman, J. D., Stikov, N., Kay, K. N., Cho, N. J., Dougherty, R. F., Perry, M. L., Parvizi, J., Hua, L. H., Butts-Pauly, K., & Wandell, B. A. (2013). Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nature Medicine, 19, 16671672.CrossRefGoogle ScholarPubMed
Miller, S. L., Huppi, P. S., & Mallard, C. (2016). The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. Journal of Physiology, 594, 807823.Google Scholar
Mitter, C., Prayer, D., Brugger, P. C., Weber, M., & Kasprian, G. (2015). In vivo tractography of fetal association fibers. PLoS ONE, 10, e0119536.CrossRefGoogle ScholarPubMed
Monson, B. B., Eaton-Rosen, Z., Kapur, K., Liebenthal, E., Brownell, A., Smyser, C. D., Rogers, C. E., Inder, T. E., Warfield, S. K., & Neil, J. J. (2018). Differential rates of perinatal maturation of human primary and nonprimary auditory cortex. eNeuro, 5. doi: 10.1523/ENEURO.0380-17.2017 eN-NWR-0380-17 [pii]CrossRefGoogle ScholarPubMed
Mota, B., & Herculano-Houzel, S. (2015). Brain Structure. Cortical folding scales universally with surface area and thickness, not number of neurons. Science, 349, 7477.Google Scholar
Mukherjee, P., Miller, J. H., Shimony, J. S., Conturo, T. E., Lee, B. C., Almli, C. R., & McKinstry, R. C. (2001). Normal brain maturation during childhood: Developmental trends characterized with diffusion-tensor MR imaging. Radiology, 221, 349358.CrossRefGoogle ScholarPubMed
Neil, J. J., Miller, J., Mukherjee, P., & Huppi, P. S. (2002). Diffusion tensor imaging of normal and injured developing human brain – A technical review. NMR in Biomedicine, 15, 543552.CrossRefGoogle Scholar
Neil, J. J., Shiran, S. I., McKinstry, R. C., Schefft, G. L., Snyder, A. Z., Almli, C. R., Akbudak, E., Aronovitz, J. A., Miller, J. P., Lee, B. C., & Conturo, T. E. (1998). Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology, 209, 5766.Google Scholar
Ng, W. P., Cartel, N., Roder, J., Roach, A., & Lozano, A. (1996). Human central nervous system myelin inhibits neurite outgrowth. Brain Research, 720, 1724.CrossRefGoogle ScholarPubMed
Nossin-Manor, R., Card, D., Morris, D., Noormohamed, S., Shroff, M. M., Whyte, H. E., Taylor, M. J., & Sled, J. G. (2013). Quantitative MRI in the very preterm brain: Assessing tissue organization and myelination using magnetization transfer, diffusion tensor and T(1) imaging. Neuroimage, 64, 505516.CrossRefGoogle Scholar
Nossin-Manor, R., Card, D., Raybaud, C., Taylor, M. J., & Sled, J. G. (2015). Cerebral maturation in the early preterm period-A magnetization transfer and diffusion tensor imaging study using voxel-based analysis. Neuroimage, 112, 3042.CrossRefGoogle ScholarPubMed
O’Muircheartaigh, J., Dean, D. C., 3rd, Ginestet, C. E., Walker, L., Waskiewicz, N., Lehman, K., Dirks, H., Piryatinsky, I., & Deoni, S. C. (2014). White matter development and early cognition in babies and toddlers. Human Brain Mapping, 35, 44754487.CrossRefGoogle ScholarPubMed
Ouyang, M., Dubois, J., Yu, Q., Mukherjee, P., & Huang, H. (2019). Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. Neuroimage, 185, 836850.CrossRefGoogle ScholarPubMed
Ouyang, M., Kang, H., Detre, J. A., Roberts, T. P. L., & Huang, H. (2017a). Short-range connections in the developmental connectome during typical and atypical brain maturation. Neuroscience & Biobehavioral Reviews, 83, 109122.CrossRefGoogle ScholarPubMed
Ouyang, M., Liu, P., Jeon, T., Chalak, L., Heyne, R., Rollins, N. K., Licht, D. J., Detre, J. A., Roberts, T. P., Lu, H., & Huang, H. (2017b). Heterogeneous increases of regional cerebral blood flow during preterm brain development: Preliminary assessment with pseudo-continuous arterial spin labeled perfusion MRI. Neuroimage, 147, 233242.CrossRefGoogle ScholarPubMed
Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M., Jacobson, K., Lyons, M. J., Grant, M. D., Franz, C. E., Xian, H., Tsuang, M., Fischl, B., Seidman, L., Dale, A., & Kremen, W. S. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19, 27282735.CrossRefGoogle ScholarPubMed
Partridge, S. C., Mukherjee, P., Henry, R. G., Miller, S. P., Berman, J. I., Jin, H., Lu, Y., Glenn, O. A., Ferriero, D. M., Barkovich, A. J., & Vigneron, D. B. (2004). Diffusion tensor imaging: Serial quantitation of white matter tract maturity in premature newborns. Neuroimage, 22, 13021314.CrossRefGoogle ScholarPubMed
Perrot, M., Riviere, D., & Mangin, J. F. (2011). Cortical sulci recognition and spatial normalization. Medical Image Analysis, 15, 529550.CrossRefGoogle ScholarPubMed
Petanjek, Z., Judas, M., Simic, G., Rasin, M. R., Uylings, H. B., Rakic, P., & Kostovic, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences (USA), 108, 1328113286.CrossRefGoogle ScholarPubMed
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 7389.CrossRefGoogle ScholarPubMed
Poduslo, S. E., & Jang, Y. (1984). Myelin development in infant brain. Neurochemical Research, 9, 16151626.CrossRefGoogle ScholarPubMed
Poh, J. S., Li, Y., Ratnarajah, N., Fortier, M. V., Chong, Y. S., Kwek, K., Saw, S. M., Gluckman, P. D., Meaney, M. J., & Qiu, A. (2015). Developmental synchrony of thalamocortical circuits in the neonatal brain. Neuroimage, 116, 168176.CrossRefGoogle ScholarPubMed
Pontabry, J., Rousseau, F., Oubel, E., Studholme, C., Koob, M., & Dietemann, J. L. (2013). Probabilistic tractography using Q-ball imaging and particle filtering: Application to adult and in-utero fetal brain studies. Medical Image Analysis, 17, 297310.CrossRefGoogle ScholarPubMed
Qiu, A., Fortier, M. V., Bai, J., Zhang, X., Chong, Y. S., Kwek, K., Saw, S. M., Godfrey, K., Gluckman, P. D., & Meaney, M. J. (2013). Morphology and microstructure of subcortical structures at birth: A large-scale Asian neonatal neuroimaging study. Neuroimage, 65, 315323.Google Scholar
Rajagopalan, V., Scott, J., Habas, P. A., Kim, K., Corbett-Detig, J., Rousseau, F., Barkovich, A. J., Glenn, O. A., & Studholme, C. (2011). Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. Journal of Neuroscience, 31, 28782887.Google Scholar
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170176.CrossRefGoogle ScholarPubMed
Rakic, P. (2000). Radial unit hypothesis of neocortical expansion. Novartis Foundation Symposia, 228, 3042; discussion 42–52.CrossRefGoogle ScholarPubMed
Rana, S., Shishegar, R., Quezada, S., Johnston, L., Walker, D. W., & Tolcos, M. (2019). The subplate: A potential driver of cortical folding? Cerebral Cortex, 29, 46974708.Google Scholar
Raznahan, A., Greenstein, D., Lee, N. R., Clasen, L. S., & Giedd, J. N. (2012). Prenatal growth in humans and postnatal brain maturation into late adolescence. Proceedings of the National Academy of Sciences (USA), 109, 1136611371.Google Scholar
Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., Clasen, L., Gogtay, N., & Giedd, J. N. (2011). How does your cortex grow? Journal of Neuroscience, 31, 71747177.CrossRefGoogle ScholarPubMed
Roberts, T. P., Khan, S. Y., Blaskey, L., Dell, J., Levy, S. E., Zarnow, D. M., & Edgar, J. C. (2009). Developmental correlation of diffusion anisotropy with auditory-evoked response. Neuroreport, 20, 15861591.Google Scholar
Ruoss, K., Lovblad, K., Schroth, G., Moessinger, A. C., & Fusch, C. (2001). Brain development (sulci and gyri) as assessed by early postnatal MR imaging in preterm and term newborn infants. Neuropediatrics, 32, 6974.CrossRefGoogle ScholarPubMed
Salami, M., Itami, C., Tsumoto, T., & Kimura, F. (2003). Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proceedings of the National Academy of Sciences (USA), 100, 61746179.CrossRefGoogle ScholarPubMed
Salvan, P., Tournier, J. D., Batalle, D., Falconer, S., Chew, A., Kennea, N., Aljabar, P., Dehaene-Lambertz, G., Arichi, T., Edwards, A. D., & Counsell, S. J. (2017). Language ability in preterm children is associated with arcuate fasciculi microstructure at term. Human Brain Mapping, 38, 38363847.CrossRefGoogle ScholarPubMed
Schneider, J., Kober, T., Bickle Graz, M., Meuli, R., Huppi, P. S., Hagmann, P., & Truttmann, A. C. (2016). Evolution of T1 relaxation, ADC, and fractional anisotropy during early brain maturation: A serial imaging study on preterm infants. AJNR American Journal of Neuroradiology, 37, 155162.CrossRefGoogle Scholar
Schwartz, M. L., & Goldman-Rakic, P. S. (1991). Prenatal specification of callosal connections in rhesus monkey. The Journal of Comparative Neurology, 307, 144162.CrossRefGoogle ScholarPubMed
Shenkin, S. D., Starr, J. M., & Deary, I. J. (2004). Birth weight and cognitive ability in childhood: A systematic review. Psychological Bulletin, 130, 9891013.CrossRefGoogle ScholarPubMed
Sigaard, R. K., Kjaer, M., & Pakkenberg, B. (2016). Development of the cell population in the brain white matter of young children. Cerebral Cortex, 26, 8995.CrossRefGoogle ScholarPubMed
Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M., & Sestan, N. (2016). The cellular and molecular landscapes of the developing human central nervous system. Neuron, 89, 248268.Google Scholar
Skeide, M. A., Brauer, J., & Friederici, A. D. (2016). Brain functional and structural predictors of language performance. Cerebral Cortex, 26, 21272139.CrossRefGoogle ScholarPubMed
Smyser, T. A., Smyser, C. D., Rogers, C. E., Gillespie, S. K., Inder, T. E., & Neil, J. J. (2016). Cortical gray and adjacent white matter demonstrate synchronous maturation in very preterm infants. Cerebral Cortex, 26, 33703378.CrossRefGoogle ScholarPubMed
Stikov, N., Campbell, J. S., Stroh, T., Lavelee, M., Frey, S., Novek, J., Nuara, S., Ho, M. K., Bedell, B. J., Dougherty, R. F., Leppert, I. R., Boudreau, M., Narayanan, S., Duval, T., Cohen-Adad, J., Picard, P. A., Gasecka, A., Cote, D., & Pike, G. B. (2015). In vivo histology of the myelin g-ratio with magnetic resonance imaging. Neuroimage, 118, 397405.CrossRefGoogle ScholarPubMed
Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20, 327348.Google Scholar
Takahashi, E., Folkerth, R. D., Galaburda, A. M., & Grant, P. E. (2012). Emerging cerebral connectivity in the human fetal brain: An MR tractography study. Cerebral Cortex, 22, 455464.Google Scholar
Tallinen, T., Chung, J. Y., Rousseau, F., Girard, N., Lefèvre, J., & Mahadevan, L. (2016). On the growth and form of cortical convolutions. Nature Physics, 12, 588.CrossRefGoogle Scholar
Taylor, M. J., Menzies, R., MacMillan, L. J., & Whyte, H. E. (1987). VEPs in normal full-term and premature neonates: Longitudinal versus cross-sectional data. Electroencephalography and Clinical Neurophysiology, 68, 2027.CrossRefGoogle ScholarPubMed
Tissier, C., Linzarini, A., Allaire-Duquette, G., Mevel, K., Poirel, N., Dollfus, S., Etard, O., Orliac, F., Peyrin, C., Charron, S., Raznahan, A., Houde, O., Borst, G., & Cachia, A. (2018). Sulcal polymorphisms of the IFC and ACC contribute to inhibitory control variability in children and adults. eNeuro, 5. doi: 10.1523/ENEURO.0197-17.2018CrossRefGoogle ScholarPubMed
Travis, K. E., Curran, M. M., Torres, C., Leonard, M. K., Brown, T. T., Dale, A. M., Elman, J. L., & Halgren, E. (2014). Age-related changes in tissue signal properties within cortical areas important for word understanding in 12- to 19-month-old infants. Cerebral Cortex, 24, 19481955.CrossRefGoogle ScholarPubMed
van den Heuvel, M. P., Kersbergen, K. J., de Reus, M. A., Keunen, K., Kahn, R. S., Groenendaal, F., de Vries, L. S., & Benders, M. J. (2015). The neonatal connectome during preterm brain development. Cerebral Cortex, 25, 30003013.Google Scholar
van den Heuvel, M. P., Scholtens, L. H., & Kahn, R. S. (2019). Multiscale neuroscience of psychiatric disorders. Biological Psychiatry, 86, 512522.Google Scholar
Van der Knaap, M.S., & Valk, J. (1995a). Myelin and white matter. In Van der Knaap, M. S., & Valk, J. (eds.), Magnetic Resonance of Myelin, Myelination and Myelin Disorders (pp. 117). Berlin: Springer-Verlag.Google Scholar
Van der Knaap, M. S., & Valk, J. (1995b). Myelination and retarded myelination. In Van der Knaap, M. S., & Valk, J. (eds.), Magnetic Resonance of Myelin, Myelination and Myelin Disorders (pp. 3765). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Vasung, L., Huang, H., Jovanov-Milosevic, N., Pletikos, M., Mori, S., & Kostovic, I. (2010). Development of axonal pathways in the human fetal fronto-limbic brain: Histochemical characterization and diffusion tensor imaging. Journal of Anatomy, 217, 400417.Google Scholar
Vasung, L., Lepage, C., Rados, M., Pletikos, M., Goldman, J. S., Richiardi, J., Raguz, M., Fischi-Gomez, E., Karama, S., Huppi, P. S., Evans, A. C., & Kostovic, I. (2016). Quantitative and qualitative analysis of transient fetal compartments during prenatal human brain development. Frontiers in Neuroanatomy, 10, 11.Google Scholar
Vasung, L., Raguz, M., Kostovic, I., & Takahashi, E. (2017). Spatiotemporal relationship of brain pathways during human fetal development using high-angular resolution diffusion MR imaging and histology. Frontiers in Neuroscience, 11, 348.CrossRefGoogle ScholarPubMed
Von Bonin, G. (1950). Essay on the Cerebral Cortex. Springfield, IL: Charles C. Thomas Publisher.CrossRefGoogle Scholar
Wagstyl, K., Lepage, C., Bludau, S., Zilles, K., Fletcher, P. C., Amunts, K., & Evans, A. C. (2018). Mapping cortical laminar structure in the 3D BigBrain. Cerebral Cortex, 28, 25512562.Google Scholar
Walhovd, K. B., Fjell, A. M., Brown, T. T., Kuperman, J. M., Chung, Y., Hagler, D. J., Jr., Roddey, J. C., Erhart, M., McCabe, C., Akshoomoff, N., Amaral, D. G., Bloss, C. S., Libiger, O., Schork, N. J., Darst, B. F., Casey, B. J., Chang, L., Ernst, T. M., Frazier, J., Gruen, J. R., Kaufmann, W. E., Murray, S. S., van Zijl, P., Mostofsky, S., & Dale, A. M. (2012). Long-term influence of normal variation in neonatal characteristics on human brain development. Proceedings of the National Academy of Sciences (USA), 109, 2008920094.CrossRefGoogle ScholarPubMed
Wee, C. Y., Tuan, T. A., Broekman, B. F., Ong, M. Y., Chong, Y. S., Kwek, K., Shek, L. P., Saw, S. M., Gluckman, P. D., Fortier, M. V., Meaney, M. J., & Qiu, A. (2017). Neonatal neural networks predict children behavioral profiles later in life. Human Brain Mapping, 38, 13621373.CrossRefGoogle ScholarPubMed
Welker, W. (1988). Why does cerebral cortex fissure and fold? Cerebral Cortex, 8B, 3135.Google Scholar
Xu, G., Takahashi, E., Folkerth, R. D., Haynes, R. L., Volpe, J. J., Grant, P. E., & Kinney, H. C. (2014). Radial coherence of diffusion tractography in the cerebral white matter of the human fetus: Neuroanatomic insights. Cerebral Cortex, 24, 579592.CrossRefGoogle ScholarPubMed
Xydis, V., Astrakas, L., Zikou, A., Pantou, K., Andronikou, S., & Argyropoulou, M. I. (2006). Magnetization transfer ratio in the brain of preterm subjects: Age-related changes during the first 2 years of life. European Radiology, 16, 215220.Google Scholar
Yakovlev, P. I. (1962). Morphological criteria of growth and maturation of the nervous system in man. Research Publications – Association for Research in Nervous and Mental Disease, 39, 346.Google Scholar
Yakovlev, P. I., & Lecours, A. R. (1967). The myelogenetic cycles of regional maturation in the brain. In Minowski, A. (ed.), Regional Development of the Brain in Early Life (pp. 369). Oxford: Blackwell.Google Scholar
Yap, P. T., Fan, Y., Chen, Y., Gilmore, J. H., Lin, W., & Shen, D. (2011). Development trends of white matter connectivity in the first years of life. PLoS ONE, 6, e24678.CrossRefGoogle ScholarPubMed
Yeatman, J. D., Wandell, B. A., & Mezer, A. A. (2014). Lifespan maturation and degeneration of human brain white matter. Nature Communications, 5, 4932.CrossRefGoogle ScholarPubMed
Yu, Q., Ouyang, A., Chalak, L., Jeon, T., Chia, J., Mishra, V., Sivarajan, M., Jackson, G., Rollins, N., Liu, S., & Huang, H. (2017). Structural development of human fetal and preterm brain cortical plate based on population-averaged templates. Cerebral Cortex, 26, 43814391.Google Scholar
Zanin, E., Ranjeva, J. P., Confort-Gouny, S., Guye, M., Denis, D., Cozzone, P. J., & Girard, N. (2011). White matter maturation of normal human fetal brain. An in vivo diffusion tensor tractography study. Brain and Behavior, 1, 95108.CrossRefGoogle Scholar
Zhao, T., Xu, Y., & He, Y. (2019). Graph theoretical modeling of baby brain networks. Neuroimage, 185, 711727.Google Scholar
Zilles, K., Palomero-Gallagher, N., & Amunts, K. (2013). Development of cortical folding during evolution and ontogeny. Trends in Neurosciences, 36, 275284.CrossRefGoogle ScholarPubMed

References

Abnousi, F., Krumholz, H. M., & Rumsfeld, J. S. (2018). Social determinants of health in the digital age: Determining the source code for nurture. JAMA, 321, 247248.CrossRefGoogle Scholar
Aboitiz, F., Scheibel, A. B., Fisher, R. S., & Zaidel, E. (1992). Fiber composition of the human corpus callosum. Brain Research, 598, 143153.CrossRefGoogle ScholarPubMed
Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., et al. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. The Journal of Comparative Neurology, 513, 532541.CrossRefGoogle Scholar
Bjornholm, L., Nikkinen, J., Kiviniemi, V., et al. (2017). Structural properties of the human corpus callosum: Multimodal assessment and sex differences. Neuroimage, 152, 108118.CrossRefGoogle ScholarPubMed
Brain Development Cooperative Group (2012). Total and regional brain volumes in a population-based normative sample from 4 to 18 years: The NIH MRI Study of Normal Brain Development. Cerebral Cortex, 22, 112.CrossRefGoogle Scholar
Bystron, I., Blakemore, C., Rakic, P., & Molnar, Z. (2006). The first neurons of the human cerebral cortex. Nature Neuroscience, 9, 880886.CrossRefGoogle ScholarPubMed
Davey-Smith, G., & Hemani, G. (2014). Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Human Molecular Genetics, 23, R89R98.Google Scholar
David-Barrett, T., Kertesz, J., Rotkirch, A., et al. (2016). Communication with family and friends across the life course. PLoS ONE, 11, e0165687.CrossRefGoogle ScholarPubMed
Dean, D. C., 3rd, O’Muircheartaigh, J., Dirks, H., et al. (2015). Characterizing longitudinal white matter development during early childhood. Brain Structure and Function, 220, 19211933.CrossRefGoogle ScholarPubMed
Druga, R. (2009). Neocortical inhibitory system. Folia Biologica, 55, 201–17.Google Scholar
Ducharme, S., Albaugh, M. D., Nguyen, T. V., et al. (2016). Trajectories of cortical thickness maturation in normal brain development – The importance of quality control procedures. Neuroimage, 125, 267.CrossRefGoogle ScholarPubMed
Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences (USA), 97, 1105011055.CrossRefGoogle ScholarPubMed
French, L., & Paus, T. A. (2015). FreeSurfer view of the cortical transcriptome generated from the Allen Human Brain Atlas. Frontiers in Neuroscience, 9, 323.Google Scholar
Garavan, H., Bartsch, H., Conway, K., et al. (2018). Recruiting the ABCD sample: Design considerations and procedures. Developmental Cognitive Neuroscience, 32, 1622.Google Scholar
Giedd, J. N., Blumenthal, J., Jeffries, N. O., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861863.Google Scholar
Giedd, J. N., Raznahan, A., Alexander-Bloch, A., et al. (2015). Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology, 40, 4349.CrossRefGoogle ScholarPubMed
Gilmore, J. H., Knickmeyer, R. C., & Gao, W. (2018). Imaging structural and functional brain development in early childhood. Nature Reviews Neuroscience, 19, 123137.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences (USA), 101, 81748179.CrossRefGoogle ScholarPubMed
Gruzd, A., & Haythornthwaite, C. (2013). Enabling community through social media. Journal of Medical Internet Research, 15, e248.CrossRefGoogle ScholarPubMed
Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489, 391399.CrossRefGoogle ScholarPubMed
Henkelman, R. M., Stanisz, G. J., & Graham, S. J. (2001). Magnetization transfer in MRI: A review. NMR in Biomedicine, 14, 5764.Google Scholar
Herculano-Houzel, S. (2009). The human brain in numbers: A linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3, 31.CrossRefGoogle Scholar
Hermann, D. M., Buga, A. M., & Popa-Wagner, A. (2015). Neurovascular remodeling in the aged ischemic brain. Journal of Neural Transmission (Vienna), 122(Suppl 1), S25S33.Google Scholar
Herve, P. Y., Cox, E. F., Lotfipour, A. K., et al. (2011). Structural properties of the corticospinal tract in the human brain: A magnetic resonance imaging study at 7 Tesla. Brain Structure and Function, 216, 255262.Google Scholar
Herve, P. Y., Leonard, G., Perron, M., et al. (2009). Handedness, motor skills and maturation of the corticospinal tract in the adolescent brain. Human Brain Mapping, 30, 31513162.CrossRefGoogle ScholarPubMed
Houdé, O., Zago, L., Mellet, E., et al. (2000). Shifting from the perceptual brain to the logical brain: The neural impact of cognitive inhibition training. Journal of Cognitive Neuroscience, 12, 721728.CrossRefGoogle Scholar
Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van-Essen, D. C., & Behrens, T. E. (2015). Measuring macroscopic brain connections in vivo. Nature Neuroscience, 18, 15461555.Google Scholar
Jernigan, T. L., Brown, T. T., Hagler, D. J. Jr., et al. (2016). The Pediatric Imaging, Neurocognition, and Genetics (PING) data repository. Neuroimage, 124, 11491154.CrossRefGoogle ScholarPubMed
Kardan, O., Gozdyra, P., Misic, B., et al. (2015). Neighborhood greenspace and health in a large urban center. Scientific Reports, 5, 11610.CrossRefGoogle Scholar
Knickmeyer, R. C., Gouttard, S., Kang, C., et al. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28, 1217612182.CrossRefGoogle ScholarPubMed
Kramer, M. S., Aboud, F., Mironova, E., et al. (2008). Breastfeeding and child cognitive development: New evidence from a large randomized trial. Archives of General Psychiatry, 65, 578584.Google Scholar
Kucharczyk, W., Macdonald, P. M., Stanisz, G. J., & Henkelman, R. M. (1994). Relaxivity and magnetization transfer of white matter lipids at MR imaging: Importance of cerebrosides and pH. Radiology, 192, 521529.CrossRefGoogle ScholarPubMed
Kum, H. C., Krishnamurthy, A., Machanavajjhala, A., & Ahalt, S. (2014). Social genome: Putting big data to work for population informatics. Computer 47, 5663.Google Scholar
Le Bihan, D. (1995). Molecular diffusion, tissue microdynamics and microstructure. NMR Biomedicine, 8, 375386.CrossRefGoogle ScholarPubMed
Lebel, C., & Deoni, S. (2018). The development of brain white matter microstructure. Neuroimage, 182, 207218.Google Scholar
Lerch, J. P., Van der Kouwe, A. J., Raznahan, A., et al. (2017). Studying neuroanatomy using MRI. Nature Neuroscience, 20, 314326.Google Scholar
Maharana, A., & Okanyene Nsoesie, E. (2018). Use of deep learning to examine the association of the built environment with prevalence of neighborhood adult obesity. JAMA Network Open, 1, e181535.CrossRefGoogle ScholarPubMed
Marner, L., & Pakkenberg, B. (2003). Total length of nerve fibers in prefrontal and global white matter of chronic schizophrenics. Journal of Psychiatric Research, 37, 539547.Google Scholar
Matsuzawa, J., Matsui, M., Konishi, T., et al. (2001). Age-related volumetric changes of brain gray and white matter in healthy infants and children. Cerebral Cortex, 11, 335342.CrossRefGoogle ScholarPubMed
McGowan, J. C. (1999). The physical basis of magnetization transfer imaging. Neurology, 53, S3S7.Google ScholarPubMed
Moore, M. M., & Chung, T. (2017). Review of key concepts in magnetic resonance physics. Pediatric Radiology, 47, 497506.CrossRefGoogle ScholarPubMed
Morales, A. J., Vavilala, V., Benito, R. M., & Bar-Yam, Y. (2017). Global patterns of synchronization in human communications. Journal of the Royal Society, Interface, 14, 20161048.CrossRefGoogle ScholarPubMed
Pangelinan, M. M., Leonard, G., Perron, M., et al. (2016). Puberty and testosterone shape the corticospinal tract during male adolescence. Brain Structure and Function, 221, 10831094.CrossRefGoogle ScholarPubMed
Parker, N., Wong, A. P., Leonard, G., et al. (2017). Income inequality, gene expression, and brain maturation during adolescence. Scientific Reports, 7, 7397.Google Scholar
Patel, Y., Shin, J., Gowland, P. A., et al. (2019). Maturation of the human cerebral cortex during adolescence: Myelin or dendritic arbor? Cerebral Cortex, 29, 33513362.CrossRefGoogle ScholarPubMed
Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Science, 9, 6068.Google Scholar
Paus, T. (2013). Population Neuroscience. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Paus, T. (2016). Population neuroscience. Handbook of Clinical Neurology, 138, 1737.CrossRefGoogle ScholarPubMed
Paus, T. (2018). Imaging microstructure in the living human brain: A viewpoint. Neuroimage, 182, 37.CrossRefGoogle Scholar
Paus, T., Collins, D. L., Evans, A. C., et al. (2001). Maturation of white matter in the human brain: A review of magnetic resonance studies. Brain Research Bulletin, 54, 255266.CrossRefGoogle Scholar
Paus, T., Pesaresi, M., & French, L. (2014). White matter as a transport system. Neuroscience, 276, 117125.CrossRefGoogle ScholarPubMed
Paus, T., & Toro, R. (2009). Could sex differences in white matter be explained by g ratio? Frontiers in Neuroanatomy, 3, 14.CrossRefGoogle ScholarPubMed
Pausova, Z., Paus, T., Abrahamowicz, M., et al. (2007). Genes, maternal smoking, and the offspring brain and body during adolescence: Design of the Saguenay youth study. Human Brain Mapping, 28, 502518.CrossRefGoogle ScholarPubMed
Pausova, Z., Paus, T., Abrahamowicz, M., et al. (2017). Cohort profile: The Saguenay Youth Study (SYS). International Journal of Epidemiology, 46, e19.Google Scholar
Pelvig, D. P., Pakkenberg, H., Stark, A. K., & Pakkenberg, B. (2008). Neocortical glial cell numbers in human brains. Neurobiology of Aging, 29, 17541762.CrossRefGoogle ScholarPubMed
Peng, T. Q., Sun, G., & Wu, Y. (2017). Interplay between public attention and public emotion toward multiple social issues on Twitter. PLoS ONE, 12, e0167896.CrossRefGoogle ScholarPubMed
Perrin, J. S., Herve, P. Y., Leonard, G., et al. (2008). Growth of white matter in the adolescent brain: Role of testosterone and androgen receptor. Journal of Neuroscience, 28, 95199524.Google Scholar
Pesaresi, M., Soon-Shiong, R., French, L., Kaplan, D. R., Miller, F. D., & Paus, T. (2015). Axon diameter and axonal transport: In vivo and in vitro effects of androgens. Neuroimage, 115, 191201.Google Scholar
Pike, G. B. (1996). Pulsed magnetization transfer contrast in gradient echo imaging: A two-pool analytic description of signal response. Magnetic Resonance in Medicine, 36, 95103.CrossRefGoogle ScholarPubMed
Pipitone, J., Park, M. T., Winterburn, J., et al. (2014). Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Neuroimage, 101, 494–12.CrossRefGoogle ScholarPubMed
Rakic, P. (1974). Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition. Science, 183, 425427.CrossRefGoogle ScholarPubMed
Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170176.CrossRefGoogle ScholarPubMed
Rakic, P. (1995). A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution. Trends in Neuroscience, 18, 383388.CrossRefGoogle ScholarPubMed
Rakic, P. (2009). Evolution of the neocortex: A perspective from developmental biology. Nature Reviews Neuroscience, 10, 724735.CrossRefGoogle ScholarPubMed
Roberts, T. P., & Mikulis, D. (2007). Neuro MR: Principles. Journal of Magnetic Resonance Imaging, 26, 823837.Google Scholar
Ruiz Jdel, C., Quackenboss, J. J., & Tulve, N. S. (2016). Contributions of a child’s built, natural, and social environments to their general cognitive ability: A systematic scoping review. PLoS ONE, 11, e0147741.Google Scholar
Sandler, I., Wolchik, S. A., Cruden, G., et al. (2014). Overview of meta-analyses of the prevention of mental health, substance use, and conduct problems. Annual Review of Clinical Psychology, 10, 243273.CrossRefGoogle ScholarPubMed
Satterthwaite, T. D., Elliott, M. A., Ruparel, K., et al. (2014). Neuroimaging of the Philadelphia neurodevelopmental cohort. Neuroimage, 86, 544553.CrossRefGoogle ScholarPubMed
Schmierer, K., Scaravilli, F., Altmann, D. R., Barker, G. J., & Miller, D. H. (2004). Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Annals of Neurology, 56, 407415.CrossRefGoogle ScholarPubMed
Schmierer, K., Wheeler-Kingshott, C. A., Tozer, D. J., et al. (2008). Quantitative magnetic resonance of postmortem multiple sclerosis brain before and after fixation. Magnetic Resonance in Medicine, 59, 268277.Google Scholar
Schumann, G., Loth, E., Banaschewski, T., et al. (2010). The IMAGEN study: Reinforcement-related behaviour in normal brain function and psychopathology. Molecular Psychiatry, 15, 11281139.CrossRefGoogle ScholarPubMed
Schüz, A., & Braitenberg, V. (2002). The Human Cortical White Matter: Quantitative Aspects of Cortico-Cortical Long-Range Connectivity. London: Taylor & Francis.CrossRefGoogle Scholar
Selemon, L. D., Ceritoglu, C., Ratnanather, J. T., et al. (2013). Distinct abnormalities of the primate prefrontal cortex caused by ionizing radiation in early or midgestation. The Journal of Comparative Neurology, 521, 10401053.CrossRefGoogle ScholarPubMed
Shin, J., French, L., Xu, T., et al. (2018). Cell-specific gene-expression profiles and cortical thickness in the human brain. Cerebral Cortex, 28, 32673277.CrossRefGoogle ScholarPubMed
Sisk, C. L., & Foster, D. L. (2004). The neural basis of puberty and adolescence. Nature Neuroscience, 7, 10401047.Google Scholar
Sloper, J. J. (1973). An electron microscopic study of the neurons of the primate motor and somatic sensory cortices. Journal of Neurocytology, 2, 351359.Google Scholar
Sloper, J. J., Hiorns, R. W., & Powell, T. P. (1979). A qualitative and quantitative electron microscopic study of the neurons in the primate motor and somatic sensory cortices. Philosophical Transactions of the Royal Society of London B: Biological Science, 285, 141171.Google ScholarPubMed
Toro, R., Perron, M., Pike, B., et al. (2008). Brain size and folding of the human cerebral cortex. Cerebral Cortex, 18, 23522357.CrossRefGoogle ScholarPubMed
Walhovd, K. B., Fjell, A. M., Giedd, J., Dale, A. M., & Brown, T. T. (2017). Through thick and thin: A need to reconcile contradictory results on trajectories in human cortical development. Cerebral Cortex, 27, 14721481.Google Scholar
Whitaker, K. J., Vertes, P. E., Romero-Garcia, R., et al. (2016). Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome. Proceedings of the National Academy of Sciences (USA), 113, 91059110.CrossRefGoogle ScholarPubMed
White, T., El Marroun, H., Nijs, I., et al. (2013). Pediatric population-based neuroimaging and the Generation R Study: The intersection of developmental neuroscience and epidemiology. European Journal of Epidemiology, 28, 99111.Google Scholar
Zecevic, N., Chen, Y., & Filipovic, R. (2005). Contributions of cortical subventricular zone to the development of the human cerebral cortex. The Journal of Comparative Neurology, 491, 109122.CrossRefGoogle Scholar
Zeisel, A., Munoz-Manchado, A. B., Codeluppi, S., et al. (2015). Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347, 11381142.Google Scholar

References

Bakermans-Kranenburg, M. J., & Van Ijzendoorn, M. H. (2006). Gene–environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48, 406409.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J. Van Ijzendoorn, M. H., Pijlman, F. T. A., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293300.CrossRefGoogle ScholarPubMed
Beauregard, M., Levesque, J., & Bourgouin, P. (2001). Neural correlates of conscious self-regulation of emotion. Journal of Neuroscience, 21, RC165.Google Scholar
Becker, C. O., Pequite, S., Pappas, G. J., Miller, M. B., Grafton, S. T., Bassetti, D. S., & Preciado, V. M. (2016). Accurately predicting functional connectivity from diffusion imaging. arXiv.org > q-bio > arXiv:1512.02602v3.+q-bio+>+arXiv:1512.02602v3.>Google Scholar
Beirowski, B. (2013). Concepts for regulation of axon integrity by enwrapping glia. Frontiers in Cellular Neuroscience, 7, 256.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 624652.CrossRefGoogle ScholarPubMed
Berger, A., Tzur, G., & Posner, M. I. (2006). Infant babies detect arithmetic error. Proceeding of the National Academy of Science USA, 103, 1264912553.Google Scholar
Bishop, S. J. (2007). Neurocognitive mechanisms of anxiety. Trends in Cognitive Sciences, 11, 307316.CrossRefGoogle ScholarPubMed
Blasi, G., Mattay, G. S., Bertolino, A., Elvevåg, B., Callicott, J. H., Das, S., et al. (2005). Effect of Catechol-O-Methyltransferase val met genotype on attentional control. Journal of Neuroscience, 25, 50385045.Google Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624652.Google Scholar
Brock, S. E., Rothbart, M. K., & Derryberry, D. (1986). Heart-rate deceleration and smiling in 3 month-old infants. Infant Behavior and Development, 9, 403414.CrossRefGoogle Scholar
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in the anterior cingulate cortex. Trends in Cognitive Science, 4, 215222.Google Scholar
Cachia, A., Borst, G., Tissier, C., Fisher, C., Plaze, M., et al. (2016). Longitudinal stability of the folding pattern of the anterior cingulate cortex during development. Developmental Cognitive Neuroscience, 19, 122127.Google Scholar
Cachia, A., Borst, G., Vidal, J., Fischer, C., Pineau, A., Mangin, J. F., & Houdé, O. (2014). The shape of the ACC contributes to cognitive control efficiency in preschoolers. Journal of Cognitive Neuroscience, 26, 96106.CrossRefGoogle ScholarPubMed
Chrysikou, E. G., Berryhill, M. E., Bikson, M., & Coslett, H. B. (2017). Revisiting the effectiveness of transcranial direct current brain stimulation for cognition: Evidence, challenges, and open questions. Frontiers in Human Neuroscience, 11, 448.CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201215.CrossRefGoogle ScholarPubMed
Crottaz-Herbette, S., and Mennon, V. (2006). Where and when the anterior cingulate cortex modulates attentional response: Combined fMRI and ERP evidence. Journal of Cognitive Neuroscience, 18, 766780.Google Scholar
Diamond, A., Briand, L., Fossella, J., & Gehlbach, L. (2004). Genetic and neurochemical modulation of prefrontal cognitive functions in children. American Journal of Psychiatry, 161, 125132.CrossRefGoogle ScholarPubMed
Diatchenko, L., Slade, G. D., Nackley, A. G., Bhalang, K., Sigurdsson, A., Belfer, I., et al. (2005). Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Human Molecular Genetics, 14, 135143.CrossRefGoogle ScholarPubMed
Ding, Y. C., Chi, H. C., Grady, D. L., Morishima, A., Kidd, J. R., Kidd, K. K., et al. (2002). Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proceedings of the National Academy of Sciences (USA), 99, 309314.CrossRefGoogle ScholarPubMed
Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K. R., Dosenbach, A. T., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences (USA), 104, 1107311078.Google Scholar
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H. Ahmed, A., et al. (2000). A neural basis for general intelligence. Science, 289, 457460.Google Scholar
Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51, 871882.Google Scholar
Fair, D. A., Cohen, A. L., Dosenbach, U. F., Church, J. A., Meizin, F. M., Barch, D. M., et al. (2008). The maturing architecture of the brain’s default network. Proceedings of the National Academy of Sciences (USA), 105, 40284032.Google Scholar
Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., et al. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences (USA), 104, 1350713512.CrossRefGoogle ScholarPubMed
Fan, J., Gu, X., Guise, K. G., Liu, X., Fossella, J., Wang, H., & Posner, M. I. (2009). Testing the behavioral interaction and integration of attentional networks. Brain and Cognition, 70, 209220.Google Scholar
Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. Neuroimage, 26, 471479.Google Scholar
Fan, J., McCandliss, B. D., Sommer, T., Raz, M., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 3, 340347.CrossRefGoogle Scholar
Fjell, A. M., Walhovd, K., Brown, T., Kuperman, J., Chung, Y., Hagler, D., et al. (2012). Multi-modal imaging of the self-regulating brain. Proceedings of the National Academy of Sciences (USA), 109, 1962019625.CrossRefGoogle Scholar
Gao, W., Alcauter, S., Elton, A., Hernandez-Castillo, C. R., Smith, J. K., Ramirez, J., & Lin, W. (2014). Functional network development during the first year: Relative sequence and socioeconomic correlations. Cerebral Cortex, 25, 29192928.Google Scholar
Gao, W., Gilmore, J. H., Shen, D., Smith, J. K., Zhu, H., & Lin, W. (2013). The synchronization within and interaction between the default and dorsal attention networks in early infancy. Cerebral Cortex, 23, 594603.Google Scholar
Gao, W., Lin, W., Grewen, K., & Gilmore, J. H. (2017). Functional connectivity of the infant human brain: Plastic and modifiable. Neuroscientist, 23, 169184.Google Scholar
Green, A. E., Munafo, M. R., DeYoung, C. G., Fossella, J. A., Fan, J., & Gray, J. R. (2008). Using genetic data in cognitive neuroscience: From growing pains to genuine insights, Nature Neuroscience Review, 9, 710720.CrossRefGoogle ScholarPubMed
Harman, C., Rothbart, M. K., & Posner, M. I. (1997). Distress and attention interactions in early infancy. Motivation and Emotion, 21, 2743.Google Scholar
Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine and error-related negativity. Psychological Review, 109, 679709.CrossRefGoogle ScholarPubMed
Houdé, O., Pineau, A., Leroux, G., Poirel, N., Perchey, G., Lanoë, C., et al. (2011). Functional MRI study of Piaget’s conservation-of-number task in preschool and school-age children: A neo-Piagetian approach. Journal of Experimental Child Psychology, 110, 332346.CrossRefGoogle ScholarPubMed
Jaffard, M., Benraiss, A., Longcamp, M., Velay, J.-L., & Boulinguez, P. (2007). Cueing method biases in visual detection studies. Brain Research, 1179, 106118.CrossRefGoogle ScholarPubMed
Jones, L. B., Rothbart, M. K., & Posner, M. I. (2003). Development of executive attention in preschool children. Developmental Science, 6, 498504.Google Scholar
Kahneman, D. (1973). Attention and Effort. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Kanske, P., Heissler, J., & Schoenfelder, S. (2011). How to regulate emotion? Neural networks for reappraisal and distraction. Cerebral Cortex, 21, 13791388.CrossRefGoogle ScholarPubMed
Kong, A., Thorleifsson, G., Frigge, M. I., Vilhjalmsson, B. J., & Stefansson, K. (2018). The nature of nurture: Effects of parental genotypes. Science, 359, 424428.CrossRefGoogle ScholarPubMed
Luu, P., Arumugam, E. M. E., Anderson, E., Gunn, A., Rech, D., Turovets, S., & Tucker, D. M. (2016). Slow-frequency pulsed transcranial electrical stimulation for modulation of cortical plasticity based on reciprocity targeting with precision electrical head modeling Frontiers in Human Neuroscience, 10, 377.CrossRefGoogle ScholarPubMed
Markant, J., Cicchetti, D., Hetzel, S., & Thomas, K. M. (2014). Contributions of COMT Val158 Met to cognitive stability and flexibility in infancy. Development Science, 17, 396411.CrossRefGoogle ScholarPubMed
Matthews, M., & Fair, D. A., (2015). Research review: Functional brain connectivity and child psychopathology – Overview and methodological consideration for investigators new to the field. Journal of Child Psychology and Psychiatry, 56, 400414.CrossRefGoogle ScholarPubMed
Morrison, J. H., & Foote, S. L. (1986). Noradrenergic and serotoninergic innervation of cortical, thalamic and tectal visual structures in Old and New World monkeys. The Journal of Comparative Neurology, 243, 117128.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking feelings: An fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14, 12151229.Google Scholar
Parasuraman, R., Greenwood, P. M., Kumar, R., & Fossella, J. (2005). Beyond heritability: Neurotransmitter genes differentially modulate visuospatial attention and working memory. Psychological Science, 16, 200207.CrossRefGoogle ScholarPubMed
Parkes, L., Fulcher, B., Yücel, M., & Fornito, A. (2018). An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI Neuroimage, 171, 415436.CrossRefGoogle ScholarPubMed
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: Twenty years after Annual Review of Neuroscience, 35, 7189.CrossRefGoogle Scholar
Pfaff, D. W., & Kieffer, B. L. (2008). Molecular and biophysical mechanisms of arousal, alertness, and attention. Annals of the New York Academy of Sciences, 1129, xi.Google ScholarPubMed
Piscopo, D. M., Weible, A. P., Rothbart, M. K., Posner, M. K. I., & Niell, C. M. (2018). Mechanisms of white matter change in mice given low frequency stimulation. Proceedings of the National Academy of Sciences (USA), 115, 66396646.CrossRefGoogle Scholar
Posner, M. I. (1978). Chronometric Explorations of Mind. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Posner, M. I. (2008). Measuring alertness. Annals of the New York Academy of Sciences, 1129, 193199.CrossRefGoogle ScholarPubMed
Posner, M. I., & Fan, J. (2008). Attention as an organ system. In Pomerantz, J. R. (ed.), Topics in Integrative Neuroscience (Ch. 2; pp. 3161). New York: Cambridge University Press.Google Scholar
Posner, M. I., & Rothbart, M. K. (2007a). Research on attention networks as a model for integration of psychological science Annual Review of Psychology, 58, 123.CrossRefGoogle Scholar
Posner, M. I., & Rothbart, M. K. (2007b). Educating the Human Brain. Washington, DC: APA Books.CrossRefGoogle Scholar
Posner, M. I., & Rothbart, M. K. (2018). Parenting and human brain development. In Sanders, M. R., & Morawska, A. (eds.), Handbook of Parenting and Child Development Across the Lifespan (pp. 173200). New York: Springer.CrossRefGoogle Scholar
Posner, M. I., Rothbart, M. K., Sheese, B. E., & Voelker, P. (2014a). Developing attention: Behavioral and brain mechanisms. Advances in Neuroscience, 2014, 405094.Google Scholar
Posner, M. I., Tang, Y. Y., & Lynch, G. (2014b). Mechanisms of white matter change induced by meditation. Frontiers in Psychology, 5, 1220.Google Scholar
Pozuelos, J. P., Paz-Alonso, P. M., Castillo, A., Fuentes, L. J., & Rueda, M. R. (2014). Development of attention networks and their interactions in childhood. Developmental Psychology, 50, 102405102415.Google Scholar
Reinhart, R. M. G. (2017). Disruption and rescue of interareal theta phase coupling and adaptive behavior. Proceedings of the National Academy of Sciences (USA), 114, 201710257.CrossRefGoogle ScholarPubMed
Rothbart, M. K. (2011). Becoming Who We Are. New York: Guilford Press.Google Scholar
Rothbart, M. K., & Rueda, M. R. (2005). The development of effortful control. In Mayr, U., Awh, E., & Keele, S. W. (eds.), Developing Individuality in the Human Brain: A Tribute to Michael I. Posner (pp. 167188). Washington, DC: American Psychological Association.Google Scholar
Rothbart, M. K., & Sheese, B. E. (2007). Temperament and emotion regulation. In Gross, J. J. (ed.), Handbook of Emotion Regulation (pp. 331350). New York: Guilford Press.Google Scholar
Rothbart, M. K., Sheese, B. E., Rueda, M. R., & Posner, M. I. (2011). Developing mechanisms of self-regulation in early life. Emotion Review, 3, 207213.Google Scholar
Rueda, M., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., et al. (2004). Development of attentional networks in childhood. Neuropsychologia, 42, 10291040.Google Scholar
Sheese, B. E., Rothbart, M. K., Voelker, P., & Posner, M. I. (2012). The dopamine receptor D4 gene 7 repeat allele interacts with parenting quality to predict effortful control in four-year-old children. Child Development Research, 2012, 863242.CrossRefGoogle ScholarPubMed
Sheese, B. E., Voelker, P. M., Rothbart, M. K., & Posner, M. I. (2007). Parenting quality interacts with genetic variation in dopamine receptor DRD4 to influence temperament in early childhood. Development & Psychopathology, 19, 10391046.CrossRefGoogle ScholarPubMed
Shulman, G. L., Astafiev, S. V., Franke, D., Pope, D. L. W., Snyder, A. Z., McAvoy, M. P., & Corbett, M. (2009). Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. Journal of Neuroscience, 29, 43924407.CrossRefGoogle ScholarPubMed
Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychological Review, 20, 327348.CrossRefGoogle ScholarPubMed
Swanson, J., Oosterlaan, J., Murias, M., Schuck, S., Flodman, P., Spence, M. A., et al. (2000). Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests attention. Proceedings of the National Academy of Sciences (USA), 97, 47544759.Google Scholar
Tang, Y.-Y., Lu, Q., Fan, M., Yang, Y., & Posner, M. I. (2012). Mechanisms of wWhite matter changes induced by meditation. Proceedings of the National Academy of Sciences (USA), 109, 1057010574.CrossRefGoogle Scholar
Tang, Y. Y., Lu, Q., Geng, X., Stein, E. A., Yang, Y., & Posner, M. I. (2010). Short term mental training induces white-matter changes in the anterior cingulate. Proceedings of the National Academy of Sciences (USA), 107, 1664916652.CrossRefGoogle ScholarPubMed
Thomason, M. E., Brown, J. A., Dassanayake, M. T., Shastri, R., Marusak, H. A., Hernandez-Anrade, E., et al. (2014). Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus. PLoS ONE, 9, e94423.CrossRefGoogle ScholarPubMed
Thomason, M. E., Grove, L. E., Lozon, T. A., Vila, A. M. , Ye, Y. Q., Nye, M. J., et al. (2015). Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero. Developmental Cognitive Neuroscience, 11, 96104.CrossRefGoogle ScholarPubMed
Thompson, K. G., Biscoe, K. L., & Sato, T. R. (2005). Neuronal basis of covert spatial attention in the frontal eye fields. Journal of Neuroscience, 25, 94799487.Google Scholar
Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59, 431438.CrossRefGoogle ScholarPubMed
Van Ijzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2006). DRD4 7-repeat polymorphism moderates the association between maternal unresolved loss or trauma and infant disorganization, Attachment and Human Development, 8, 291307.CrossRefGoogle ScholarPubMed
Vértes, P. E., & Bullmore, E. T. (2015). Annual research review: Growth connectomics – The organization and reorganization of brain networks during normal and abnormal development. Journal of Child Psychology and Psychiatry, 56, 299320.CrossRefGoogle ScholarPubMed
Voelker, P., Sheese, B. E., Rothbart, M. K., & Posner, M. I. (2009). Variations in COMT gene interact with parenting to influence attention in early development. Neuroscience, 164, 121130.CrossRefGoogle ScholarPubMed
Wang, E. T., Kodama, G., Baldi, P., & Moyzis, R. K. (2006). Global landscape of recent inferred Darwinian selection for Homo sapiens. Proceedings of the National Academy of Science (USA), 103, 135140.CrossRefGoogle ScholarPubMed
Wang, S., & Young, K. M. (2014). White matter plasticity in adulthood. Neuroscience, 276, 148160.CrossRefGoogle ScholarPubMed
Weible, A. P., Piscopo, D. M., Rothbart, M. K., Posner, M. I., & Niell, C. M. (2017). Rhythmic brain stimulation reduces anxiety-related behavior in a mouse model based on meditation training. Proceedings of the National Academy of Sciences (USA), 114, 25322537.CrossRefGoogle Scholar
Winterer, G., Musso, F., Konrad, A., Vucurevic, G., Stoeter, P., Sander, T., & Gallinat, J. (2007). Association of attentional network function with exon 5 variations of the CHRNA4 gene. Human Molecular Genetics, 16, 21652174.CrossRefGoogle ScholarPubMed
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749750.CrossRefGoogle ScholarPubMed
Xue, S., Tang, Y. Y., Tang, R., & Posner, M. I. (2014). Short-term meditation induces changes in brain resting EEG theta networks. Brain and Cognition, 87, 16.CrossRefGoogle ScholarPubMed
Zhu, M., & Zhao, S. (2007). Candidate gene identification approach: Progress and challenges. International Journal of Biological Studies, 3, 420427.Google ScholarPubMed

References

Adleman, N. E. (2002). A developmental fMRI study of the Stroop color-word task. NeuroImage, 16, 6175.Google Scholar
Alahyane, N., Brien, D. C., Coe, B. C., Stroman, P. W., & Munoz, D. P. (2014). Developmental improvements in voluntary control of behavior: Effect of preparation in the fronto-parietal network? NeuroImage, 98, 103117.CrossRefGoogle ScholarPubMed
Amso, D., & Johnson, S. P. (2005). Selection and inhibition in infancy: Evidence from the spatial negative priming paradigm. Cognition, 95, B27B36.CrossRefGoogle ScholarPubMed
Baddeley, A. (1986). Working Memory. New York: Oxford University Press.Google ScholarPubMed
Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 4479.CrossRefGoogle ScholarPubMed
Benes, F. M., Turtle, M., Khan, Y., & Farol, P. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Archives of General Psychiatry, 51, 477484.CrossRefGoogle ScholarPubMed
Bjork, J.M., Knutson, B., Fong, G. W., Caggiano, D. M., Bennett, S. M., & Hommer, D. W. (2004). Incentive-elicited brain activation in adolescents: Similarities and differences from young adults. Journal of Neuroscience, 24, 17931802.CrossRefGoogle ScholarPubMed
Bjork, J. M., Smith, A. R., Chen, G., & Hommer, D. W. (2010). Adolescents, adults and rewards: Comparing motivational neurocircuitry recruitment using fMRI. PLoS.ONE, 5, e11440.CrossRefGoogle ScholarPubMed
Blakemore, S.-J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9, 267277.CrossRefGoogle ScholarPubMed
Blum, K., Braverman, E. R., Holder, J. M., Lubar, J. F., Monastra, V. J., Miller, D., … & Comings, D. E. (2000). The reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive and compulsive behaviors. Journal of psychoactive drugs, 32(sup1), 1–112.CrossRefGoogle Scholar
Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L., & Snyder, A. (2001). Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cerebral Cortex, 11, 825836.Google Scholar
Casey, B. J., Jones, R. M., & Hare, T. A. (2008). The adolescent brain. Annals of the New York Academy of Sciences, 1124, 111126.CrossRefGoogle ScholarPubMed
Casey, B. J., Jones, R. M., Levita, L., Libby, V., Pattwell, S. S., Ruberry, E. J., … Somerville, L. H. (2010). The storm and stress of adolescence: Insights from human imaging and mouse genetics. Developmental Psychobiology, 52, 225235.Google Scholar
Calabro, F. J., Murty, V. P., Jalbrzikowski, M., Tervo-Clemmens, B., & Luna, B. (2020). Development of hippocampal-prefrontal cortex interactions through adolescence. Cerebral Cortex, 30(3), 1548–1558.CrossRefGoogle Scholar
Caviness, V. S., Kennedy, D. N., Bates, J. F., & Makris, N. (1996). The developing human brain: A morphometric profile. In Thatcher, R. W., Lyon, G. R., Rumsey, J., & Krasnegor, N. (eds.), Developmental Neuroimaging: Mapping the Development of Brain and Behavior (pp. 314). New York: Academic Press.Google Scholar
Chambers, R. A., Taylor, J. R., & Potenza, M. N. (2003). Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. The American Journal of Psychiatry, 160, 10411052.Google Scholar
Chein, J., Albert, D., O’Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain’s reward circuitry. Developmental Science, 14(2), F110.Google Scholar
Conklin, H. M., Luciana, M., Hooper, C. J., & Yarger, R. S. (2007). Working memory performance in typically developing children and adolescents: Behavioral evidence of protracted frontal lobe development. Developmental Neuropsychology, 31, 103128.CrossRefGoogle ScholarPubMed
Crone, E. A., Wendelken, C., Donohue, S., van Leijenhorst, L., & Bunge, S. A. (2006). Neurocognitive development of the ability to manipulate information in working memory. Proceedings of the National Academy of Sciences, 103, 93159320.CrossRefGoogle ScholarPubMed
Daugherty, A. M., Bender, A. R., Raz, N., & Ofen, N. (2016). Age differences in hippocampal subfield volumes from childhood to late adulthood. Hippocampus, 26, 220228.CrossRefGoogle ScholarPubMed
Dempster, F. N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Developmental Review, 12, 4575.CrossRefGoogle Scholar
Diamond, A., & Goldman-Rakic, P. S. (1989). Comparison of human infants and rhesus monkeys on Piaget’s AB task: Evidence for dependence on dorsolateral prefrontal cortex. Experimental Brain Research, 74, 2440.CrossRefGoogle ScholarPubMed
Dwyer, D. B., Harrison, B. J., Yücel, M., Whittle, S., Zalesky, A., Pantelis, C., … Fornito, A. (2014). Large-scale brain network dynamics supporting adolescent cognitive control. The Journal of Neuroscience, 34, 1409614107.CrossRefGoogle ScholarPubMed
Eaton, D. K., Kann, L., Kinchen, S., Shanklin, S., Flint, K. H., Hawkins, J., … Wechsler, H. (2012). Youth risk behavior surveillance –United States, 2011. Morbidity and Mortality Weekly Report Surveillance Summaries, 61, 1162.Google Scholar
Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., … Petersen, S. E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5, e1000381.Google Scholar
Finn, A. S., Sheridan, M. A., Kam, C. L. H., Hinshaw, S. & D’Esposito, M. (2010). Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. The Journal of Neuroscience, 30, 1106211067.Google Scholar
Fransson, P., Aden, U., Blennow, M., & Lagercrantz, H. (2011). The functional architecture of the infant brain as revealed by resting-state fMRI. Cerebral Cortex, 21, 145154.CrossRefGoogle ScholarPubMed
Fuster, J. M. (2008). The Prefrontal Cortex. London: Academic Press.CrossRefGoogle Scholar
Gabard-Durnam, L. J., Flannery, J., Goff, B., Gee, D. G., Humphreys, K. L., Telzer, E., … Tottenham, N. (2014). The development of human amygdala functional connectivity at rest from 4 to 23 years: A cross-sectional study. NeuroImage, 95, 193207.CrossRefGoogle ScholarPubMed
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., … Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala-prefrontal circuitry. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 45844593.CrossRefGoogle ScholarPubMed
Geier, C. F., Garver, K., Terwilliger, R., & Luna, B. (2009). Development of working memory maintenance. Journal of Neurophysiology, 101, 8499.CrossRefGoogle ScholarPubMed
Geier, C. F., & Luna, B. (2012). Developmental effects of incentives on response inhibition. Child Development, 83, 12621274.CrossRefGoogle ScholarPubMed
Geier, C. F., Terwilliger, R., Teslovich, T., Velanova, K., & Luna, B. (2010). Immaturities in reward processing and its influence on inhibitory control in adolescence. Cerebral Cortex, 20, 16131629.CrossRefGoogle ScholarPubMed
Ghetti, S., & Bunge, S. A. (2012). Neural changes underlying the development of episodic memory during middle childhood. Developmental Cognitive Neuroscience, 2, 381395.CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., … Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861863.CrossRefGoogle ScholarPubMed
Glasser, M. F., & Van Essen, D. C. (2011). Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 1159711616.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences (USA), 101, 81748179.Google Scholar
Grydeland, H., Walhovd, K. B., Tamnes, C. K., Westlye, L. T., & Fjell, A. M. (2013). Intracortical myelin links with performance variability across the human lifespan: Results from T1- and T2-weighted MRI myelin mapping and diffusion tensor imaging. The Journal of Neuroscience, 33, 1861818630.Google Scholar
Guyer, A. E., Monk, C. S., McClure-Tone, E. B., Nelson, E. E., Roberson-Nay, R., Adler, A. D., … Ernst, M. (2008). A developmental examination of amygdala response to facial expressions. Journal of Cognitive Neuroscience, 20, 15651582.CrossRefGoogle ScholarPubMed
Hallquist, M. N., Hwang, K., & Luna, B. (2013). The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage, 82, 208225.CrossRefGoogle Scholar
Hare, T. A., Tottenham, N., Galvan, A., Voss, H. U., Glover, G. H., & Casey, B. J. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-no go task. Biological Psychiatry, 63, 927934.Google Scholar
Hodes, G. E., & Shors, T. J. (2005). Distinctive stress effects on learning during puberty. Hormones and Behavior, 48, 163171.CrossRefGoogle ScholarPubMed
Houdé, O. (2001). Interference and inhibition (psychology of -). In Smelser, N. J. and Baltes, P. B. (eds.), International Encyclopedia of the Social and Behavioral Sciences (pp. 77187722). Oxford: Elsevier Science.CrossRefGoogle Scholar
Houdé, O. (2004). Activation/inhibition. In Houdé, O. (ed.), Dictionary of Cognitive Science (pp. 1315). New York: Routledge.CrossRefGoogle Scholar
Houdé, O. (2019). 3-System Theory of the Cognitive Brain: A Post-Piagetian Approach. New York: Routledge.CrossRefGoogle Scholar
Houdé, O., & Borst, G. (2015). Evidence for an inhibitory-control theory of the reasoning brain. Frontiers in Human Neuroscience, 9, 148.CrossRefGoogle ScholarPubMed
Houdé, O., Pineau, A., Leroux, G., Poirel, N., Perchey, G., Lanoë, C., … Mazoyer, B. (2011). Functional MRI study of Piaget’s conservation-of-number task in preschool and school-age children: A neo-Piagetian approach. Journal of Experimental Child Psychology, 110, 332346.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517527.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387, 167178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Hwang, K., Hallquist, M. N., & Luna, B. (2013). The development of hub architecture in the human functional brain network. Cerebral Cortex, 23, 23802393.CrossRefGoogle ScholarPubMed
National Research Council (2013). Improving the Health, Safety, and Well-Being of Young Adults – Workshop Summary. Washington, DC: National Academies Press.Google Scholar
Jalbrzikowski, M., Larsen, B., Hallquist, M. N., Foran, W., Calabro, F., & Luna, B. (2017). Development of white matter microstructure and intrinsic functional connectivity between the amygdala and ventromedial prefrontal cortex: Associations with anxiety and depression. Biological Psychiatry, 82, 511521.CrossRefGoogle ScholarPubMed
Johnson, M. H. (1995). The inhibition of automatic saccades in early infancy. Developmental Psychobiology, 28, 281291.CrossRefGoogle ScholarPubMed
Killgore, W. D. S., & Yurgelun-Todd, D. A. (2007). Unconscious processing of facial affect in children and adolescents. Social Neuroscience, 2, 2847.CrossRefGoogle ScholarPubMed
Larsen, B., & Luna, B. (2018). Adolescence as a neurobiological critical period for the development of higher-order cognition. Neuroscience & Biobehavioral Reviews, 94, 179195.CrossRefGoogle ScholarPubMed
Larsen, B., Verstynen, T. D., Yeh, F.-C., & Luna, B. (2018). Developmental changes in the integration of affective and cognitive corticostriatal pathways are associated with reward-driven behavior. Cerebral Cortex, 28, 28342845.Google Scholar
Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., & Beaulieu, C. (2012). Diffusion tensor imaging of white matter tract evolution over the lifespan. NeuroImage, 60, 340352.CrossRefGoogle ScholarPubMed
Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neuroscience & Biobehavioral Reviews, 30, 718729.CrossRefGoogle ScholarPubMed
Luna, B. (2009). Developmental changes in cognitive control through adolescence. Advances in Child Development and Behavior, 37, 233278.CrossRefGoogle ScholarPubMed
Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Maturation of cognitive processes from late childhood to adulthood. Child Development, 75, 13571372.CrossRefGoogle ScholarPubMed
Luna, B., Marek, S., Larsen, B., Tervo-Clemmens, B., & Chahal, R. (2015). An integrative model of the maturation of cognitive control. Annual Review of Neuroscience, 38, 151170.Google Scholar
Luna, B., Padmanabhan, A., & O’Hearn, K. (2010). What has fMRI told us about the development of cognitive control through adolescence? Brain and Cognition, 72, 101113.Google Scholar
Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., … Sweeney, J. A. (2001). Maturation of widely distributed brain function subserves cognitive development. NeuroImage, 13, 786793.CrossRefGoogle ScholarPubMed
Luna, B., & Wright, C. (2016). Adolescent brain development: Implications for the juvenile criminal justice system. In Heilbrun, K., DeMatteo, D., & Goldstein, N. E. S. (eds.), APA Handbook of Psychology and Juvenile Justice (pp. 91116). Washington, DC: American Psychological Association.Google Scholar
Marek, S., Hwang, K., Foran, W., Hallquist, M. N., & Luna, B. (2015). The contribution of network organization and integration to the development of cognitive control. PLoS Biology, 13, e1002328.CrossRefGoogle Scholar
Marsh, R., Zhu, H., Schultz, R. T., Quackenbush, G., Royal, J., Skudlarski, P., & Peterson, B. S. (2006). A developmental fMRI study of self-regulatory control. Human Brain Mapping, 27, 848863.CrossRefGoogle ScholarPubMed
Menon, V. (2013). Developmental pathways to functional brain networks: Emerging principles. Trends in Cognitive Sciences, 17, 627640.CrossRefGoogle ScholarPubMed
Mills, K. L., Goddings, A.-L., Herting, M. M., Meuwese, R., Blakemore, S.-J., Crone, E. A., … Tamnes, C. K. (2016). Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. NeuroImage, 141, 273281.CrossRefGoogle ScholarPubMed
Montez, D. F., Calabro, F. J., & Luna, B. (2017). The expression of established cognitive brain states stabilizes with working memory development. ELife, 6, e25606.CrossRefGoogle ScholarPubMed
Murty, V. P., Calabro, F., & Luna, B. (2016). The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neuroscience and Biobehavioral Reviews, 70, 4658.Google Scholar
Newman, M. E. J. (2010). Networks: An Introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
Nigg, J. T. (2017). Annual research review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 58, 361383.Google Scholar
O’Donnell, P. (2010). Adolescent maturation of cortical dopamine. Neurotoxicity Research, 18, 306312.CrossRefGoogle ScholarPubMed
Ofen, N., Kao, Y.-C., Sokol-Hessner, P., Kim, H., Whitfield-Gabrieli, S., & Gabrieli, J. D. E. (2007). Development of the declarative memory system in the human brain. Nature Neuroscience, 10, 11981205.CrossRefGoogle ScholarPubMed
O’Hare, E. D., Lu, L. H., Houston, S. M., Bookheimer, S. Y., & Sowell, E. R. (2008). Neurodevelopmental changes in verbal working memory load-dependency: An fMRI investigation. NeuroImage, 42, 16781685.CrossRefGoogle ScholarPubMed
Ordaz, S. J., Foran, W., Velanova, K., & Luna, B. (2013). Longitudinal growth curves of brain function underlying inhibitory control through adolescence. Journal of Neuroscience, 33, 1810918124.Google Scholar
Padmanabhan, A., Geier, C. F., Ordaz, S. J., Teslovich, T., & Luna, B. (2011). Developmental changes in brain function underlying the influence of reward processing on inhibitory control. Developmental Cognitive Neuroscience, 1, 517529.CrossRefGoogle ScholarPubMed
Padmanabhan, A., & Luna, B. (2014). Developmental imaging genetics: Linking dopamine function to adolescent behavior. Brain and Cognition, 89, 2738.Google Scholar
Parent, A.-S., Teilmann, G., Juul, A., Skakkebaek, N. E., Toppari, J., & Bourguignon, J.-P. (2003). The timing of normal puberty and the age limits of sexual precocity: Variations around the world, secular trends, and changes after migration. Endocrine Reviews, 24, 668693.CrossRefGoogle ScholarPubMed
Parr, A. C., Calabro, F., Larsen, B., Tervo-Clemmens, B., Elliot, S., Foran, W., Olafsson, V., & Luna, B. (2021). Dopamine-related striatal neurophysiology is associated with specialization of frontostraital reward circuitry through adolescence. Progress in Neurobiology, 201: 101997.Google Scholar
Paulsen, D. J., Hallquist, M. N., Geier, C. F., & Luna, B. (2015). Effects of incentives, age, and behavior on brain activation during inhibitory control: A longitudinal fMRI study. Developmental Cognitive Neuroscience, 11, 105115.CrossRefGoogle ScholarPubMed
Paus, T. (2010). Growth of white matter in the adolescent brain: Myelin or axon? Brain and Cognition, 72, 2635.CrossRefGoogle ScholarPubMed
Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9, 947957.CrossRefGoogle ScholarPubMed
Perrin, J. S., Hervé, P.-Y., Leonard, G., Perron, M., Pike, G. B., Pitiot, A., … Paus, T. (2008). Growth of white matter in the adolescent brain: Role of testosterone and androgen receptor. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28, 95199524.CrossRefGoogle ScholarPubMed
Perrin, J. S., Leonard, G., Perron, M., Pike, G. B., Pitiot, A., Richer, L., … Paus, T. (2009). Sex differences in the growth of white matter during adolescence. NeuroImage, 45, 10551066.CrossRefGoogle ScholarPubMed
Petanjek, Z., Judaš, M., Šimić, G., Rašin, M. R., Uylings, H. B. M., Rakic, P., & Kostović, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences (USA), 108, 1328113286.Google Scholar
Pfeifer, J. H., Masten, C. L., Moore, W. E., Oswald, T. M., Mazziotta, J. C., Iacoboni, M., & Dapretto, M. (2011). Entering adolescence: resistance to peer influence, risky behavior, and neural changes in emotion reactivity. Neuron, 69, 10291036.Google Scholar
Pierpaoli, C., Barnett, A., Pajevic, S., Chen, R., Penix, L. R., Virta, A., & Basser, P. (2001). Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. NeuroImage, 13, 11741185.CrossRefGoogle ScholarPubMed
Posner, M. I. & Fan, J. (2008). Attention as an organ system. In Pomerantz, J. R. (ed.), Topics in Integrative Neuroscience (Ch. 2; pp. 3161). New York: Cambridge University Press.CrossRefGoogle Scholar
Posner, M. I., Rothbart, M. K., Sheese, B. E., & Voelker, P. (2014). Developing attention: Behavioral and brain mechanisms. Advances in Neuroscience, 2014, 405094.CrossRefGoogle ScholarPubMed
Postle, B. R., Druzgal, T. J., & D’Esposito, M. (2003). Seeking the neural substrates of visual working memory storage. Cortex, 39, 927946.CrossRefGoogle ScholarPubMed
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59, 21422154.CrossRefGoogle ScholarPubMed
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72, 665678.CrossRefGoogle ScholarPubMed
Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320341.CrossRefGoogle ScholarPubMed
Qin, S., Cho, S., Chen, T., Rosenberg-Lee, M., Geary, D. C., & Menon, V. (2014). Hippocampal-neocortical functional reorganization underlies children’s cognitive development. Nature Neuroscience, 17, 12631269.CrossRefGoogle ScholarPubMed
Ravindranath, O., Ordaz, S. J., Padmanabhan, A., Foran, W., Jalbrzikowski, M., Calabro, F. J., & Luna, B. (2020). Influences of affective context on amygdala functional connectivity during cognitive control from adolescence through adulthood. Developmental cognitive neuroscience, 45, 100836.CrossRefGoogle Scholar
Raznahan, A., Shaw, P. W., Lerch, J. P., Clasen, L. S., Greenstein, D., Berman, R., … Giedd, J. N. (2014). Longitudinal four-dimensional mapping of subcortical anatomy in human development. Proceedings of the National Academy of Sciences (USA), 111, 15921597.CrossRefGoogle ScholarPubMed
Riggins, T., Geng, F., Blankenship, S. L., & Redcay, E. (2016). Hippocampal functional connectivity and episodic memory in early childhood. Developmental Cognitive Neuroscience, 19, 5869.Google Scholar
Rowley, C. D., Sehmbi, M., Bazin, P.-L., Tardif, C. L., Minuzzi, L., Frey, B. N., & Bock, N. A. (2017). Age-related mapping of intracortical myelin from late adolescence to middle adulthood using T1-weighted MRI. Human Brain Mapping, 38, 36913703.CrossRefGoogle Scholar
Satterthwaite, T. D., Wolf, D. H., Erus, G., Ruparel, K., Elliott, M. A., Gennatas, E. D., … Gur, R. E. (2013). Functional maturation of the executive system during adolescence. The Journal of Neuroscience, 33, 1624916261.CrossRefGoogle ScholarPubMed
Shafee, R., Buckner, R. L., & Fischl, B. (2015). Gray matter myelination of 1555 human brains using partial volume corrected MRI images. NeuroImage, 105, 473485.CrossRefGoogle ScholarPubMed
Shulman, E. P., Smith, A. R., Silva, K., Icenogle, G., Duell, N., Chein, J., & Steinberg, L. (2016). The dual systems model: Review, reappraisal, and reaffirmation. Developmental Cognitive Neuroscience, 17, 103117.Google Scholar
Silvers, J. A., Insel, C., Powers, A., Franz, P., Helion, C., Martin, R., … Ochsner, K. N. (2017). The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment. Developmental Cognitive Neuroscience, 25, 128137.Google Scholar
Simmonds, D. J., Hallquist, M. N., Asato, M., & Luna, B. (2014). Developmental stages and sex differences of white matter and behavioral development through adolescence: A longitudinal diffusion tensor imaging (DTI) study. NeuroImage, 92, 356368.Google Scholar
Simmonds, D. J., Hallquist, M. N., & Luna, B. (2017). Protracted development of executive and mnemonic brain systems underlying working memory in adolescence: A longitudinal fMRI study. NeuroImage, 157, 695704.Google Scholar
Smith, A. R., Steinberg, L., Strang, N., & Chein, J. (2015). Age differences in the impact of peers on adolescents’ and adults’ neural response to reward. Developmental Cognitive Neuroscience, 11, 7582.Google Scholar
Somerville, L. H., & Casey, B. J. (2010). Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology, 20, 236241.CrossRefGoogle ScholarPubMed
Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859861.CrossRefGoogle ScholarPubMed
Spear, L. P. (2000). Neurobehavioral changes in adolescence. Current Directions in Psychological Science, 9, 111114.Google Scholar
Stansfield, K. H., & Kirstein, C. L. (2006). Effects of novelty on behavior in the adolescent and adult rat. Developmental Psychobiology, 48, 1015.Google Scholar
Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78106.CrossRefGoogle ScholarPubMed
Steinberg, L., Albert, D., Cauffman, E., Banich, M., Graham, S., & Woolard, J. (2008). Age differences in sensation seeking and impulsivity as indexed by behavior and self-report: Evidence for a dual systems model. Developmental Psychology, 44, 17641778.CrossRefGoogle ScholarPubMed
Steinberg, L., Icenogle, G., Shulman, E. P., Breiner, K., Chein, J., Bacchini, D., … Takash, H. M. S. (2018). Around the world, adolescence is a time of heightened sensation seeking and immature self-regulation. Developmental Science, 21, e12532.Google Scholar
Tamnes, C. K., Fjell, A. M., Østby, Y., Westlye, L. T., Due-Tønnessen, P., Bjørnerud, A., & Walhovd, K. B. (2011). The brain dynamics of intellectual development: Waxing and waning white and gray matter. Neuropsychologia, 49, 36053611.CrossRefGoogle ScholarPubMed
Tamnes, C. K., Walhovd, K. B., Engvig, A., Grydeland, H., Krogsrud, S. K., Østby, Y., … Fjell, A. M. (2014). Regional hippocampal volumes and development predict learning and memory. Developmental Neuroscience, 36, 161174.CrossRefGoogle ScholarPubMed
van Duijvenvoorde, A. C. K., Achterberg, M., Braams, B. R., Peters, S., & Crone, E. A. (2016). Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses. NeuroImage, 124, 409420.CrossRefGoogle ScholarPubMed
Velanova, K., Wheeler, M. E., & Luna, B. (2008). Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cerebral Cortex, 18, 25052522.CrossRefGoogle ScholarPubMed
Vijayakumar, N., Op de Macks, Z., Shirtcliff, E. A., & Pfeifer, J. H. (2018). Puberty and the human brain: Insights into adolescent development. Neuroscience & Biobehavioral Reviews, 92, 417436.CrossRefGoogle ScholarPubMed
Von Der Heide, R. J., Skipper, L. M., Klobusicky, E., & Olson, I. R. (2013). Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain, 136, 16921707.CrossRefGoogle ScholarPubMed
Voss, J. L., O’Neil, J. T., Kharitonova, M., Briggs-Gowan, M. J., & Wakschlag, L. S. (2015). Adolescent development of context-dependent stimulus-reward association memory and its neural correlates. Frontiers in Human Neuroscience, 9, 581.Google Scholar
Yakovlev, P. I., Lecours, A. R., & Minkowski, A. (1967). The myelogenetic cycles of regional maturation of the brain. In Minkowski, A. (ed.), Regional Development of the Brain in Early Life (pp. 370). Oxford: Blackwell Scientific.Google Scholar
Yeh, F.-C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C., & Tseng, W.-Y. I. (2013). Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE, 8, e80713.CrossRefGoogle ScholarPubMed
Zuckerman, M. (2008). Personality and sensation seeking. In Boyle, G. J., Matthews, G., & Saklofske, D. H. (eds.), The SAGE Handbook of Personality Theory and Assessment: Personality Theories and Models. Thousand Oaks, CA: SAGE.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×