Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T10:47:02.311Z Has data issue: false hasContentIssue false

34 - The Role of Sleep in Cognitive Aging

from Part V - Later Life and Interventions

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access

Summary

Aging is marked by cognitive decline, which in the case of Alzheimer’s disease is associated with tremendous global economic burden. Identifying modifiable risk factors for cognitive decline is therefore of paramount importance. In this chapter, we describe how aging compromises sleep quality and sleep architecture at a rate that parallels normal age-related cognitive decline. We argue that understanding the neurocognitive functions of sleep – frontal lobe restoration, memory consolidation, and metabolite clearance – and how such functions change in later life will be key to informing why some older individuals maintain healthy cognitive functioning and other older individuals do not. Critically, by investigating how sleep, cognition, and aging interact, researchers and clinicians can develop sleep-related treatments that target preventing, or at least ameliorating, pathologies such as Alzheimer’s disease.

Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 628 - 644
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aloia, M. S., Ilniczky, N., Di Dio, P., et al. (2003). Neuropsychological changes and treatment compliance in older adults with sleep apnea. Journal of Psychosomatic Research, 54(1), 7176. doi: 10.1016/s0022-3999(02)00548-2Google Scholar
Alzheimer’s Association (2018). 2018 Alzheimer’s disease facts and figures. Alzheimer’s and Dementia, 14(3), 367429. doi: 10.1016/j.jalz.2015.02.003Google Scholar
Ancoli-Israel, S. (2000). Insomnia in the elderly: A review for the primary care practitioner. Sleep, 23(Suppl. 1), 2330.Google ScholarPubMed
Ancoli-Israel, S., Kripke, D. F., Klauber, M. R., et al. (1993). Natural history of sleep disordered breathing in community dwelling elderly. Sleep, 16(Suppl. 8), 2529. doi: 10.1093/sleep/16.suppl_8.s25Google Scholar
Aserinsky, E., & Kleitman, N. (1953). Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science, 18, 274284. doi: 10.1126/science.118.3062.273Google Scholar
Bauckneht, M., Chincarini, A., De Carli, F., et al. (2018). Presynaptic dopaminergic neuroimaging in REM sleep behavior disorder: A systematic review and meta-analysis. Sleep Medicine Reviews, 41, 266274. doi: 10.1016/j.smrv.2018.04.001CrossRefGoogle ScholarPubMed
Benedict, C., Byberg, L., Cedernaes, J., et al. (2015). Self-reported sleep disturbance is associated with Alzheimer’s disease risk in men. Alzheimer’s and Dementia, 11(9), 10901097. doi: 10.1016/j.jalz.2014.08.104Google Scholar
Bliwise, D. L., Foley, D. J., Vitiello, M. V., et al. (2009). Nocturia and disturbed sleep in the elderly. Sleep Medicine, 10(5), 540548. doi: 10.1016/j.sleep.2008.04.002Google Scholar
Borbély, A. A., Daan, S., Wirz‐Justice, A., & Deboer, T. (2016). The two‐process model of sleep regulation: A reappraisal. Journal of Sleep Research, 25(2), 131143. doi: 10.1111/jsr.12371Google Scholar
Bubu, O. M., Brannick, M., Mortimer, J., et al. (2017). Sleep, cognitive impairment, and Alzheimer’s disease: A systematic review and meta-analysis. Sleep, 40(1), zsw032. doi: 10.1093/sleep/zsw032Google Scholar
Cardinali, D. P., Brusco, L. I., Liberczuk, C., & Furio, A. M. (2002). The use of melatonin in Alzheimer’s disease. Neuro Endocrinology Letters, 23(Suppl. 1), 2023.Google Scholar
Cassidy-Eagle, E., Siebern, A., Unti, L., Glassman, J., & O’Hara, R. (2018). Neuropsychological functioning in older adults with mild cognitive impairment and insomnia randomized to CBT-I or control group. Clinical Gerontologist, 41(2), 136144. doi: 10.1080/07317115.2017.1384777Google Scholar
Chen, D.-W., Wang, J., Zhang, L.-L., Wang, Y.-J., & Gao, C.-Y. (2018). Cerebrospinal fluid amyloid-β levels are increased in patients with insomnia. Journal of Alzheimer’s Disease, 61(2), 645651. doi: 10.3233/JAD-170032Google Scholar
Chiu, H. L., Chan, P. T., Chu, H., et al. (2017). Effectiveness of light therapy in cognitively impaired persons: A metaanalysis of randomized controlled trials. Journal of the American Geriatrics Society, 65(10), 22272234. doi: 10.1111/jgs.14990Google Scholar
Crowley, K. (2011). Sleep and sleep disorders in older adults. Neuropsychology Review, 21(1), 4153. doi: 10.1007/s11065-010-9154-6Google Scholar
Cuellar, N. G., Strumpf, N. E., & Ratcliffe, S. J. (2007). Symptoms of restless legs syndrome in older adults: Outcomes on sleep quality, sleepiness, fatigue, depression, and quality of life. Journal of the American Geriatrics Society, 55(9), 13871392. 10.1111/j.1532-5415.2007.01294.xGoogle Scholar
Dang-Vu, T. T., Schabus, M., Desseilles, M., et al. (2010). Functional neuroimaging insights into the physiology of human sleep. Sleep, 33(12), 15891603. doi: 10.1093/sleep/33.12.1589Google Scholar
Dement, W. C. (1998). The study of human sleep: A historical perspective. Thorax, 53(Suppl. 3), 27. doi: 10.1136/thx.53.2008.S2Google Scholar
Doody, R. S., Thomas, R. G., Farlow, M., et al. (2014). Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. New England Journal of Medicine, 370(4), 311321. doi: 10.1056/NEJMoa1312889CrossRefGoogle ScholarPubMed
Dubé, J., Lafortune, M., Bedetti, C., et al. (2015). Cortical thinning explains changes in sleep slow waves during adulthood. Journal of Neuroscience, 35(20), 77957807. doi: 10.1523/JNEUROSCI.3956-14.2015Google Scholar
Duffy, J. F., Willson, H. J., Wang, W., & Czeisler, C. A. (2009). Healthy older adults better tolerate sleep deprivation than young adults: Increased tolerance of sleep deprivation with age. Journal of the American Geriatrics Society, 57(7), 12451251. doi: 10.1111/j.1532-5415.2009.02303.xCrossRefGoogle Scholar
Emamian, F., Khazaie, H., Tahmasian, M., et al. (2016). The association between obstructive sleep apnea and Alzheimer’s disease: A meta-analysis perspective. Frontiers in Aging Neuroscience, 8, 78. doi: 10.3389/fnagi.2016.00078Google Scholar
Ferman, T. J., Boeve, B. F., Smith, G. E., et al. (1999). REM sleep behavior disorder and dementia: Cognitive differences when compared with AD. Neurology, 52(5), 951951. doi: 10.1212/WNL.52.5.951Google Scholar
Fogel, S. M., Albouy, G., Vien, C., et al. (2014). fMRI and sleep correlates of the age-related impairment in motor memory consolidation: Age-related sleep-dependent impaired memory. Human Brain Mapping, 35(8), 36253645. doi: 10.1002/hbm.22426Google Scholar
Furio, A. M., Brusco, L. I., & Cardinali, D. P. (2007). Possible therapeutic value of melatonin in mild cognitive impairment: A retrospective study. Journal of Pineal Research, 43(4), 404409. doi: 10.1111/j.1600-079X.2007.00491.xGoogle Scholar
Gerrard, J. L., Burke, S. N., McNaughton, B. L., & Barnes, C. A. (2008). Sequence reactivation in the hippocampus is impaired in aged rats. Journal of Neuroscience, 28(31), 78837890. doi: 10.1523/JNEUROSCI.1265-08.2008Google Scholar
Gilbert, S. S., Burgess, H. J., Kennaway, D. J., & Dawson, D. (2000). Attenuation of sleep propensity, core hypothermia, and peripheral heat loss after temazepam tolerance. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 279(6), R19801987. doi: 10.1152/ajpregu.2000.279.6.R1980Google Scholar
Goldstein-Piekarski, A. N., O’Hora, K., Buchanan, A., et al. (2018). The effects of CBT-I on cognitive functioning in individuals with insomnia and mild cognitive impairment. Sleep, 41(Suppl. 1), A154A155. doi: 10.1093/sleep/zsy061.405Google Scholar
Hebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80(19), 17781783. doi: 10.1212/WNL.0b013e31828726f5Google Scholar
Herings, R. M., Stricker, B. H., de Boer, A., Bakker, A., & Sturmans, F. (1995). Benzodiazepines and the risk of falling leading to femur fractures: Dosage more important than elimination half-life. Archives of Internal Medicine, 155(16), 18011807. doi: 10.1001/archinte.1995.00430160149015Google Scholar
Jessen, N. A., Munk, A. S. F., Lundgaard, I., & Nedergaard, M. (2015). The glymphatic system: A beginner’s guide. Neurochemical Research, 40(12), 25832599. doi: 10.1007/s11064-015-1581-6CrossRefGoogle ScholarPubMed
Jouvet, M. (1965). Paradoxical sleep – A study of its nature and mechanisms. Progress in Brain Research, 18, 2062. doi: 10.1016/S0079-6123(08)63582-7Google Scholar
Ju, Y. E. S., Ooms, S. J., Sutphen, C., et al. (2017). Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain, 140(8), 21042111. doi: 10.1093/brain/awx148CrossRefGoogle ScholarPubMed
Kyle, S. D., Sexton, C. E., Feige, B., et al. (2017). Sleep and cognitive performance: Cross-sectional associations in the UK Biobank. Sleep Medicine, 38, 8591. doi: 10.1016/j.sleep.2017.07.001Google Scholar
Lee, H. B., Ramsey, C. M., Spira, A. P., et al. (2014). Comparison of cognitive functioning among individuals with treated restless legs syndrome (RLS), untreated RLS, and no RLS. Journal of Neuropsychiatry and Clinical Neurosciences, 26(1), 8791. doi: 10.1176/appi.neuropsych.12120394Google Scholar
Liu, Y. R., Fan, D. Q., Gui, W. J., et al. (2018). Sleep-related brain atrophy and disrupted functional connectivity in older adults. Behavioural Brain Research, 347, 292299. doi: 10.1016/j.bbr.2018.03.032Google Scholar
Mander, B. A., Marks, S. M., Vogel, J. W., et al. (2015). β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nature Neuroscience, 18(7), 10511057. doi: 10.1038/nn.3324Google Scholar
McCall, W. V. (2004). Sleep in the elderly: Burden, diagnosis, and treatment. Primary Care Companion to the Journal of Clinical Psychiatry, 6(1), 920. doi: 10.4088/pcc.v06n0104Google Scholar
McCurry, S. M., Pike, K. C., Vitiello, M. V., et al. (2011). Increasing walking and bright light exposure to improve sleep in community-dwelling persons with Alzheimer’s disease: Results of a randomized, controlled trial. Journal of the American Geriatrics Society, 59(8), 13931402. doi: 10.1111/j.1532-5415.2011.03519.xGoogle Scholar
Milner, C. E., & Cote, K. A. (2008). A dose-response investigation of the benefits of napping in healthy young, middle-aged and older adults. Sleep and Biological Rhythms, 6(1), 215. doi: 10.1111/j.1479-8425.2007.00328.xGoogle Scholar
Montplaisir, J., Boucher, S., Poirier, G., et al. (1997). Clinical, polysomnographic, and genetic characteristics of restless legs syndrome: A study of 133 patients diagnosed with new standard criteria. Movement Disorders, 12(1), 6165. doi: 10.1002/mds.870120111Google Scholar
Murphy, M. P., & LeVine, H. (2010). Alzheimer’s disease and the amyloid-β peptide. Journal of Alzheimer’s Disease, 19(1), 311323. doi: 10.3233/JAD-2010-1221Google Scholar
National Sleep Foundation (2003). Summary findings of the 2003 Sleep in America Poll. http://sleepfoundation.org/sites/default/files/2003SleepPollExecSumm.pdfGoogle Scholar
Ohayon, M. M., Carskadon, M. A., Guilleminault, C., & Vitiello, M. V. (2004). Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: Developing normative sleep values across the human lifespan. Sleep, 27(7), 12551273. doi: 10.1093/sleep/27.7.1255Google Scholar
Pasula, E. Y., Brown, G. G., McKenna, B. S., et al. (2018). Effects of sleep deprivation on component processes of working memory in younger and older adults. Sleep, 41(3), zsx213. doi: 10.1093/sleep/zsx213Google Scholar
Pearson, V., Allen, R., Dean, T., et al. (2006). Cognitive deficits associated with restless legs syndrome (RLS). Sleep Medicine, 7(1), 2530. doi: 10.1016/j.sleep.2005.05.006Google Scholar
Peigneux, P., Laureys, S., Fuchs, S., et al. (2004). Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron, 44(3), 535545. doi: 10.1016/j.neuron.2004.10.007Google Scholar
Postuma, R. B., Gagnon, J.-F., Bertrand, J.-A., Genier Marchand, D., & Montplaisir, J. Y. (2015). Parkinson risk in idiopathic REM sleep behavior disorder: Preparing for neuroprotective trials. Neurology, 84(11), 11041113. doi: 10.1212/WNL.0000000000001364Google Scholar
Rasch, B., & Born, J. (2013). About sleep’s role in memory. Physiological Reviews, 93(2), 681766. doi: 10.1152/physrev.00032.2012Google Scholar
Rasch, B., Buchel, C., Gais, S., & Born, J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 315(5817), 14261429. doi: 10.1126/science.1138581Google Scholar
Rechtschaffen, A., Bergmann, B. M., Everson, C. A., Kushida, C. A., & Gilliland, M. A. (1989). Sleep deprivation in the rat: X. Integration and discussion of the findings. Sleep, 12(1), 6887. doi: 10.1093/sleep/12.1.68Google Scholar
Rhalimi, M., Helou, R., & Jaecker, P. (2009). Medication use and increased risk of falls in hospitalized elderly patients: A retrospective, case-control study. Drugs and Aging, 26(10), 847852. doi: 10.2165/11317610-000000000-00000Google Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403428. doi: 10.1037/0033-295x.103.3.403CrossRefGoogle ScholarPubMed
Schwarz, J. F. A., Åkerstedt, T., Lindberg, E., et al. (2017). Age affects sleep microstructure more than sleep macrostructure. Journal of Sleep Research, 26(3), 277287. doi: 10.1111/jsr.12478Google Scholar
Scullin, M. K. (2013). Sleep, memory, and aging: The link between slow-wave sleep and episodic memory changes from younger to older adults. Psychology and Aging, 28(1), 105114. doi: 10.1037/a0028830Google Scholar
Scullin, M. K. (2017). Do older adults need sleep? A review of neuroimaging, sleep, and aging studies. Current Sleep Medicine Reports, 3(3), 204214. doi: 10.1007/s40675-017-0086-zGoogle Scholar
Scullin, M. K. (2019). The eight hour sleep challenge during final exams week. Teaching of Psychology, 46(1), 5563. doi: 10.1177/0098628318816142Google Scholar
Scullin, M. K., & Bliwise, D. L. (2015). Sleep, cognition, and normal aging: Integrating a half century of multidisciplinary research. Perspectives on Psychological Science, 10(1), 97137. doi: 10.1177/1745691614556680Google Scholar
Scullin, M. K., Fairley, J., Decker, M. J., & Bliwise, D. L. (2017). The effects of an afternoon nap on episodic memory in young and older adults. Sleep, 40(5), zsx035. doi: 10.1093/sleep/zsx035CrossRefGoogle ScholarPubMed
Scullin, M. K., Fairley, J., Trotti, L., et al. (2015). Sleep correlates of trait executive function and memory in Parkinson’s disease. Journal of Parkinson’s Disease, 5(1), 4954. doi: 10.3233/JPD-140475Google Scholar
Scullin, M. K., Le, D. T., & Shelton, J. T. (2017). Healthy heart, healthy brain: Hypertension affects cognitive functioning in older age. Translational Issues in Psychological Science, 3(4), 328337. doi: 10.1037/tps0000131Google Scholar
Scullin, M. K., Trotti, L. M., Wilson, A. G., Greer, S. A., & Bliwise, D. L. (2012). Nocturnal sleep enhances working memory training in Parkinson’s disease but not Lewy body dementia. Brain, 135(9), 27892797. doi: 10.1093/brain/aws192Google Scholar
Sharma, R. A., Varga, A. W., Bubu, O. M., et al. (2018). Obstructive sleep apnea severity affects amyloid burden in cognitively normal elderly. A longitudinal study. American Journal of Respiratory and Critical Care Medicine, 197(7), 933943. doi: 10.1164/rccm.201704-0704OCGoogle Scholar
Shokri-Kojori, E., Wang, G.-J., Wiers, C. E., et al. (2018). β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proceedings of the National Academy of Sciences USA, 115(17), 44834488. doi: 10.1073/pnas.1721694115Google Scholar
Smith, M. T., Perlis, M. L., Park, A., et al. (2002). Comparative meta-analysis of pharmacotherapy and behavior therapy for persistent insomnia. American Journal of Psychiatry, 159(1), 511. doi: 10.1176/appi.ajp.159.1.5Google Scholar
Spira, A. P., Gonzalez, C. E., Venkatraman, V. K., et al. (2016). Sleep duration and subsequent cortical thinning in cognitively normal older adults. Sleep, 39(5), 11211128. doi: 10.5665/sleep.5768Google Scholar
Staresina, B. P., Bergmann, T. O., Bonnefond, M., et al. (2015). Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nature Neuroscience, 18, 16791686. doi: 10.1038/nn.4119CrossRefGoogle ScholarPubMed
Thomas, M., Sing, H., Belenky, G., et al. (2000). Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. Journal of Sleep Research, 9(4), 335352. doi: 10.1046/j.1365-2869.2000.00225.xGoogle Scholar
Troussière, A. C., Monaca Charley, C., Salleron, J., et al. (2014). Treatment of sleep apnoea syndrome decreases cognitive decline in patients with Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 85(12), 14051408. doi: 10.1136/jnnp-2013-307544Google Scholar
Wallace, A., & Bucks, R. S. (2013). Memory and obstructive sleep apnea: A meta-analysis. Sleep, 36(2), 203220. doi: 10.5665/sleep.2374Google ScholarPubMed
Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676679. doi: 10.1126/science.8036517Google Scholar
Wu, J. C., Gillin, J. C., Buchsbaum, M. S., et al. (2006). Frontal lobe metabolic decreases with sleep deprivation not totally reversed by recovery sleep. Neuropsychopharmacology, 31(12), 27832792. doi: 10.1038/sj.npp.1301166Google Scholar
Xie, L., Kang, H., Xu, Q., et al. (2013). Sleep drives metabolite clearance from the adult brain. Science, 342(6156), 373377. doi: 10.1126/science.1241224Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×