Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T23:25:09.376Z Has data issue: false hasContentIssue false

8 - Inhibitory Theory: Assumptions, Findings, and Relevance to Interventions

from Part II - Mechanisms of Cognitive Aging

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access

Summary

Inhibitory theory proposes three major functions that are required to control overactivation in response to cues in the environment and thought. Evidence suggests that each function, Access, Deletion, and Restraint, is reduced in efficiency in healthy older adults. These reductions can together account for slowing, reduced working memory capacity, and increased susceptibility to interference at retrieval – all memory phenomena associated with aging. These reductions also result in greater knowledge of the context in which events occur as well as in greater usage of that information. Opportunities for positive interventions tied to these inefficiencies are also noted.

Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 147 - 160
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amer, T., Anderson, J. A., Campbell, K. L., Hasher, L., & Grady, C. L. (2016). Age differences in the neural correlates of distraction regulation: A network interaction approach. NeuroImage, 139, 231239. https://doi.org/10.1016/j.neuroimage.2016.06.036Google Scholar
Amer, T., & Hasher, L. (2014). Conceptual processing of distractors by older but not younger adults. Psychological Science, 25(12), 22522258. https://doi.org/10.1177/0956797614555725Google Scholar
Anderson, J. A., Campbell, K. L., Amer, T., Grady, C. L., & Hasher, L. (2014). Timing is everything: Age differences in the cognitive control network are modulated by time of day. Psychology and Aging, 29(3), 648657. https://doi.org/10.1037/a0037243CrossRefGoogle ScholarPubMed
Anderson, M. C., Reinholz, J., Kuhl, B. A., & Mayr, U. (2011). Intentional suppression of unwanted memories grows more difficult as we age. Psychology and Aging, 26(2), 397405. https://doi.org/10.1037/a0022505Google Scholar
Andrews‐Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self‐generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316(1), 2952. https://doi.org/10.1111/nyas.12360Google Scholar
Balota, D. A., Tse, C. S., Hutchison, K. A., et al. (2010). Predicting conversion to dementia of the Alzheimer’s type in a healthy control sample: The power of errors in Stroop color naming. Psychology and Aging, 25(1), p. 208. https://doi.org/10.1037/a0017474Google Scholar
Biss, R. K., Campbell, K. L., & Hasher, L. (2013). Interference from previous distraction disrupts older adults’ memory. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 68(4), 558561. https://doi.org/10.1093/geronb/gbs074Google Scholar
Biss, R. K., & Hasher, L. (2011). Delighted and distracted: Positive affect increases priming for irrelevant information. Emotion, 11(6), 14741478. https://doi.org/10.1037/a0023855Google Scholar
Biss, R. K., Ngo, K. W. J., Hasher, L., Campbell, K. L., & Rowe, G. (2013). Distraction can reduce age-related forgetting. Psychological Science, 24(4), 448455. https://doi.org/10.1177/0956797612457386Google Scholar
Biss, R. K., Rowe, G., Weeks, J. C., Hasher, L., & Murphy, K. J. (2018). Leveraging older adults’ susceptibility to distraction to improve memory for face-name associations. Psychology and Aging, 33(1), 158164. http://dx.doi.org/10.1037/pag0000192Google Scholar
Biss, R. K., Rowe, G., Weeks, J. C., Hasher, L., & Murphy, K. J. (2019). An implicit method to improve face-name memory in older adults with amnestic mild cognitive impairment. Ms submitted for publication.Google Scholar
Bjorklund, D. F., & Harnishfeger, K. K. (1990). The resources construct in cognitive development: Diverse sources of evidence and a theory of inefficient inhibition. Developmental Review, 10, 4871. https://doi.org/10.1016/0273-2297(90)90004-NGoogle Scholar
Bowles, N. L., & Poon, L. W. (1985). Aging and retrieval of words in semantic memory. Journal of Gerontology, 40(1), 7177. https://doi.org/10.1093/geronj/40.1.71Google Scholar
Buckner, R. L., Andrews‐Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124(1), 138. https://doi.org/10.1196/annals.1440.011Google Scholar
Campbell, K. L., Grady, C. L., Ng, C., & Hasher, L. (2012a). Age differences in the frontoparietal cognitive control network: Implications for distractibility. Neuropsychologia, 50(9), 22122223. https://doi.org/10.1016/j.neuropsychologia.2012.05.025Google Scholar
Campbell, K. L., & Hasher, L. (2018). Hyper-binding only apparent under fully implicit test conditions. Psychology and Aging, 33(1), 176181. https://doi.org/10.1037/pag0000216Google Scholar
Campbell, K. L., Hasher, L., & Thomas, R. C. (2010). Hyper-binding: A unique age effect. Psychological Science, 21(3), 399405. https://doi.org/10.1177/0956797609359910Google Scholar
Campbell, K. L., Trelle, A., & Hasher, L. (2014). Hyper-binding across time: Age differences in the effect of temporal proximity on paired associate learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(1), 293299. https://doi.org/10.1037/a0034109Google Scholar
Campbell, K. L., Zimerman, S., Healey, M. K., Lee, M. M. S., & Hasher, L. (2012b). Age differences in visual statistical learning. Psychology and Aging, 27(3), 650656. http://dx.doi.org/10.1037/a0026780Google Scholar
Carlson, M. C., Hasher, L., Connelly, S. L., & Zacks, R. T. (1995). Aging, distraction, and the benefits of predictable location. Psychology and Aging, 10(3), 427436. http://dx.doi.org/10.1037/0882-7974.10.3.427Google Scholar
Comalli, P. E. Jr., Wapner, S., & Werner, H. (1962). Interference effects of Stroop color-word test in childhood, adulthood, and aging. Journal of Genetic Psychology, 100(1), 4753. http://dx.doi.org/10.1080/00221325.1962.10533572Google Scholar
Connelly, S. L., Hasher, L., & Zacks, R. T. (1991). Age and reading: The impact of distraction. Psychology and Aging, 6(4), 533541. http://dx.doi.org/10.1037/0882-7974.6.4.533Google Scholar
Coxon, J. P., Goble, D. J., Leunissen, I., et al. (2016). Functional brain activation associated with inhibitory control deficits in older adults. Cerebral Cortex, 26, 1222. https://doi.org/10.1093/cercor/bhu165Google Scholar
Craik, F. I. M. (1986). A functional account of age differences in memory. In Klix, F. & Hagendorf, H. (Eds.), Human memory and cognitive capabilities: Mechanisms and performance (pp. 409422). Amsterdam: North-Holland and Elsevier.Google Scholar
Darowski, E. S., Helder, E., Zacks, R. T., Hasher, L., & Hambrick, D. Z. (2008). Age-related differences in cognition: The role of distraction control. Neuropsychology, 22(5), 638644. https://doi.org/10.1037/0894-4105.22.5.638Google Scholar
Davidson, D. J., Zacks, R. T., & Williams, C. C. (2003). Stroop interference, practice, and aging. Aging, Neuropsychology, and Cognition, 10(2), 8598. https://doi.org/10.1076/anec.10.2.85.14463Google Scholar
Dey, A., Sommers, M. S., & Hasher, L. (2017). An age- related deficit in resolving interference: Evidence from speech perception. Psychology and Aging, 32(6), 572587. https://doi.org/10.1037/pag0000189Google Scholar
Fredrickson, B. L., & Branigan, C. (2005). Positive emotions broaden the scope of attention and thought-action repertoires. Cognition and Emotion, 19(3), 313332. https://doi.org/10.1080/02699930441000238Google Scholar
Gazzaley, A., Clapp, W., Kelley, J., et al. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences USA, 105(35), 1312213126. https://doi.org/10.1073/pnas.0806074105Google Scholar
Gazzaley, A., Cooney, J. W., Rissman, J., & D’Esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 12981300. https://doi.org/10.1038/nn1543Google Scholar
Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews Neuroscience, 13(7), 491501. https://doi.org/10.1196/annals.1440.009Google Scholar
Hamm, V. P., & Hasher, L. (1992). Age and the availability of inferences. Psychology and Aging, 7, 5664.Google Scholar
Hartman, M., & Hasher, L. (1991). Aging and suppression: Memory for previously relevant information. Psychology and Aging, 6(4), 587594.Google Scholar
Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General, 108(3), 356388. http://dx.doi.org/10.1037/0096-3445.108.3.356Google Scholar
Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In Bower, G. H. (Ed.), The psychology of learning and motivation (Vol. 22, pp. 193225). New York: Academic Press.Google Scholar
Hasher, L., Zacks, R. T., & May, C. P. (1999). Inhibitory control, circadian arousal, and age. In Gopher, D. & Koriat, A. (Eds.), Attention & performance, XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 653675). Cambridge, MA: MIT Press.Google Scholar
Healey, M. K., Hasher, L., & Campbell, K. L. (2013). The role of suppression in resolving interference: Evidence for an age-related deficit. Psychology and Aging, 28(3), 721728. https://doi.org/10.1037/a0033003Google Scholar
Healey, M. K., Hasher, L., & Danilova, E. (2011). The stability of working memory: Do previous tasks influence complex span? Journal of Experimental Psychology: General, 140(4), 573585. https://doi.org/10.1037/a0024587Google Scholar
Healey, M. K., Ngo, K. J., & Hasher, L. (2014). Below-baseline suppression of competitors during interference resolution by younger but not older adults. Psychological Science, 25(1), 145151. https://doi.org/10.1177/0956797613501169Google Scholar
Hess, T. M. (2014). Selective engagement of cognitive resources: Motivational influences on older adults’ cognitive functioning. Perspectives on Psychological Science, 9(4), 388407. https://doi.org/10.1177/1745691614527465Google Scholar
Howard, D. V., McAndrews, M. P., & Lasaga, M. I. (1981). Semantic priming of lexical decisions in young and old adults. Journal of Gerontology, 36(6), 707714. https://doi.org/10.1093/geronj/36.6.707Google Scholar
Ikier, S., & Hasher, L. (2006). Age differences in implicit interference. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 61, 278284. https://doi.org/10.1111/j.1467-9280.2008.02109.xGoogle Scholar
Ikier, S., Yang, L., & Hasher, L. (2008). Implicit proactive interference, age, and automatic versus controlled retrieval strategies. Psychological Science, 19(5), 456461. https://doi.org/10.1111/j.1467-9280.2008.02109.xGoogle Scholar
Jonker, T. R., Seli, P., & MacLeod, C. M. (2013). Putting retrieval-induced forgetting in context: An inhibition-free, context-based account. Psychological Review, 120(4), 852872. https://doi.org/10.1037/a0034246Google Scholar
Jost, K., Bryck, R. L., Vogel, E. K., & Mayr, U. (2011). Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cerebral Cortex, 21(5), 11471154. https://doi.org/10.1093/cercor/bhq185Google Scholar
Kahana, M. J., Howard, M. W., Zaromb, F., & Wingfield, A. (2002). Age dissociates recency and lag recency effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 530540. https://doi.org/10.1037//0278-7393.28.3.530Google ScholarPubMed
Kim, S., Hasher, L., & Zacks, R. T. (2007). Aging and a benefit of distractibility. Psychonomic Bulletin and Review, 14(2), 301305. https://doi.org/10.3758/bf03194068Google Scholar
Laver, G. D., & Burke, D. M. (1993). Why do semantic priming effects increase in old age? A meta-analysis. Psychology and Aging, 8(1), 3443. http://dx.doi.org/10.1037/0882-7974.8.1.34Google Scholar
Logan, G. D., & Etherton, J. L. (1994). What is learned during automatization? The role of attention in constructing an instance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(5), 10221050. http://dx.doi.org/10.1037/0278-7393.20.5.1022Google Scholar
Lustig, C., Hasher, L., & Tonev, S. T. (2006). Distraction as a determinant of processing speed. Psychonomic Bulletin and Review, 13(4), 619625. https://doi.org/10.3758/bf03193972Google Scholar
Lustig, C., Hasher, L., & Zacks, R. T. (2007). Inhibitory deficit theory: Recent developments in a “new view.” In Gorfein, D. S. & MacLeod, C. M. (Eds.), The place of inhibition in cognition (pp. 145162). Washington: American Psychological Association.Google Scholar
Lustig, C., & Jantz, T. (2015). Questions of age differences in interference control: When and how, not if. Brain Research, 1612, 5969. https://doi.org/10.1016/j.brainres.2014.10.024Google Scholar
Lustig, C., May, C. P., & Hasher, L. (2001). Working memory span and the role of proactive interference. Journal of Experimental Psychology: General, 130(2), 199207. https://doi.org/10.1037//0096-3445.130.2.199Google Scholar
May, C. P., & Hasher, L. (1998). Synchrony effects in inhibitory control over thought and action. Journal of Experimental Psychology: Human Perception and Performance, 24(2), 363379. https://doi.org/10.1037/0096-1523.24.2.363Google Scholar
May, C. P., & Hasher, L. (2017). Synchrony affects performance for older but not younger neutral-type adults. Timing and Time Perception, 5(2), 129148. https://doi.org/10.1163/22134468-00002087Google Scholar
May, C. P., Hasher, L., & Kane, M. J. (1999). The role of interference in memory span. Memory and Cognition, 27(5), 759767. https://doi.org/10.3758/BF03198529Google Scholar
May, C. P., Hasher, L., & Stoltzfus, E. R. (1993). Optimal time of day and the magnitude of age differences in memory. Psychological Science, 4(5), 326330. https://doi.org/10.1111/j.1467-9280.1993.tb00573.xGoogle Scholar
May, C. P., Rahhal, T., Berry, E. M., & Leighton, E. A. (2005). Aging, source memory, and emotion. Psychology and Aging, 20(4), 571578. https://doi.org/10.1037/0882-7974.20.4.571Google Scholar
Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: Evidence of a dependence between retrieval operations. Journal of Experimental Psychology, 90(2), 227234. http://dx.doi.org/10.1037/h0031564Google Scholar
Moscovitch, M. (1992). Memory and working-with-memory: A component process model based on modules and central systems. Journal of Cognitive Neuroscience, 4(3), 257267. https://doi.org/10.1162/jocn.1992.4.3.257Google Scholar
Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic memory and beyond: The hippocampus and neocortex in transformation. Annual Review of Psychology, 67, 105134. https://doi.org/10.1146/annurev-psych-113011-143733Google Scholar
Mullet, H. G., Scullin, M. K., Hess, T. J., et al. (2013). Prospective memory and aging: Evidence for preserved spontaneous retrieval with exact but not related cues. Psychology and Aging, 28(4), 910922. https://doi.org/10.1037/a0034347Google Scholar
Neely, J. H. (1976). Semantic priming and retrieval from lexical memory: Evidence for facilitatory and inhibitory processes. Memory and Cognition, 4(5), 648654. https://doi.org/10.3758/BF03213230Google Scholar
Ngo, K. W. J., Biss, R. K., & Hasher, L. (2018). Time of day effects on the use of distraction to minimise forgetting. Quarterly Journal of Experimental Psychology, 71(11), 23342341. https://doi.org/10.117/1747021817740808Google Scholar
Ngo, K. W. J., & Hasher, L. (2017). Optimal testing time for suppression of competitors during interference resolution. Memory, 25(10), 13961401. https://doi.org/10.1080/09658211.2017.1309437Google Scholar
Old, S. R., & Naveh-Benjamin, M. (2008). Differential effects of age on item and associative measures of memory: A meta-analysis. Psychology and Aging, 23(1), 104118. http://dx.doi.org/10.1037/0882-7974.23.1.104Google Scholar
Ortega, A., Gómez-Ariza, C. J., Román, P., & Bajo, M. T. (2012). Memory inhibition, aging, and the executive deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(1), 178186. https://doi.org/10.1037/a0024510Google Scholar
Powell, P. S., Strunk, J., James, T., Polyn, S., & Duarte, A. (2018). Decoding selective attention to context memory: An aging study. NeuroImage, 181, 95107. https://doi.org/10.1016/j.neuroimage.2018.06.085Google Scholar
Raaijmakers, J. G. W., & Jakab, E. (2013). Is forgetting caused by inhibition? Current Directions in Psychological Science, 22(3), 205209. https://doi.org/10.1177/0963721412473472Google Scholar
Rabbitt, P. (1965). An age-decrement in the ability to ignore irrelevant information. Journal of Gerontology, 20(2), 233238. https://doi.org/10.1093/geronj/20.2.233Google Scholar
Rey-Mermet, A., & Gade, M. (2017). Inhibition in aging: What is preserved? What declines? A meta-analysis. Psychonomic Bulletin and Review, 25(5), 16951716. https://doi.org/10.3758/s13423-017-1384-7Google Scholar
Rowe, G., Hasher, L., & Turcotte, J. (2008). Age differences in visuospatial working memory. Psychology and Aging, 23(1), 7984. https://doi.org/10.1037/0882-7974.23.1.79Google Scholar
Rowe, G., Valderrama, S., Hasher, L., & Lenartowicz, A. (2006). Attentional disregulation: A benefit for implicit memory. Psychology and Aging, 21(4), 826830. https://doi.org/10.1037/0882-7974.21.4.826Google Scholar
Schmitz, T. W., Cheng, F. H., & De Rosa, E. (2010). Failing to ignore: Paradoxical neural effects of perceptual load on early attentional selection in normal aging. Journal of Neuroscience, 30(44), 1475014758. https://doi.org/10.1523/JNEUROSCI.2687-10.2010Google Scholar
Schwarzkopp, T., Mayr, U., & Jost, K. (2016). Early selection versus late correction: Age-related differences in controlling working memory contents. Psychology and Aging, 31(5), 430441. http://dx.doi.org/10.1037/pag0000103Google Scholar
Scullin, M. K., Bugg, J. M., McDaniel, M. A., & Einstein, G. O. (2011). Prospective memory and aging: Preserved spontaneous retrieval, but impaired deactivation, in older adults. Memory and Cognition, 39(7), 12321240. https://doi.org/10.3758/s13421-011-0106-zGoogle Scholar
Sebastian, A., Baldermann, C., Feige, B., Katzev, M., & Scheller, E. (2013). Differential effects of age on subcomponents of response inhibition. Neurobiology of Aging, 34(9), 21832193. https://doi.org/10.1016/j.neurobiolaging.2013.03.013Google Scholar
Tsvetanov, K. A., Ye, Z., Hughes, L., et al. (2018). Activity and connectivity differences underlying inhibitory control across the adult lifespan. Journal of Neuroscience, 38(36), 78877900. https://doi.org/10.1523/JNEUROSCI.2919-17.2018Google Scholar
Verhaeghen, P., & De Meersman, L. (1998). Aging and the Stroop effect: A meta-analysis. Psychology and Aging, 13(1), 120126. https://doi.org/10.1037//0882-7974.13.1.120Google Scholar
Wechsler, D. (1981). The Wechsler Adult Intelligence Scale – Revised. New York: Psychological Corporation.Google Scholar
Weeks, J. C., Biss, R. K., Murphy, K. J., & Hasher, L. (2016). Face–name learning in older adults: A benefit of hyper-binding. Psychonomic Bulletin and Review, 23(5), 15591565. http://dx.doi.org/10.3758/s13423-016-1003-zGoogle Scholar
Weeks, J. C., & Hasher, L. (2014). The disruptive – and beneficial – effects of distraction on older adults’ cognitive performance. Frontiers in Psychology, 5, p. 133. https://doi.org/10.3389/fpsyg.2014.00133Google Scholar
Weeks, J. C., & Hasher, L. (2017). Older adults encode more, not less: Evidence for age-related attentional broadening. Aging, Neuropsychology, and Cognition, 25(4), 576587. https://doi.org/10.1080/13825585.2017.1353678Google Scholar
Weith, M. B., & Zacks, R. T. (2011). Time of day effects on problem solving: When the non-optimal is optimal. Thinking and Reasoning, 17(4), 387401. https://doi.org/10.1080/13546783.2011.625663Google Scholar
West, R., & Alain, C. (2000). Age-related decline in inhibitory control contributes to the increased Stroop effect observed in older adults. Psychophysiology, 37(2), 179189. https://doi.org/10.1111/1469-8986.3720179Google Scholar
Yang, L., & Hasher, L. (2007). The enhanced effects of pictorial distraction in older adults, Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 62(4), 230233. https://doi.org/10.1093/geronb/62.4.P230Google Scholar
Yang, L., Hasher, L., & Wilson, D. E. (2007). Synchrony effects in automatic and controlled retrieval. Psychonomic Bulletin and Review, 14(1), 5156. https://doi.org/10.3758/BF03194027Google Scholar
Yoon, C., May, C. P., & Hasher, L. (2000). Aging, circadian arousal patterns, and cognition. In Park, D. C. & Schwarz, D. (Eds.), Cognitive aging: A primer (pp. 151171). Philadelphia: Psychology Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×