Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T07:46:54.217Z Has data issue: false hasContentIssue false

9 - The Automatic Selective Perception Model

from Part II - Theoretical Models of Bilingual Phonetics and Phonology

Published online by Cambridge University Press:  14 November 2024

Mark Amengual
Affiliation:
University of California, Santa Cruz
Get access

Summary

The Automatic Selective Perception (ASP) model posits that listeners make use of selective perceptual routines (SPRs) that are fast and efficient for recovering lexical meaning. These SPRs serve as filters to accentuate relevant cues and minimize irrelevant information. Years of experience with the first language (L1) lead to fairly automatic L1 SPRs; consequently, few attentional resources are needed in processing L1 speech. In contrast, L2 SPRs are less automatic. Under difficult task or stimulus conditions, listeners fall back on more automatic processes, specifically L1 SPRs. And L2 speech perception suffers where there is a mismatch between the L1 and the L2 phonetics because L1 SPRs may not extract the important cues needed for identifying L2 phonemes. This chapter will present behavioral and neurophysiology evidence that supports the ASP model, but which also indicates the need for some modification. We offer suggestions for future directions in extending this model.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, S. L. & Curtin, S. (2018). Fourteen-month-olds’ sensitivity to acoustic salience in minimal pair word learning. Journal of Child Language, 45(5), 11981211.CrossRefGoogle ScholarPubMed
Aslin, R. N., Pisoni, D. B., Hennessy, B. L., & Perey, A. J. (1981). Discrimination of voice onset time by human infants: New findings and implications for the effects of early experience. Child Development, 52(4), 11351145.CrossRefGoogle ScholarPubMed
Barrios, S. L., Namyst, A. M., Lau, E. F., Feldman, N. H., & Idsardi, W. J. (2016). Establishing new mappings between familiar phones: Neural and behavioral evidence for early automatic processing of nonnative contrasts. Frontiers in Psychology, 7, 995.CrossRefGoogle ScholarPubMed
Best, C. T., Goldstein, L. M., Nam, H., & Tyler, M. D. (2016). Articulating what infants attune to in native speech. Ecological Psychology: A Publication of the International Society for Ecological Psychology, 28(4), 216261.CrossRefGoogle ScholarPubMed
Best, C. T. & Tyler, M. (2007). Non-native and second language speech perception: Commonalities and complementarities. In Bohn, O. S. & Munro, M. J., eds., Language Experience in Second Language Speech Learning: In Honor of James Emil Flege. Amsterdam: John Benjamins, pp. 1334.CrossRefGoogle Scholar
Browman, C. P. & Goldstein, L. (1992). Articulatory phonology: An overview. Phonetica, 49(3–4), 155180.CrossRefGoogle ScholarPubMed
Buchwald, J. S., Guthrie, D., Schwafel, J., Erwin, R. J., & Van Lancker, D. (1994). Influence of language structure on brain-behavior development. Brain and Language, 46(4), 607619.CrossRefGoogle ScholarPubMed
Burnham, D. K. (1986). Developmental loss of speech perception: Exposure to and experience with a first language. Applied Psycholinguistics, 7(3), 207239.CrossRefGoogle Scholar
Cheour-Luhtanen, M., Alho, K., Kujala, T., et al. (1995). Mismatch negativity indicates vowel discrimination in newborns. Hearing Research, 82(1), 5358.CrossRefGoogle ScholarPubMed
Cowan, N. (2016). Working memory maturation: Can we get at the essence of cognitive growth? Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 11(2), 239264.CrossRefGoogle ScholarPubMed
Datta, H., Hestvik, A., Vidal, N., et al. (2020). Automaticity of speech processing in early bilingual adults and children. Bilingualism: Language and Cognition, 23(2), 429445.CrossRefGoogle ScholarPubMed
Dawson, C., Aalto, D., Šimko, J., et al. (2016). Quantity language speakers show enhanced subcortical processing. Biological Psychology, 118, 169175.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G. & Dehaene, S. (1994). Speed and cerebral correlates of syllable discrimination in infants. Nature, 370(6487), 292295.CrossRefGoogle ScholarPubMed
Dehaene-Lambertz, G., Dupoux, E., & Gout, A. (2000). Electrophysiological correlates of phonological processing: A cross-linguistic study. Journal of Cognitive Neuroscience, 12(4), 635647.CrossRefGoogle ScholarPubMed
Diehl, R. L., Lotto, A. J., & Holt, L. L. (2004). Speech perception. Annual Review of Psychology, 55, 149179.CrossRefGoogle ScholarPubMed
Flege, J. E. (1987). The production of “new” and “similar” phones in a foreign language: Evidence for the effect of equivalence classification. Journal of Phonetics, 15(1), 4765.CrossRefGoogle Scholar
Flege, J. E. (1995). Second language speech learning: Theory, findings and problems. In Strange, W., ed., Speech perception and linguistic experience: Issues in cross-language research. Timonium, MD: York Press, pp. 233277.Google Scholar
Flege, J. E., Frieda, E. M., & Nozawa, T. (1997). Amount of native-language (L1) use affects the pronunciation of an L2. Journal of Phonetics, 25, 169186.CrossRefGoogle Scholar
Flege, J. E. & Liu, S. (2001). The effect of experience on adults’ acquisition of a second language. Studies in Second Language Acquisition, 23(4), 527552.CrossRefGoogle Scholar
García, P. B. & Froud, K. (2018). Perception of American English vowels by sequential Spanish-English bilinguals. Bilingualism: Language and Cognition, 21(1), 80103.CrossRefGoogle ScholarPubMed
Garcia-Sierra, A., Ramírez-Esparza, N., & Kuhl, P. K. (2016). Relationships between quantity of language input and brain responses in bilingual and monolingual infants. International Journal of Psychophysiology, 110, 117.CrossRefGoogle ScholarPubMed
Garrido-Nag, K. (2013). The effects of attention on the mismatch response of infants. [Doctoral dissertation, City University of New York].Google Scholar
Grover, V., Shafer, V. L., Campanelli, L., Whalen, D. H., & Levy, E. S. (2021). Perception of American English consonants /v/ and /w/ by Hindi speakers of English. Journal of Second Language Pronunciation, 7(3), 370407.CrossRefGoogle Scholar
Hendry, A., Jones, E. J. H., & Charman, T. (2016). Executive function in the first three years of life: Precursors, predictors and patterns. Developmental Review, 42, 133.CrossRefGoogle Scholar
Hisagi, M., Garrido-Nag, K., Datta, H., & Shafer, V. L. (2015). ERP indices of vowel processing in Spanish-English bilinguals. Bilingualism: Language and Cognition, 18(2), 271289.CrossRefGoogle Scholar
Hisagi, M., Shafer, V. L., Strange, W., & Sussman, E. S. (2010). Perception of a Japanese vowel length contrast by Japanese and American English listeners: Behavioral and electrophysiological measures. Brain Research, 1360, 89105.CrossRefGoogle ScholarPubMed
Hisagi, M., Shafer, V. L., Strange, W., & Sussman, E. S. (2015). Neural measures of a Japanese consonant length discrimination by Japanese and American English listeners: Effects of attention. Brain Research, 1626, 218231.CrossRefGoogle ScholarPubMed
Hoonhorst, I., Serniclaes, W., Collet, G., et al. (2009). N1b and Na subcomponents of the N100 long latency auditory evoked-potential: Neurophysiological correlates of voicing in French-speaking subjects. Clinical Neurophysiology, 120(5), 897903.CrossRefGoogle ScholarPubMed
Koch, C. (2004). The Quest for Consciousness: A Neurobiological Approach. Englewood, CO: Roberts & Co.Google Scholar
Krishnan, A., Suresh, C. H., & Gandour, J. T. (2021). Cortical hemisphere preference and brainstem ear asymmetry reflect experience-dependent functional modulation of pitch. Brain and Language, 221, 104995.CrossRefGoogle ScholarPubMed
Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255(5044), 606608.CrossRefGoogle ScholarPubMed
Kujala, T. & Leminen, M. (2017). Low-level neural auditory discrimination dysfunctions in specific language impairment: A review on mismatch negativity findings. Developmental Cognitive Neuroscience, 28, 6575.CrossRefGoogle ScholarPubMed
Lee, C.-Y., Yen, H.-L., Yeh, P.-W., et al. (2012). Mismatch responses to lexical tone, initial consonant, and vowel in Mandarin-speaking preschoolers. Neuropsychologia, 50(14), 32283239.CrossRefGoogle ScholarPubMed
Leppänen, P. H. T., Richardson, U., Pihko, E., et al. (2002). Brain responses to changes in speech sound durations differ between infants with and without familial risk for dyslexia. Developmental Neuropsychology, 22(1), 407422.CrossRefGoogle ScholarPubMed
Levy, E. S. (2009a). Language experience and consonantal context effects on perceptual assimilation of French vowels by American-English learners of French. Journal of the Acoustical Society of America, 125(2), 11381152.CrossRefGoogle ScholarPubMed
Levy, E. S. (2009b). On the assimilation–discrimination relationship in American English adults’ French vowel learning. Journal of the Acoustical Society of America, 126(5), 26702682.CrossRefGoogle ScholarPubMed
Levy, E. S. & Strange, W. (2008). Perception of French vowels by American English adults with and without French language experience. Journal of Phonetics, 36(1), 141157.CrossRefGoogle Scholar
Liberman, A. M. & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 136.CrossRefGoogle ScholarPubMed
Liu, L., Ong, J. H., Tuninetti, A., & Escudero, P. (2018). One way or another: Evidence for perceptual asymmetry in pre-attentive learning of non-native contrasts. Frontiers in Psychology, 9, 162.CrossRefGoogle ScholarPubMed
Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, 2nd ed. Cambridge, MA: MIT Press.Google Scholar
MacKain, K. S., Best, C. T., & Strange, W. (1981). Categorical perception of English /r/ and /l/ by Japanese bilinguals. Applied Psycholinguistics, 2(4), 369390.CrossRefGoogle Scholar
MacKay, I. R., Flege, J. E., Piske, T., & Schirru, C. (2001). Category restructuring during second-language speech acquisition. Journal of the Acoustical Society of America, 110(1), 516528.CrossRefGoogle ScholarPubMed
Mah, J., Goad, H., & Steinhauer, K. (2016). Using event-related brain potentials to assess perceptibility: The case of French speakers and English [h]. Frontiers in Psychology, 7, 1469.CrossRefGoogle ScholarPubMed
May, P. J. C. & Tiitinen, H. (2010). Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology, 47(1), 66122.CrossRefGoogle ScholarPubMed
Mersad, K., Kabdebon, C., & Dehaene-Lambertz, G. (2021). Explicit access to phonetic representations in 3-month-old infants. Cognition, 213, 104613.CrossRefGoogle ScholarPubMed
Moerel, M., De Martino, F., & Formisano, E. (2014). An anatomical and functional topography of human auditory cortical areas. Frontiers in Neuroscience, 8, 225.CrossRefGoogle ScholarPubMed
Moore, J. K. & Linthicum, F. H. (2007). The human auditory system: A timeline of development. International Journal of Audiology, 46(9), 460478.CrossRefGoogle ScholarPubMed
Morgan, G., Curtin, M., & Botting, N. (2021). The interplay between early social interaction, language and executive function development in deaf and hearing infants. Infant Behavior & Development, 64, 101591.CrossRefGoogle ScholarPubMed
Morr, M. L., Shafer, V. L., Kreuzer, J. A., & Kurtzberg, D. (2002). Maturation of mismatch negativity in typically developing infants and preschool children. Ear and Hearing, 23(2), 118136.CrossRefGoogle ScholarPubMed
Näätänen, R., Kujala, T., & Winkler, I. (2011). Auditory processing that leads to conscious perception: A unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology, 48(1), 422.CrossRefGoogle ScholarPubMed
Näätänen, R., Lehtokoski, A., Lennes, M., et al. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385(6615), 432434.CrossRefGoogle ScholarPubMed
Nittrouer, S. & Miller, M. E. (1997). Predicting developmental shifts in perceptual weighting schemes. Journal of the Acoustical Society of America, 101(4), 22532266.CrossRefGoogle ScholarPubMed
Pater, J., Stager, C., & Werker, J. F. (2004). The perceptual acquisition of phonological contrasts. Language, 80(3), 384402.CrossRefGoogle Scholar
Peltola, M. S., Tamminen, H., Toivonen, H., Kujala, T., & Näätänen, R. (2012). Different kinds of bilinguals: Different kinds of brains – the neural organisation of two languages in one brain. Brain and Language, 121(3), 261266.CrossRefGoogle ScholarPubMed
Reh, R., Arredondo, M., & Werker, J. F. (2018). Understanding individual variation in levels of second language attainment through the lens of critical period mechanisms. Bilingualism: Language and Cognition, 21(5), 930931.CrossRefGoogle Scholar
Rinker, T., Shafer, V. L., Kiefer, M., Vidal, N., & Yu, Y. H. (2017). T-complex measures in bilingual Spanish-English and Turkish-German children and monolingual peers. PLoS ONE, 12(3), e0171992.CrossRefGoogle ScholarPubMed
Rinker, T., Yu, Y. H., Wagner, M., & Shafer, V. L. (2022). Language learning under varied conditions: Neural indices of speech perception in bilingual Turkish-German children and in monolingual children with developmental language disorder (DLD). Frontiers in Human Neuroscience, 15, 802.CrossRefGoogle ScholarPubMed
Shafer, V. L., Kresh, S., Ito, K., et al. (2021). The neural timecourse of American English vowel discrimination by Japanese, Russian and Spanish second-language learners of English. Bilingualism: Language and Cognition, 24(4), 642655.CrossRefGoogle Scholar
Shafer, V. L., Morr, M. L., Datta, H., Kurtzberg, D., & Schwartz, R. G. (2005). Neurophysiological indexes of speech processing deficits in children with specific language impairment. Journal of Cognitive Neuroscience, 17(7), 11681180.CrossRefGoogle ScholarPubMed
Shafer, V. L., Schwartz, R. G., & Kurtzberg, D. (2004). Language-specific memory traces of consonants in the brain. Cognitive Brain Research, 18(3), 242254.CrossRefGoogle ScholarPubMed
Shafer, V. L., Yu, Y. H., & Datta, H. (2010). Maturation of speech discrimination in 4-to 7-yr-old children as indexed by event-related potential mismatch responses. Ear and Hearing, 31(6), 735745.CrossRefGoogle ScholarPubMed
Shafer, V. L., Yu, Y. H., & Datta, H. (2011). The development of English vowel perception in monolingual and bilingual infants: Neurophysiological correlates. Journal of Phonetics, 39(4), 527545.CrossRefGoogle ScholarPubMed
Shafer, V. L., Yu, Y. H., & Garrido-Nag, K. (2012). Neural mismatch indices of vowel discrimination in monolingually and bilingually exposed infants: Does attention matter? Neuroscience Letters, 526(1), 1014.CrossRefGoogle ScholarPubMed
Shafer, V. L., Yu, Y. H., & Wagner, M. (2015). Maturation of cortical auditory evoked potentials (CAEPs) to speech recorded from frontocentral and temporal sites: Three months to eight years of age. International Journal of Psychophysiology, 95(2), 7793.CrossRefGoogle ScholarPubMed
Sharma, A. G. & Dorman, M. F. (2000). Neurophysiologic correlates of cross-language phonetic perception. Journal of the Acoustical Society of America, 107(5), 26972703.CrossRefGoogle ScholarPubMed
Stark, R. E. & Heinz, J. M. (1996). Vowel perception in children with and without language impairment. Journal of Speech and Hearing Research, 39(4), 860869.CrossRefGoogle ScholarPubMed
Steinschneider, M., Nourski, K. V., & Fishman, Y. I. (2013). Representation of speech in human auditory cortex: Is it special? Hearing Research, 305, 5773.CrossRefGoogle ScholarPubMed
Strange, W. (2011). Automatic selective perception (ASP) of first and second language speech: A working model. Journal of Phonetics, 39(4), 456466.CrossRefGoogle Scholar
Strange, W., Akahane-Yamada, R., Kubo, R., et al. (1998). Perceptual assimilation of American English vowels by Japanese listeners. Journal of Phonetics, 26(4), 311344.CrossRefGoogle Scholar
Strange, W. & Shafer, V. L. (2008). Speech perception in second language learners: The re-education of selective perception. In Hansen Edwards, J. G. & Zampini, M. L., eds., Phonology and Second Language Acquisition. Amsterdam: John Benjamins, 153191.CrossRefGoogle Scholar
Sundara, M., Polka, L., & Genesee, F. (2006). Language-experience facilitates discrimination of /d-th/ in monolingual and bilingual acquisition of English. Cognition, 100(2), 369388.CrossRefGoogle ScholarPubMed
Sussman, E., Ritter, W., & Vaughan, H. G. (1998). Attention affects the organization of auditory input associated with the mismatch negativity system. Brain Research, 789(1), 130138.CrossRefGoogle ScholarPubMed
Tamminen, H., Kujala, T., Näätänen, R., & Peltola, M. S. (2021). Aging and non-native speech perception: A phonetic training study. Neuroscience Letters, 740, 135430.CrossRefGoogle ScholarPubMed
Trainor, L. J., Samuel, S. S., Desjardins, R. N., & Sonnadara, R. R. (2001). Measuring temporal resolution in infants using mismatch negativity. Neuroreport, 12(11), 24432448.CrossRefGoogle ScholarPubMed
Wagner, M., Ortiz-Mantilla, S., Rusiniak, M., et al. (2022). Acoustic-level and language-specific processing of native and non-native phonological sequence onsets in the low gamma and theta-frequency bands. Scientific Reports, 12(1), 314.CrossRefGoogle ScholarPubMed
Wagner, M., Shafer, V. L., Martin, B., & Steinschneider, M. (2012). The phonotactic influence on the perception of a consonant cluster /pt/ by native English and native Polish listeners: A behavioral and event related potential (ERP) study. Brain and Language, 123(1), 3041.CrossRefGoogle ScholarPubMed
Wagner, M., Shafer, V. L., Martin, B., & Steinschneider, M. (2013). The effect of native-language experience on the sensory-obligatory components, the P1-N1-P2 and the T-complex. Brain Research, 1522, 3137.CrossRefGoogle ScholarPubMed
Werker, J. F. & Curtin, S. (2005). PRIMIR: A developmental framework of infant speech processing. Language Learning and Development, 1(2), 197234.CrossRefGoogle Scholar
Werker, J. F., Fennell, C. T., Corcoran, K. M., & Stager, C. L. (2002). Infants’ ability to learn phonetically similar words: Effects of age and vocabulary size. Infancy, 3(1), 130.CrossRefGoogle Scholar
Werker, J. F. & Lalonde, C. E. (1988). Cross-language speech perception: Initial capabilities and developmental change. Developmental Psychology, 24(5), 672683.CrossRefGoogle Scholar
Werker, J. F. & Logan, J. S. (1985). Cross-language evidence for three factors in speech perception. Perception & Psychophysics, 37(1), 3544.CrossRefGoogle ScholarPubMed
Werker, J. F. & Tees, R. C. (1983). Developmental changes across childhood in the perception of non-native speech sounds. Canadian Journal of Psychology, 37(2), 278286.CrossRefGoogle ScholarPubMed
Williams, L. (1977). The perception of stop consonant voicing by Spanish-English bilinguals. Perception & Psychophysics, 21(4), 289297.CrossRefGoogle Scholar
Xi, J., Xu, H., Zhu, Y., et al. (2021). Categorical perception of Chinese lexical tones by late second language learners with high proficiency: Behavioral and electrophysiological measures. Journal of Speech, Language, and Hearing Research (JSLHR), 64(12), 46954704.CrossRefGoogle ScholarPubMed
Yi, H. G., Leonard, M. K., & Chang, E. F. (2019). The encoding of speech sounds in the superior temporal gyrus. Neuron, 102(6), 10961110.CrossRefGoogle ScholarPubMed
Yu, Y. H., Shafer, V. L., & Sussman, E. S. (2017). Neurophysiological and behavioral responses of Mandarin lexical tone processing. Frontiers in Neuroscience, 11, 95.CrossRefGoogle ScholarPubMed
Yu, Y. H., Tessel, C., Han, H., et al. (2019). Neural indices of vowel discrimination in monolingual and bilingual infants and children. Ear and Hearing, 40(6), 13761390.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×