Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T13:08:28.040Z Has data issue: false hasContentIssue false

12 - Proximate and Ultimate Mechanisms of Cooperation in Fishes

from Part III - Social Cognition

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Cooperative interactions are widespread in the animal kingdom. Their occurrence can be explained by mutually non-exclusive benefits increasing an individual's (1) indirect fitness by cooperating with kin, and (2) direct fitness by mutually or reciprocally cooperating with others. Many cooperative behaviors require well-developed neuroendocrine mechanisms regulating their quantity and quality. Fishes offer great opportunities to increase our insight into ultimate and proximate questions of cooperation. Their social systems range from solitary- and pair-living to lose fission–fusion groups and highly complex societies. Cooperative interactions are an essential part of the behavioural repertoire of most fish species, occurring in a variety of social situations like predator inspection, foraging, mating, or brood care. Such interactions take place among related and unrelated individuals and even between members of different species. This fascinating diversity allows investigating all crucial factors mediating cooperation, e.g., by studying behavioural interactions within and between species, by applying comparative approaches between taxonomic groups and by using state-of-the-art genetic and neuroendocrine technologies to resolve the underlying mechanisms. This chapter provides an overview of the mechanisms and functions of cooperative behaviour in fishes, with the overall aim to illuminate the evolution of cooperative behaviour in general.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ågren, J. A., Davies, N. G., & Foster, K. R. (2019). Enforcement is central to the evolution of cooperation. Nat. Ecol. Evol., 3, 10181029.Google Scholar
Arnold, C. & Taborsky, B. (2010). Social experience in early ontogeny has lasting effects on social skills in cooperatively breeding cichlids. Anim. Behav., 79, 621630.Google Scholar
Arnold, K. E. (2000). Kin recognition in rainbowfish (Melanotaenia eachamensis): Sex, sibs and shoaling. Behav. Ecol. Sociobiol., 48, 385391.Google Scholar
Awata, S., Munehara, H., & Kohda, M. (2005) Social system and reproduction of helpers in a cooperatively breeding cichlid fish (Julidochromis ornatus) in Lake Tanganyika: Field observations and parentage analyses. Behav. Ecol. Sociobiol., 58, 506516.CrossRefGoogle Scholar
Baird, T. A. & Baird, T. D. (1992). Colony formation and some possible benefits and costs of gregarious living in the territorial sand tilefish, Malacanthis plumieri. Bull. Mar. Sci., 50, 5665.Google Scholar
Bergmüller, R. & Taborsky, M. (2005). Experimental manipulation of helping in a cooperative breeder: Helpers “pay to stay” by pre-emptive appeasement. Anim. Behav., 69, 1928.Google Scholar
Boesch, C. & Boesch, H. (1989). Hunting behavior of wild chimpanzees in the Tai National Park. Am. J. Phys. Anthropol, 78, 547573.CrossRefGoogle ScholarPubMed
Bourke, A. F. (2014). Hamilton’s rule and the causes of social evolution. Phil. Trans. R. Soc. B, 369, 20130362.Google Scholar
Brandl, S. J. & Bellwood, D. R. (2015). Coordinated vigilance provides evidence for direct reciprocity in coral reef fishes. Sci. Rep., 5, 14556.Google Scholar
Brouwer, L., Heg, D., & Taborsky, M. (2005). Experimental evidence for helper effects in a cooperatively breeding cichlid. Behav. Ecol., 16, 667673.Google Scholar
Brown, G. E. & Brown, J. A. (1996). Does kin-biased territorial behavior increase kin-biased foraging in juvenile salmonids? Behav. Ecol., 7, 2429.CrossRefGoogle Scholar
Brown, G. E., Brown, J. A., & Wilson, W. R. (1996). The effects of kinship on the growth of juvenile Arctic charr. J. Fish Biol., 48, 313320.Google Scholar
Brown, C. & Laland, K. N. (2003). Social learning in fishes: A review. Fish Fish., 4, 280288.Google Scholar
Brown, C., Laland, K., & Krause, J. (2011). Fish Cognition and Behavior (2nd ed.), Oxford: Wiley-Blackwell.Google Scholar
Bruintjes, R. & Taborsky, M. (2008). Helpers in a cooperative breeder pay a high price to stay: Effects of demand, helper size and sex. Anim. Behav., 75, 18431850.Google Scholar
Bruintjes, R. & Taborsky, M. (2011). Size-dependent task specialization in a cooperative cichlid in response to experimental variation of demand. Anim. Behav., 81, 387394.CrossRefGoogle Scholar
Bshary, R. & Grutter, A. S. (2002). Asymmetric cheating opportunities and partner control in a cleaner fish mutualism. Anim. Behav., 63, 547555.Google Scholar
Bshary, R., Wickler, W., & Fricke, H. (2002). Fish cognition: A primate’s eye view. Anim. Cogn., 5, 113.CrossRefGoogle ScholarPubMed
Bshary, R., Hohner, A., Ait-El-Djoudi, K., & Fricke, H. (2006). Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biol., 4, 23932398.Google Scholar
Bshary, R., Grutter, A. S., Willener, A. S., & Leimar, O. (2008). Pairs of cooperating cleaner fish provide better service quality than singletons. Nature, 455, 964966CrossRefGoogle ScholarPubMed
Bshary, R., Gingins, S., & Vail, A. L. (2014). Social cognition in fishes. Trends Cogn. Sci., 18, 465471.Google Scholar
Burkart, J. M., Hrdy, S. B., & van Schaik, C. P. (2009). Cooperative breeding and human cognitive evolution. Evol. Anthropol., 18, 175186.Google Scholar
Cardoso, S. C., Paitio, J. R., Oliveira, R. F., Bshary, R., & Soares, M. C. (2015). Arginine vasotocin reduces levels of cooperative behaviour in a cleaner fish. Physiol. Behav., 139, 314320.Google Scholar
Carter, G. (2014). The reciprocity controversy. Anim. Behav. Cogn., 1, 368386.Google Scholar
Chabrolles, L., Ammar, I. B., Fernandez, M. S., Boyer, N., Attia, J., Fonseca, P. J., Amorim, M. C. P., & Beauchaud, M. (2017). Appraisal of unimodal cues during agonistic interactions in Maylandia zebra. PeerJ., 5, e3643.Google Scholar
Clutton-Brock, T. (2002). Breeding together: Kin selection and mutualism in cooperative vertebrates. Science, 296, 6972.Google Scholar
Clutton-Brock, T. (2009). Cooperation between non-kin in animal societies. Nature, 462, 5157.CrossRefGoogle ScholarPubMed
Cockburn, A. (1998). Evolution of helping behavior in cooperatively breeding birds. Ann. Rev. Ecol. Sys., 29, 141177.Google Scholar
Crowley, P. H. & Hart, M. K. (2007). Evolutionary stability of egg trading and parceling in simultaneous hermaphrodites: The chalk bass revisited. J. Theoret. Biol., 246, 420429.Google Scholar
Csanyi, V., Csizmadia, G., & Miklosi, A. (1989). Long-term memory and recognition of another species in the paradise fish. Anim. Behav., 37, 908911.Google Scholar
Darden, S. K., James, R., Cave, J. M., Brask, J. B., & Croft, D. P. (2020). Trinidadian guppies use a social heuristic that can support cooperation among non-kin. Proc. R. Soc. B., 287, 20200487.CrossRefGoogle ScholarPubMed
Darwin, C. D. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
Dierkes, P., Heg, D., Taborsky, M., Skubic, E., & Achmann, R. (2005). Genetic relatedness in groups is sex‐specific and declines with age of helpers in a cooperatively breeding cichlid. Ecol. Lett., 8, 968975.Google Scholar
Dugatkin, L. A. (1997). Cooperation among Animals. Oxford: Oxford University Press.Google Scholar
Dugatkin, L. A. & Alfieri, M. (1991). Tit-for-tat in guppies (Poecilia reticulata): The relative nature of cooperation and defection during predator inspection. Evol. Ecol., 5, 300309.Google Scholar
Edenbrow, M. & Croft, D. P. (2012). Kin and familiarity influence association preferences and aggression in the mangrove killifish Kryptolebias marmoratus. J. Fish Biol., 80, 503518.Google Scholar
Field, J. & Leadbeater, E. (2016). Cooperation between non-relatives in a primitively eusocial paper wasp, Polistes dominula. Phil. Trans. R. Soc. B, 371, 20150093.CrossRefGoogle Scholar
Fischer, E. A. (1984). Egg-trading in the chalk bass, Serranus tortugarum, a simultaneous hermaphrodite. Z. Tierpsychol., 66, 143151.CrossRefGoogle Scholar
Fischer, S., Bessert-Nettelbeck, M., Kotrschal, A., & Taborsky, B. (2015). Rearing-group size determines social competence and brain structure in a cooperatively breeding cichlid. Am. Nat., 186, 123140.CrossRefGoogle Scholar
Fischer, S., Zöttl, M., Groenewoud, F., & Taborsky, B. (2014). Group-size-dependent punishment of idle subordinates in a cooperative breeder where helpers pay to stay. Proc. R. Soc. B, 281, 20140184.CrossRefGoogle Scholar
Fischer, S., Bohn, L., Oberhummer, E., Nyman, C., & Taborsky, B. (2017). Divergence of developmental trajectories is triggered interactively by early social and ecological experience in a cooperative breeder. Proc. Natl. Acad. Sci. USA, 114, E9300E9307.Google Scholar
Frommen, J. G. (2020). Aggressive communication in aquatic environments. Funct. Ecol., 34, 364380.Google Scholar
Frommen, J. G., Zala, S. M., Raveh, S., Schaedelin, F. C., Wernisch, B., & Hettyey, A. (2013). Investigating the effect of familiarity on kin recognition of three-spined stickleback (Gasterosteus aculeatus). Ethology, 119, 531539.Google Scholar
Gaston, A. J. (1978). The evolution of group territorial behavior and cooperative breeding. Am. Nat., 112, 10911100.Google Scholar
Gazda, S. K., Connor, R. C., Edgar, R. K., & Cox, F. (2005). A division of labour with role specialization in group–hunting bottlenose dolphins (Tursiops truncatus) off Cedar Key, Florida. Proc. R. Soc. B, 272, 135140.CrossRefGoogle ScholarPubMed
Gerlach, G. & Lysiak, N. (2006). Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim. Behav., 71, 13711377.Google Scholar
Gerlach, G., Hodgins-Davis, A., MacDonald, B., & Hannah, R. C. (2007) Benefits of kin association: Related and familiar zebrafish larvae (Danio rerio) show improved growth. Behav. Ecol. Sociobiol., 61, 17651770.Google Scholar
Godin, J.-G. J. (1997). Behavioural Ecology of Teleost Fishes. Oxford: Oxford University Press.Google Scholar
Godin, J.-G. J. & Davis, S. A, (1995). Who dares, benefits: Predator approach behaviour in the guppy (Poecilia articulata) deters predator pursuit. Proc. R. Soc. B, 259, 193200.Google Scholar
Griesser, M., Drobniak, S. M., Nakagawa, S., & Botero, C. A. (2017). Family living sets the stage for cooperative breeding and ecological resilience in birds. PLoS Biol., 15, e2000483.Google Scholar
Griffiths, S. W. & Armstrong, J. D. (2002). Kin-biased territory overlap and food sharing among Atlantic salmon juveniles. J. Anim. Ecol., 71, 480486.CrossRefGoogle Scholar
Groenewoud, F., Frommen, J. G., Josi, D., Tanaka, H., Jungwirth, A., & Taborsky, M. (2016). Predation risk drives social complexity in cooperative breeders. Proc. Natl. Acad. Sci. USA, 113, 41044109.CrossRefGoogle ScholarPubMed
Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature, 445, 429432.Google Scholar
Gross, M. R. & MacMillan, A. M. (1981). Predation and the evolution of colonial nesting in bluegill sunfish (Lepomis macrochirus). Behav. Ecol. Sociobiol., 8, 163174.Google Scholar
Gunaydin, L. A., Grosenick, L., Finkelstein, J. C., Kauvar, I. V., Fenno, L. E., Adhikari, A., Lammel, S., Mirzabekov, J. J., Airan, R. D., Zalocusky, K. A., Tye, K. M., Anikeeva, P., Malenka, R. C., & Deisseroth, K. (2014) Natural neural projection dynamics underlying social behavior. Cell, 157, 15351551.Google Scholar
Hamilton, W. D. (1963). The evolution of altruistic behavior. Am. Nat., 97, 354356.Google Scholar
Hamilton, W. D. (1964a). The genetical evolution of social behaviour I. J. Theoret. Biol., 7, 116.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1964b). The genetical evolution of social behaviour II. J. Theoret. Biol., 7, 1752.Google Scholar
Hart, M. K., Kratter, A. W., & Crowley, P. H. (2016). Partner fidelity and reciprocal investments in the mating system of a simultaneous hermaphrodite. Behav. Ecol., 27, 14711479.Google Scholar
Harvey-Girard, E., Tweedle, J., Ironstone, J., Cuddy, M., Ellis, W., & Maler, L. (2010). Long-term recognition memory of individual conspecifics is associated with telencephalic expression of Egr-1 in the electric fish Apteronotus leptorhynchus. J. Comp. Neurol., 518, 26662692.Google Scholar
Heg, D. & Bachar, Z. (2006). Cooperative breeding in the Lake Tanganyika cichlid Julidochromis ornatus. Environ. Biol. Fish, 76, 265281.Google Scholar
Heg, D., Bachar, Z., & Taborsky, M. (2005). Cooperative breeding and group structure in the Lake Tanganyika cichlid Neolamprologus savoryi. Ethology, 111, 10171043.Google Scholar
Hellmann, J. K., Sovic, M. G., Gibbs, H. L., Reddon, A. R., O’Connor, C. M., Ligocki, I. Y., Marsh‐Rollo, S., Balshine, S., & Hamilton, I. M. (2016). Within‐group relatedness is correlated with colony‐level social structure and reproductive sharing in a social fish. Mol. Ecol., 25, 40014013.Google Scholar
Hesse, S., Anaya-Rojas, J. M., Frommen, J. G., & Thünken, T. (2015a). Kinship reinforces cooperative predator inspection in a cichlid fish. J. Evol. Biol., 28, 20882096.Google Scholar
Hesse, S., Anaya-Rojas, J, Frommen, J. G., & Thünken, T. (2015b). Social deprivation affects cooperative predator inspection in a cichlid fish. R. Soc. Open Sci., 2, 140451.Google Scholar
Hori, M. (1997). Structure of Littoral Fish Communities Organized by Their Feeding Activities. In Kawanabe, H., Hori, M., & Nagoshi, M. (Eds.), Fish Communities in Lake Tanganyika (pp. 277298). Kyoto: Kyoto University Press.Google Scholar
Josi, D., Taborsky, M., & Frommen, J. G. (2019). First field evidence for alloparental egg care in cooperatively breeding fish. Ethology, 125, 164169.Google Scholar
Josi, D., Taborsky, M., & Frommen, J. G. (2020a). Task-dependent helping behaviour is mediated by the presence of young in the cooperatively breeding cichlid Neolamprologus savoryi. Anim. Behav., 160, 3542.CrossRefGoogle Scholar
Josi, D., Freudiger, A., Taborsky, M., & Frommen, J. G. (2020b) Experimental predator intrusions in a cooperative breeder reveal threat-dependent task partitioning. Behav. Ecol., 31, 13691378.Google Scholar
Jungwirth, A. & Taborsky, M. (2015). First- and second-order sociality determine survival and reproduction in cooperative cichlids. Proc. R. Soc. B, 282, 20151971.Google Scholar
Jungwirth, A., Josi, D., Walker, J., & Taborsky, M. (2015). Benefits of coloniality: Communal defence saves anti-predator effort in cooperative breeders. Funct. Ecol., 29, 12181224.Google Scholar
Kasper, C., Vierbuchen, M., Ernst, U., Fischer, S., Radersma, R., Raulo, A., Cunha-Saraiva, F., Wu, M., Mobley, K. B., & Taborsky, B. (2017) Genetics and developmental biology of cooperation. Mol. Ecol., 26, 43644377.Google Scholar
Kelly, A. M. & Vitousek, M. N. (2017) Dynamic modulation of sociality and aggression: An examination of plasticity within endocrine and neuroendocrine systems. Phil. Trans. R. Soc. B, 372, 20160243.Google Scholar
Koenig, W. D. & Dickinson, J. L. (2016). Cooperative Breeding in Vertebrates. Cambridge: Cambridge University Press.Google Scholar
Kohda, M., Jordan, L. A., Hotta, T., Kosaka, N., Karino, K., Tanaka, H., Taniyama, M., & Takeyama, T. (2015) Facial recognition in a group-living cichlid fish. PLoS One, 10, e0142552.Google Scholar
Kramer, K. L. (2010). Cooperative breeding and its significance to the demographic success of humans. Ann. Rev. Anthropol., 39, 417436.Google Scholar
Laglbauer, B. J. L., Afonso, P., Donnay, A., Santos, R. S., & Fontes, J. (2017). Reproductive synchrony in a temperate damselfish, Chromis limbata. Acta. Ethol., 20, 297311.Google Scholar
Lukas, D. & Clutton-Brock, T. (2012). Cooperative breeding and monogamy in mammalian societies. Proc. R. Soc. B, 279, 21512156.Google Scholar
Magurran, A. E. & Higham, A. (1988). Information transfer across fish shoals under predator threat. Ethology, 78, 153158.Google Scholar
Makowicz, A. M., Moore, T., & Schlupp, I. (2018). Clonal fish are more aggressive to distant relatives in a low resource environment. Behaviour, 155, 351367.Google Scholar
Maruska, K., Soares, M. C., Lima-Maximino, M., de Siqueira-Silva, D. H., & Maximino, C. (2019). Social plasticity in the fish brain: Neuroscientific and ethological aspects. Brain Res., 1711, 156172.Google Scholar
Mehlis, M., Bakker, T. C. M., Langen, K., & Frommen, J. G. (2009). Cain and Abel reloaded? Kin recognition and male-male aggression in three-spined sticklebacks Gasterosteus aculeatus L. J. Fish Biol., 75, 21542162.Google Scholar
Mendonça, R., Soares, M. C., Bshary, R., & Oliveira, R. F. (2013). Arginine vasotocin neuronal phenotype and interspecific cooperative behaviour. Brain Behav. Evol., 82, 166176.Google Scholar
Messias, J. P., Paula, J. R, Grutter, A. S., Bshary, R., & Soares, M. C. (2016a). Dopamine disruption increases negotiation for cooperative interactions in a fish. Sci. Rep., 6, 20817.Google Scholar
Messias, J. P., Santos, T. P., Pinto, M., & Soares, M. C. (2016b). Stimulation of dopamine D1 receptor improves learning capacity in cooperating cleaner fish. Proc. R. Soc. B, 283, 20152272.Google Scholar
Milinski, M. (1987). Tit for tat in sticklebacks and the evolution of cooperation. Nature, 325: 433435.Google Scholar
Milinski, M. (1994). Long-term-memory for food patches and implications for ideal free distributions in sticklebacks. Ecology, 75, 11501156.Google Scholar
Milinski, M., Pfluger, D., Külling, D., & Kettler, R. (1990). Do sticklebacks cooperate repeatedly in reciprocal pairs? Behav. Ecol. Sociobiol., 27, 1721.Google Scholar
Milinski, M., Lüthi, J. H., Eggler, R., & Parker, G. A. (1997). Cooperation under predation risk: Experiments on costs and benefits. Proc. R. Soc. B., 264, 831837.Google Scholar
Naef, J. & Taborsky, M. (2020). Commodity-specific punishment for experimentally induced defection in cooperatively breeding fish. R. Soc. Open Sci., 7, 191808.Google Scholar
Newman, S. W. (1999). The medial extended amygdala in male reproductive behavior: A node in the mammalian social behavior network. Ann. NY Acad. Sci., 877, 242257.Google Scholar
Nyman, C., Fischer, S., Aubin-Horth, N., & Taborsky, B. (2018). Evolutionary conserved neural signature of early life stress affects animal social competence. Proc. R. Soc. B, 285, 20172344.Google Scholar
O’Connell, L. A. & Hofmann, H. A. (2011). The vertebrate mesolimbic reward system and social behavior network: A comparative synthesis. J. Comp. Neurol., 519, 35993639.Google Scholar
Olsen, K. H. & Jarvi, T. (1997). Effects of kinship on aggression and RNA content in juvenile Arctic charr. J. Fish Biol., 51, 422435.Google Scholar
Pennisi, E. (2005). How did cooperative behavior evolve? Science, 309, 93.Google Scholar
Pitcher, T. (1992) Who dares, wins: The function and evolution of predator inspection behavior in shoaling fish. Neth. J. Zool., 42, 371391.Google Scholar
Quiñones, A. E., van Doorn, G. S., Pen, I., Weissing, F. J., & Taborsky, M. (2016). Negotiation and appeasement can be more effective drivers of sociality than kin selection. Phil. Trans. R. Soc. B, 371, 20150089.Google Scholar
Raihani, N. J., Grutter, A. S., & Bshary, R. (2010). Punishers benefit from third-party punishment in fish. Science, 327, 171.Google Scholar
Raihani, N. J., Thornton, A., & Bshary, R. (2012). Punishment and cooperation in nature. Trends Ecol. Evol., 27, 288295.Google Scholar
Reddon, A. R., O’Connor, C. M., Marsh-Rollo, S. E, & Balshine, S. (2012). Effects of isotocin on social responses in a cooperatively breeding fish. Anim. Behav. 84, 753760.Google Scholar
Reddon, A. R., O’Connor, C. M., Nesjan, E., Cameron, J., Hellmann, J. K., Ligocki, I. Y., Marsh-Rollo, S. E., Hamilton, I. M., Wylie, D. R., Hurd, P. L., & Balshine, S. (2017). Isotocin neuronal phenotypes differ among social systems in cichlid fishes. R. Soc. Open Sci., 4, 170350.Google Scholar
Reyes-Contreras, M., Glauser, G., Rennison, D. J., & Taborsky, B. (2019). Early-life manipulation of cortisol and its receptor alters stress axis programming and social competence. Phil. Trans. R. Soc. B, 374, 20180119.Google Scholar
Riehl, C. (2013). Evolutionary routes to non-kin cooperative breeding in birds. Proc. R. Soc. B, 280, 20150090.Google Scholar
Riehl, C. & Frederickson, M. E. (2016). Cheating and punishment in cooperative animal societies. Phil. Trans. R. Soc. B, 371, 20150090.Google Scholar
Schädelin, F. C., Fischer, S., & Wagner, R. H. (2012). Reduction in predator defense in the presence of neighbors in a colonial fish. PLoS One, 7, e35833.Google Scholar
Schütz, D., Ocana, S. W., Maan, M. E., & Taborsky, M. (2016). Sexual selection promotes colonial breeding in shell-brooding cichlid fish. Anim. Behav., 112, 153161.Google Scholar
Schweinfurth, M. K. (2021). Reciprocal cooperation: Norway rats (Rattus norvegicus) as an example. In A. B. Kaufmann, J. Call, & J. C. Kaufmann (Eds.), The Cambridge Handbook of Animal Cognition (pp. 343–361). Cambridge: Cambridge University Press.Google Scholar
Schweinfurth, M. K. & Call, J. (2019a). Reciprocity: Different behavioural strategies, cognitive mechanisms and psychological processes. Learn. Behav., 47, 284301.Google Scholar
Schweinfurth, M. K. & Call, J. (2019b). Revisiting the possibility of reciprocal help in non-human primates. Neurosci. Biobehav. Rev., 104, 7386.Google Scholar
Soares, M. C., Bshary, R., Mendonça, R., Grutter, A. S., & Oliveira, R. F. (2012). Arginine vasotocin regulation of interspecific cooperative behaviour in a cleaner fish. PLoS One, 7, e39583.Google Scholar
Soares, M. C., Cardoso, S. C., Grutter, A. S., Oliveira, R. F., & Bshary, R. (2014). Cortisol mediates cleaner wrasse switch from cooperation to cheating and tactical deception. Horm. Behav., 66, 346350.Google Scholar
Steinegger, M., Roche, D. G., & Bshary, R. (2018). Simple decision rules underlie collaborative hunting in yellow saddle goatfish. Proc. R. Soc. B, 285, 20172488.Google Scholar
Strübin, C., Steinegger, M., & Bshary, R. (2011). On group living and collaborative hunting in the yellow saddle goatfish (Parupeneus cyclostomus). Ethology, 117, 961969.Google Scholar
Taborsky, M. (2016). Cichlid Fishes: A Model for the Integrative Study of Social Behavior. In Koenig, W. D. & Dickinson, J. L. (Eds.), Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior (pp. 272293). Cambridge: Cambridge University Press.Google Scholar
Taborsky, B. & Oliveira, R. F. (2012). Social competence: An evolutionary approach. Trends Ecol. Evol., 27, 679688.Google Scholar
Taborsky, B., Arnold, C., Junker, J., & Tschopp, A. (2012). The early social environment affects social competence in a cooperative breeder. Anim. Behav., 83, 10671074.Google Scholar
Taborsky, B., Tschirren, L., Meunier, C., & Aubin-Horth, N. (2013). Stable reprogramming of brain transcription profiles by the early social environment in a cooperatively breeding fish. Proc. R. Soc. B, 280, 20122605.Google Scholar
Taborsky, M., Frommen, J. G., & Riehl, C. (2016). Correlated pay-offs are key to cooperation. Phil. Trans. R. Soc. B, 371, 20150084.Google Scholar
Taborsky, M. & Wong, M. (2017). Sociality in Fishes. In Rubenstein, D. R. & Abbot, P. (Eds.), Comparative Social Evolution (pp. 354389). Cambridge: Cambridge University Press.Google Scholar
Taborsky, M., Koblmüller, S., Sefc, K. M., McGee, M., Kohda, M., Awata, S., Hori, M., & Frommen, J. G. (2019). Insufficient data render comparative analyses of the evolution of cooperative breeding mere speculation: A reply to Dey et al., Ethology, 125, 851854.Google Scholar
Tanaka, H., Heg, D., Takeshima, H., Takeyama, T., Awata, S., Nishida, M., & Kohda, M. (2015). Group composition, relatedness, and dispersal in the cooperatively breeding cichlid Neolamprologus obscurus. Behav. Ecol. Sociobiol., 69, 169181.Google Scholar
Tanaka, H., Frommen, J. G., Engqvist, L., & Kohda, M. (2018a). Task-dependent workload adjustment of female breeders in a cooperatively breeding fish. Behav. Ecol., 29, 221229.Google Scholar
Tanaka, H., Frommen, J. G., Koblmüller, S., Sefc, K. M., McGee, M., Kohda, M., Awata, S., Hori, M., & Taborsky, M. (2018b). Evolutionary transitions to cooperative societies in fishes revisited. Ethology, 124, 777789.Google Scholar
Tanaka, H., Frommen, J. G., & Kohda, M. (2018c). Helpers increase food abundance in the territory of a cooperatively breeding fish. Behav. Ecol. Sociobiol., 72, 51.Google Scholar
Tanaka, H., Kohda, M., & Frommen, J (2018d). Helpers increase the reproductive success of breeders in the cooperatively breeding cichlid Neolamprologus obscurus. Behav. Ecol. Sociobiol., 72, 152.Google Scholar
Thünken, T., Bakker, T. C. M., Baldauf, S. A., & Kullmann, H. (2007). Active inbreeding in a cichlid fish and its adaptive significance. Curr. Biol., 17, 225229.Google Scholar
Trivers, R. L. (1971). The evolution of reciprocal altruism. Quart. Rev. Biol., 46, 3557.Google Scholar
Tyler, W. A. (1995). The adaptive significance of colonial nesting in a coral-reef fish. Anim. Behav., 49, 949966.Google Scholar
Vail, A. L., Manica, A., & Bshary, R. (2013). Referential gestures in fish collaborative hunting. Nat. Comm., 4, 1765.Google Scholar
Ward, A. J. W. & Hart, P. J. B. (2003). The effects of kin and familiarity on interactions between fish. Fish Fish., 4, 348358.Google Scholar
West, S. A., Pen, I., & Griffin, A. S. (2002). Cooperation and competition between relatives. Science, 296, 7275.Google Scholar
Wickens, J. R., Budd, C. S., Hyland, B. I., & Arbuthnott, G. W. (2007). Striatal contributions to reward and decision making: Making sense of regional variations in a reiterated processing matrix. Ann. NY Acad. Sci., 1104, 192212.Google Scholar
Zöttl, M., Heg, D., Chervet, N., & Taborsky, M. (2013). Kinship reduces alloparental care in cooperative cichlids where helpers pay-to-stay. Nat. Comm., 4, 1341.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×