Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T01:28:01.448Z Has data issue: false hasContentIssue false

4 - Unique Ontogenetic Patterns of Postorbital Septation in Tarsiers and the Issue of Trait Homology

Published online by Cambridge University Press:  25 March 2017

Christopher J. Percival
Affiliation:
University of Calgary
Joan T. Richtsmeier
Affiliation:
Pennsylvania State University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cartmill, M. (1980). Morphology, function, and evolution of the anthropoid postorbital septum. In: Ciochon, R. L. and Chiarelli, A. (eds.)Evolutionary Biology of the New World Monkeys and Continental Drift. New York, NY: Plenum Press, pp. 243274.CrossRefGoogle Scholar
Cartmill, M. (1994a). Anatomy, antinomies, and the problem of anthropoid origins. In: Fleagle, J. G. and Kay, R. F. (eds.) Anthropoid Origins. New York, NY: Plenum, pp. 549566.CrossRefGoogle Scholar
Cartmill, M. (1994b). A critique of homology as a morphological concept. American Journal of Physical Anthropology, 94(1), 115123.CrossRefGoogle ScholarPubMed
Cartmill, M. and Kay, R. (1978). Cranio-dental morphology, tarsier affinities, and primate suborders. In: Chivers, D. and Joysey, J. (eds.) Recent Advances in Primatology, 3rd ed. London: Academic Press, pp. 205214.Google Scholar
Cummings, J. R., Muchlinski, M. N., Kirk, E. C., et al. (2012). Eye size at birth in prosimian primates: life history correlates and growth patterns. PloS ONE, 7(5), e36097.CrossRefGoogle ScholarPubMed
Cuvier, J. L. (1798). Tableau élémentaire de l’histoire naturelle des animaux. Baudouin Freres.CrossRefGoogle Scholar
De Beer, G. R. (1937). The Development of the Vertebrate Skull. Chicago, IL: University of Chicago Press (reprinted 1971).Google Scholar
DeLeon, V. B., Smith, T. D. and Rosenberger, A. L. (2015). Changing perspectives: ontogeny of facial orientation and eye hypertrophy in tarsiers [Abstract]. American Journal of Physical Anthropology, 156, 118118.Google Scholar
DeLeon, V. B., Smith, T. D. and Rosenberger, A. L. (in press). Ontogeny of the postorbital region in tarsiers and other primates. The Anatomical Record.Google Scholar
Enlow, D. H. and Hans, M. G. (1996). Essentials of Facial Growth. Philadelphia, PA: WB Saunders Company.Google Scholar
Favier, B. and Dolle, P. (1997). Developmental functions of mammalian Hox genes. Molecular Human Reproduction, 3(2), 115131.CrossRefGoogle ScholarPubMed
Fleagle, J. G. (2013). Primate Adaptation and Evolution, 3rd ed. New York, NY: Academic Press.Google Scholar
Fox, R. C. and Scott, C. S. (2011). A new, early Puercan (earliest Paleocene) species of Purgatorius (Plesiadapiformes, Primates) from Saskatchewan, Canada. Journal of Paleontology, 85(3), 537548.Google Scholar
Geoffroy Saint-Hilaire, E. (1818). Philosophie Anatomique. Paris: J.B. Baillière.Google Scholar
Godinot, M. (2015). Fossil record of the Primates from the Paleocene to the Oligocene. In: Henke, W. and Tattersall, I. (eds.) Handbook of Paleoanthropology, 2d ed. Berlin: Springer, pp. 11371259.CrossRefGoogle Scholar
Hall, B. K. (1994). Homology: The Hierarchial Basis of Comparative Biology. San Diego, CA: Academic Press.Google Scholar
Hall, B. K. (1995). Homology and embryonic development. Evolutionary Biology, 28, 137.Google Scholar
Hall, B. K. (1999). Evolutionary Developmental Biology, 2d ed. Dordrecht: Kluwer Academic Publishers.Google Scholar
Hall, B. K. (2007). Homoplasy and homology: dichotomy or continuum? Journal of Human Evolution, 52(5), 473479.Google Scholar
Hartig, G., Churakov, G., Warren, W. C., et al. (2013). Retrophylogenomics place tarsiers on the evolutionary branch of anthropoids. Scientific Reports, 3, 1756.Google Scholar
Heesy, C. P. (2005). Function of the mammalian postorbital bar. Journal of Morphology, 264(3), 363380.Google Scholar
Henderson, J. H., Longaker, M. T. and Carter, D. R. (2004). Sutural bone deposition rate and strain magnitude during cranial development. Bone, 34(2), 271280.Google Scholar
Hennig, W. (1950). Grundzuge einer Theorie der phylogenetischen Systematik. Berlin: Deutscher Zentralverlag.Google Scholar
Herring, S. W. and Teng, S. (2000). Strain in the braincase and its sutures during function. American Journal of Physical Anthropology, 112(4), 575593.Google Scholar
Herring, S. W., Rafferty, K. L., Liu, Z. J. and Lemme, M. (2011). Mastication and the postorbital ligament: dynamic strain in soft tissues. Integrative and Comparative Biology, p.icr023.Google ScholarPubMed
Hershkovitz, P. (1977). Living New World Monkeys (Platyrrhini). Chicago, IL: University of Chicago Press.Google Scholar
Hillman, D. (1975). Equine osteology: skull. In: Getty, R. (ed.) Sisson and Grossman’s Anatomy of the Domestic Animals, 5th ed. Philadelphia, PA: WB Saunders, pp. 318348.Google Scholar
Illiger, C. (1811). Prodromus systematis mammalium et avium additis terminis zoographicis utriudque classis. Berlin: C. Salfeld.CrossRefGoogle Scholar
Jašarević, E., Ning, J., Daniel, A. N., et al. (2010). Masticatory loading, function, and plasticity: a microanatomical analysis of mammalian circumorbital soft-tissue structures, The Anatomical Record, 293(4), 642650.Google Scholar
Jernvall, J. and Thesleff, I. (2000). Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development, 92(1), 1929.CrossRefGoogle ScholarPubMed
Jernvall, J. and Thesleff, I. (2012). Tooth shape formation and tooth renewal: evolving with the same signals. Development, 139(19), 34873497.CrossRefGoogle ScholarPubMed
Jones, F. W. (1916). Arboreal Man. London: E. Arnold.Google Scholar
Kleisner, K. (2007). The formation of the theory of homology in biological sciences. Acta Biotheoretica, 55(4), 317340.Google Scholar
Lindsay, K. E., Rühli, F. J. and DeLeon, V. B. (2015). Revealing the face of an ancient Egyptian: synthesis of current and traditional approaches to evidence-based facial approximation. The Anatomical Record, 298(6), 11441161.CrossRefGoogle ScholarPubMed
Maas, R. and Bei, M. (1997). The genetic control of early tooth development. Critical Reviews in Oral Biology and Medicine, 8(1), 439.Google Scholar
Macrini, T. E. (2014). Development of the ethmoid in Caluromys philander (Didelphidae, Marsupialia) with a discussion on the homology of the turbinal elements in marsupials. The Anatomical Record, 297(11), 20072017.CrossRefGoogle ScholarPubMed
Maier, W. (1993). Cranial morphology of the therian common ancestor, as suggested by the adaptations of neonate marsupials. In: Szalay, F. S., Novacek, M. J. and McKenna, M. C. (eds.) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. New York, NY: Springer-Verlag, pp. 165181.Google Scholar
Maier, W. and Ruf, I. (2014). Morphology of the nasal capsule of primates – with special reference to Daubentonia and Homo. The Anatomical Record, 297(11), 19852006.Google Scholar
Maier, W. and Ruf, I. (2015). Evolution of the mammalian middle ear: a historical review. Journal of Anatomy, 228(2), 270283.CrossRefGoogle ScholarPubMed
Martin, R. D. (1990). Primate Origins and Evolution: A Phylogenetic Reconstruction. London: Chapman and Hall.Google Scholar
Menegaz, R. A. and Kirk, E. C. (2009). Septa and processes: convergent evolution of the orbit in haplorhine primates and strigiform birds. Journal of Human Evolution, 57(6), 672687.Google Scholar
Nakashige, M., Smith, A. L. and Strait, D. S. (2011). Biomechanics of the macaque postorbital septum investigated using finite element analysis: implications for anthropoid evolution. Journal of Anatomy, 218(1), 142150.Google Scholar
Noble, V. E., Kowalski, E. M. and Ravosa, M. J. (2000). Orbit orientation and the function of the mammalian postorbital bar. Journal of Zoology, 250(3), 405418.Google Scholar
Owen, R. (1848). On the Archetype and Homologies of the Vertebrate Skeleton. London: J. Van Voorst.Google Scholar
Patterson, C. (1982). Morphological characters and homology. Problems of Phylogenetic Reconstruction, 21, 2174.Google Scholar
Pocock, R. (1918). On the external characters of the lemurs and of Tarsius. Proceedings of the Zoological Society of London, 88(1), 1953.CrossRefGoogle Scholar
Raaum, R. L. (2015). Molecular evidence on primate origins and primate evolution. In: Henke, W. and Tattersall, I. (eds.)Handbook of Paleoanthropology, 2d ed., Berlin: Springer, pp. 10831135.Google Scholar
Ravosa, M. J. (1991). Ontogenetic perspective on mechanical and nonmechanical models of primate circumorbital morphology. American Journal of Physical Anthropology, 85(1), 95112.Google Scholar
Ravosa, M. J. and Savakova, D. G. (2004). Euprimate origins: the eyes have it. Journal of Human Evolution, 46(3), 355362.CrossRefGoogle Scholar
Ravosa, M. J., Noble, V. E., Hylander, W. L., Johnson, K. R. and Kowalski, E. M. (2000). Masticatory stress, orbital orientation and the evolution of the primate postorbital bar. Journal of Human Evolution, 38(5), 667693.CrossRefGoogle ScholarPubMed
Ravosa, M. J., Savakova, D. G., Johnson, K. R. and Hylander, W. L. (2007). Primate origins and the function of the circumorbital region: what’s load got to do with it? In: Primate Origins: Adaptations and Evolution. New York, NY: Springer, pp. 285328.CrossRefGoogle Scholar
Richmond, B. G. and Strait, D. S. (2001). Reply: Did our ancestors knuckle-walk? Nature, 410(6826), 326326.CrossRefGoogle Scholar
Ross, C. F. (1995a). Allometric and functional influences on primate orbit orientation and the origins of the Anthropoidea. Journal of Human Evolution, 29(3), 201227.Google Scholar
Ross, C. F. (1995b). Muscular and osseous anatomy of the primate anterior temporal fossa and the functions of the postorbital septum. American Journal of Physical Anthropology, 98(3), 275306.Google Scholar
Ross, C. F. (2000). Into the light: the origin of Anthropoidea. Annual Review of Anthropology, 29, 147194.Google Scholar
Ross, C. F. and Hylander, W. L. (1996). In vivo and in vitro bone strain in the owl monkey circumorbital region and the function of the postorbital septum. American Journal of Physical Anthropology, 101(2), 183215.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Schwartz, J. H., Tattersall, I. and Eldredge, N. (1978). Phylogeny and classification of the primates revisited. Yearbook of Physical Anthropology, 21(1978), 95133.Google Scholar
Silcox, M. T., Sargis, E. J., Bloch, J. I. and Boyer, D. M. (2015). Primate origins and supraordinal relationships: morphological evidence. In: Henke, W. and Tattersall, I. (eds.) Handbook of Paleoanthropology, 2d ed. Berlin: Springer, pp. 10531081.Google Scholar
Simons, E. L. and Rasmussen, D. T. (1989). Cranial morphology of Aegyptopithecus and Tarsius and the question of the tarsier–anthropoidean clade. American Journal of Physical Anthropology, 79(1), 123.Google Scholar
Simons, E. L. and Russell, D. (1960). Notes on the cranial anatomy of Necrolemur. Breviora, 127, 114.Google Scholar
Smith, T. D. and Rossie, J. B. (2008). Nasal fossa of mouse and dwarf lemurs (Primates, Cheirogaleidae). The Anatomical Record, 291(8), 895915.Google Scholar
Smith, T. D., DeLeon, V. B. and Rosenberger, A. L. (2013). At birth, tarsiers lack a postorbital bar or septum. The Anatomical Record, 296(3), 365377.Google Scholar
Szalay, F. S. and Delson, E. (1979). Evolutionary History of the Primates. New York, NY: Academic Press.Google Scholar
Szalay, F. S., Rosenberger, A. L. and Dagosto, M. (1987). Diagnosis and differentiation of the order Primates. American Journal of Physical Anthropology, 30(S8), 75105.Google Scholar
Van Valen, L. M. (1982). Homology and causes. Journal of Morphology, 173(3), 305312.Google Scholar
Wagner, G. P. (2014). Homology, Genes, and Evolutionary Innovation. Princeton, NJ: Princeton University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×