Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-03T03:37:20.008Z Has data issue: false hasContentIssue false

11 - Effects of Climate Change on Tundra Bryophytes

Published online by Cambridge University Press:  05 October 2012

Annika K. Jägerbrand
Affiliation:
Swedish National Road and Transport Research Institute, Sweden
Robert G. Björk
Affiliation:
Göteborg University, Sweden
Terry Callaghan
Affiliation:
Abisko Scientific Research Station, Sweden
Rodney D. Seppelt
Affiliation:
Australian Antarctic Division, Australia
Nancy G. Slack
Affiliation:
Sage Colleges, New York
Lloyd R. Stark
Affiliation:
University of Nevada, Las Vegas
Get access

Summary

Tundra vegetation in the changing climate

In the 1990s global warming was envisioned scientifically as being highly influential and pronounced at high latitudes (Mitchell et al. 1990; Maxwell 1992). Since then, impacts of climate change have been confirmed, especially in the indisputable data of increased air surface temperatures in both the Alaskan Arctic and Europe (Overpeck et al. 1997; Keyser et al. 2000; Serreze et al. 2000; EEA 2004). Ostensibly, climate change is currently affecting life in the world's ecosystems with intensified ramifications of escalating temperatures (IPCC 2007). The Arctic has had a rapid increase in mean temperatures over the past few decades, twice the rate of the rest of the world (ACIA 2005). Its warmest year ever recorded was in 2007 (Richter-Menge et al. 2008). Biomes already seem to be changing owing to climate differences, indicated by observations of enhanced plant growth at high northern latitudes (Myneni et al. 1997) and mid-latitudes (Nemani et al. 2003), landscape-level shifts in species ranges, decline in species populations (McCarthy et al. 2001), and changes in species diversity (EEA 2004). Continuing Arctic climate change will therefore have the effect of encouraging forest expansion into tundra biomes, and the tundra vegetation as we know it will greatly change, shifting in its extent, distribution, and species composition. These changes will probably be unprecedented compared with those of past millennia.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

,ACIA (2005). Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge: Cambridge University Press.
Anderson, J. M. (1991). The effects of climate change on decomposition processes in grassland and coniferous forests. Ecological Applications 1: 326–47.Google Scholar
Arft, A. M., Walker, M. D., Gurevitch, J.et al. (1999). Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecological Monographs 69: 491–511.Google Scholar
Atkin, O. K., Scheurwater, I. & Pons, T. L. (2006). High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Global Change Biology 12: 500–15.Google Scholar
Bates, J. W. (2000). Mineral nutrition, substratum ecology, and pollution. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 248–311. Cambridge & New York: Cambridge University Press.CrossRef
Björk, R. G. (2007). Snowbed Biocomplexity: A Journey from Community to Landscape. Göteborg: Göteborg University.
Björk, R. G. & Molau, U. (2007). Ecology of alpine snowbeds and the impact of global change. Arctic, Antarctic and Alpine Research 39: 34–43.Google Scholar
Bokhorst, S., Bjerke, J. W., Bowles, F. W.et al. (2008). Impacts of extreme winter warming in the sub-Arctic: growing season responses of dwarf-shrub heath land. Global Change Biology 14: 1–10.Google Scholar
Bonan, G. B. & Cleve, K. (1992). Soil-temperature, nitrogen mineralisation, and carbon source sink relationships in boreal forests. Canadian Journal of Forest Research 22: 629–39.Google Scholar
Bredahl, L., Ro-Poulsen, H. & Mikkelsen, T. N. (2004). Reduction of the ambient UV-B radiation in the high-Arctic increases Fv/Fm in Salix arctica and Vaccinium uliginosum and reduces stomatal conductance and internal CO2 concentration in Salix arctica. Arctic, Antarctic and Alpine Research 36: 364–9.Google Scholar
Brooker, R. W., Maestre, F. T., Callaway, R. M.et al. (2008). Facilitation in plant communities: the past, the present, and the future. Journal of Ecology 96: 18–34.Google Scholar
Caldwell, M. M., Bornman, J. F., Ballare, C. L., Flint, S. D. & Kulandaivelu, G. (2007). Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical and Photobiological Sciences 6: 252–66.Google Scholar
Callaghan, T. V., Björn, L. O., Chernov, Y.et al. (2005). Tundra and Polar Desert Ecosystems. In ACIA (Arctic Climate Impacts Assessment), pp. 243–352. Cambridge: Cambridge University Press.
Callaghan, T. V., Carlsson, B. A., Sonesson, M. & Temesvary, A. (1997). Between-year variation in climate-related growth of circumarctic populations of the moss Hylocomium splendens. Functional Ecology 11: 157–65.Google Scholar
Callaghan, T. V., Collins, N. J. & Callaghan, C. H. (1978). Strategies of growth and population dynamics of tundra plants 4. Photosynthesis, growth and reproduction of Hylocomium splendens and Polytrichum commune in Swedish Lapland. Oikos 31: 73–88.Google Scholar
Chapin, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J. & Laundre, J. A. (1995). Response of arctic tundra to experimental and observed changes in climate. Ecology 76: 694–711.Google Scholar
Chernov, Y. I. (1985). The Living Tundra. Cambridge: Cambridge University Press.
Cornelissen, J. H. C., Lang, S. I., Soudzilovskaia, N. A. & During, H. J. (2007). Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Annals of Botany (London) 99: 987–1001.Google Scholar
Cronberg, N. (2004). Genetic differentiation between populations of the moss Hylocomium splendens (Hedw.) Schimp. from low versus high elevation in the Scandinavian mountain range. Lindbergia 29: 64–72.Google Scholar
Damsholt, K. (2002). Illustrated Flora of Nordic Liverworts and Hornworts. Lund: Nordic Bryological Society.
Davey, M. C. & Rothery, P. (1997). Interspecific variation in respiratory and photosynthetic parameters in Antarctic bryophytes. New Phytologist 137: 231–40.Google Scholar
Day, T. A., Ruhland, C. T. & Xiong, F. S. (2008). Warming increases aboveground plant biomass and C stocks in vascular-plant-dominated Antarctic tundra. Global Change Biology 14: 1827–43.Google Scholar
Dorrepaal, E., Aerts, R., Cornelissen, J. H. C., Callaghan, T. V. & Logtestijn, R. S. P. (2003). Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Global Change Biology 10: 93–104.Google Scholar
Dorrepaal, E., Aerts, R., Cornelissen, J. H. C., Logtestijn, R. S. P. & Callaghan, T. V. (2006). Sphagnum modifies climate-change impacts on subarctic vascular bog plants. Functional Ecology 20: 31–41.Google Scholar
Dorrepaal, E., Cornelissen, J. H. C., Aerts, R., Wallen, B. & Logtestijn, R. S. P. (2005). Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? Journal of Ecology 93: 817–28.Google Scholar
,EEA (2004). Impacts of Europe's Changing Climate, an Indicator-Based Assessment. Copenhagen: European Environmental Agency.
Epstein, H. E., Calef, M. P., Walker, M. D., Chapin, F. S. I. & Starfield, A. M. (2004). Detecting changes in arctic tundra plant communities in response to warming over decadal time scales. Global Change Biology 10: 1325–34.Google Scholar
Furness, S. B. & Grime, J. P. (1982). Growth rate and temperature responses in bryophytes. II. A comparative study of species of contrasted ecology. Journal of Ecology 70: 525–36.Google Scholar
Gehrke, C. (1999). Impacts of enhanced ultraviolet-B radiation on mosses in a subarctic heath ecosystem. Ecology 80: 1844–51.Google Scholar
Gehrke, C., Johanson, U., Gwynn-Jones, D.et al. (1996). Effects of enhanced ultraviolet-B radiation on terrestrial subarctic ecosystems and implications for interactions with increased atmospheric CO2. In Plant Ecology in the sub-Arctic Swedish Lapland, ed. Karlsson, P. S. & Callaghan, T. V.. Ecological Bulletins45: 192–203.
Geissler, P. (1982). Alpine communities. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 167–89. London: Chapman and Hall.CrossRef
Gignac, L. D. (2001). Bryophytes as indicators of climate change. Bryologist 104: 410–20.Google Scholar
Gjaerevoll, O. (1956). The plant communities of the Scandinavian alpine snowbeds. Det Kongeliga Norske Videnskabernas Selskabs Skrifter 1: 1–405.Google Scholar
Glime, J. M. (2007). Bryophyte Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. http://www.bryoecol.mtu.edu
Gordon, C., Wynn, J. M. & Woodin, S. J. (2001). Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability. New Phytologist 149: 461–71.Google Scholar
Graglia, E., Jonasson, S., Michelsen, A.et al. (2001). Effects of environmental perturbations on abundance of subarctic plants after three, seven and ten years of treatments. Ecography 24: 5–12.Google Scholar
Green, T. G. A., Kulle, D., Pannewitz, S., Sancho, L. G. & Schroeter, B. (2005). UV-A protection in mosses growing in continental Antarctica. Polar Biology 28: 822–7.Google Scholar
Green, T. G. A., Schroeter, B. & Seppelt, R. (2000). Effect of temperature, light and ambient UV on the photosynthesis of the moss Bryum argenteum Hedw. in continental Antarctica. In Antarctic Ecosystems, ed. Darison, W., Howard-Williams, C. & Broady, P., pp. 165–70. Christchurch: New Zealand Natural Sciences.
Gwynn-Jones, D., Johanson, U., Gehrke, C.et al. (1996). Effects of enhanced UV-B radiation and elevated concentrations of CO2 in a sub-arctic heathland. In Carbon Dioxide, Populations, and Communities, ed. Körner, C. & Bazzaz, F. A., pp. 197–207. San Diego, CA: Academic Press.CrossRef
Gwynn-Jones, D., Johanson, U., Phoenix, G., et al. (1999a). UV-B impacts and interactions with other co-occurring variables of environmental change: an Arctic perspective. In Stratospheric Ozone Depletion, UV-B Radiation and Terrestrial Ecosystems, ed. Rozema, J., pp. 187–201. Amsterdam: Backhuys Press.
Gwynn-Jones, D., Lee, J. A., Johanson, U.et al. (1999b). The responses of plant functional types to enhanced UV-B. In Stratospheric Ozone Depletion, UV-B Radiation and Terrestrial Ecosystems, ed. Rozema, J., pp. 173–86. Amsterdam: Backhuys Press.
Hallingbäck, T. (2008). Ekologisk Katalog över Mossor (nätversionen). Uppsala: ArtDatabanken, SLU.
Hallingbäck, T. & Hodgetts, N. (2000). Mosses, Liverworts and Hornworts. Status Survey and Conservation Action Plan for Bryophytes. IUCN, Gland, Switzerland, and Cambridge, UK: IUCN/SSC Bryophyte Specialist Group.
Hawes, I., Howard-Williams, C. & Vincent, W. F. (1992). Desiccation and recovery of Antarctic cyanobacterial mats. Polar Biology 12: 587–94.Google Scholar
Henry, G. H. R. & Molau, U. (1997). Tundra plants and climate change: the International Tundra Experiment – Introduction. Global Change Biology 3: 1–9.Google Scholar
Hobbie, S. E. (1996). Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs 66: 503–22.Google Scholar
Hollister, R. D. & Webber, P. J. (2000). Biotic validation of small open-top chambers in a tundra ecosystem. Global Change Biology 6: 835–42.Google Scholar
Hovenden, M. J. & Seppelt, R. D. (1995). Exposure and nutrients as delimiters of lichen communities in continental Antarctica. Lichenologist 27: 505–16.Google Scholar
,IPCC (2001). limate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. Cambridge and New York: Cambridge University Press.
,IPCC (2007). Climate Change 2007. IPCC Fourth Assessment Report (AR4). http://www.ipcc.ch. Cambridge: Cambridge University Press.
Jägerbrand, A. K. (2005). Subarctic Bryophyte Ecology: Phenotypic Variation and Responses to Simulated Environmental Change. Göteborg: Göteborg University.
Jägerbrand, A. K. (2007). Effects of an in situ temperature increase on the short-term growth of arctic-alpine bryophytes. Lindbergia 32: 82–7.Google Scholar
Jägerbrand, A. K., Alatalo, J. M., Chrimes, D. & Molau, U. (2009). Plant community responses to 5 years of simulated climate change in meadow and heath ecosystems at a subarctic-alpine site. Oecologia 161: 601–10.Google Scholar
Jägerbrand, A. K., Lindblad, K. E. M., Björk, R. G., Alatalo, J. M. & Molau, U. (2006). Bryophyte and lichen diversity under simulated environmental change compared with observed variation in unmanipulated alpine tundra. Biodiversity and Conservation 15: 4453–75.Google Scholar
Jägerbrand, A. K., Molau, U. & Alatalo, J. M. (2003). Responses of bryophytes to simulated environmental change at Latnjajaure, northern Sweden. Journal of Bryology 25: 163–8.Google Scholar
Johanson, U., Gehrke, C., Bjorn, L. O. & Callaghan, T. V. (1995). The effects of enhanced UV-B radiation on the growth of dwarf shrubs in a subarctic heathland. Functional Ecology 9: 713–19.Google Scholar
Jonasson, S., Havstrom, M., Jensen, M. & Callaghan, T. V. (1993). In situ mineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate change. Oecologia (Heidelberg) 95: 179–86.Google Scholar
Jónsdóttir, I. S., Crittenden, P. & Jägerbrand, A. K. (1997). Measuring growth rate in bryophytes and lichens. Summary document of 8th Annual ITEX Workshop. Royal Holloway Institute for Environmental Research, 19–22 April, pp. 10–15.
Kallio, P. & Saarnio, E. (1986). The effect on mosses of transplantation to different altitudes. Journal of Bryology 14: 159–78.Google Scholar
Kane, D. L., Hinzman, L. D., Woo, M. & Everett, K. R. (1992). Arctic hydrology and climate change. In Arctic Ecosystems in a Changing Climate: an Ecophysiological Perspective, ed. Chapin, F. S. I., Jefferies, R. L., Reynolds, J. F., Shaver, G. R. & Svoboda, J., pp. 35–57. San Diego, CA: Academic Press.CrossRef
Kaplan, J. O. & New, M. (2006). Arctic climate change with a 2 °C global warming: timing, climate patterns and vegetation change. Climatic Change 79: 213–41.Google Scholar
Kennedy, A. D. (1995). Simulated climate change: are passive greenhouses a valid microcosm for testing biological effects of environmental perturbations? Global Change Biology 1: 29–42.Google Scholar
Keyser, A. R., Kimball, J. S., Nemani, R. R. & Running, S. W. (2000). Simulating the effects of climate change on the carbon balance of North American high-latitude forests. Global Change Biology 6: 185–95.Google Scholar
Klanderud, K. & Totland, Ø. (2005). Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86: 2047–54.Google Scholar
Körner, C. (2004). Mountain biodiversity, its causes and function. Ambio 13: 11–17.Google Scholar
Kullman, L. (2005). Gamla och nya träd på Fulufjället – vegetationshistoria på hög nivå. Svensk Botanisk Tidskrift 99: 315–29.Google Scholar
Leishman, M. R. & Wild, C. (2001). Vegetation abundance and diversity in relation to soil nutrients and soil water content in the Vestfold Hills, East Antarctica. Antarctic Science 13: 126–34.Google Scholar
Longton, R. E. (1979). Climatic adaptation of bryophytes in relation to systematics. In Bryophyte Systematics, ed. Clarke, G. C. S. & Duckett, J. G., pp. 511–31. Systematics Association Special Volume No. 14. London: Academic Press.
Longton, R. E. (1982). Bryophyte vegetation in polar regions. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 123–65. London: Chapman and Hall.CrossRef
Longton, R. E. (1984). The role of bryophytes in terrestrial ecosystems. Journal of the Hattori Botanical Laboratory 55: 147–63.Google Scholar
Longton, R. E. (1988). The Biology of Polar Bryophytes and Lichens. Avon: Cambridge University Press.CrossRef
Longton, R. E. (1997). The role of bryophytes and lichens in polar ecosystems. In Ecology of Arctic Environments, ed. Woodin, S. J. & Marquiss, M., pp. 69–96. Oxford: Blackwell Science.
Marion, G. M., Henry, G. H. R., Freckman, D. W.et al. (1997). Open-top designs for manipulating field temperature in the High Arctic, Alaskan Arctic and Swedish Subarctic. Global Change Biology 3: 20–32.Google Scholar
Markham, K. R., Franke, A., Given, D. R. & Brownsey, P. (1990). Historical Antarctic ozone trends from herbarium specimen flavonoids. Bulletin de Liaisan – Group Polyphenols 15: 230–5.Google Scholar
Matveyeva, N. & Chernov, Y. (2000). Biodiversity of terrestrial ecosystems. In The Arctic: Environment, People, Policy, ed. ,M. Nuttal & T. V. Callaghan, pp. 233–73. Reading: Harwood Academic Publishers.
Maxwell, B. (1992). Arctic climate: potential for change under global warming. In Arctic Ecosystems in a Changing Climate. An Ecophysiological Perspective, ed. Chapin, F. S. I., Jefferies, R. L., Reynolds, J. F., Shaver, G. R. & Svoboda, J., pp. 11–34. San Diego, CA: Academic Press.CrossRef
McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J. & White, K. S. (eds) (2001). Climate Change 2001: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, IPCC. Cambridge: Cambridge University Press.
Melick, D. R. & Seppelt, R. D. (1992). Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarctic Science 4: 399–404.Google Scholar
Melick, D. R. & Seppelt, R. D. (1997). Vegetation patterns in relation to climatic and endogenous changes in Wilkes Land, continental Antarctica. Journal of Ecology 85: 43–56.Google Scholar
Miller, P. C., Webber, P. J., Oechel, W. C. & Tieszen, L. L. (1980). Biophysical processes and primary production. In An Arctic Ecosystem: the Coastal Tundra at Barrow, Alaska, ed. Brown, M. P., Tieszen, L. L. & Bunnell, F. L., pp. 66–101. Stroudsburg: Dowden, Hutchinson and Ross.
Mitchell, J. F. B., Manabe, S., Meleshko, V. & Tokioka, T. (1990). Equilibrium climate change – and its implications for the future. In Climate Change: the IPCC Scientific Assessment, ed. Houghton, J. T., Jenkins, G. J. & Ephraums, J. J., pp. 131–72. Cambridge: Cambridge University Press.
Molau, U. (2001). Tundra plant responses to experimental and natural temperature changes. Memoirs of the National Institute for Polar Research, Special issue 54: 445–66.Google Scholar
Molau, U. & Alatalo, J. M. (1998). Responses of subarctic-alpine plant communities to simulated environmental change: biodiversity of bryophytes, lichens, and vascular plants. Ambio 27: 322–9.Google Scholar
Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature (London) 386: 698–702.Google Scholar
Nadelhoffer, K. J., Giblin, A. E., Shaver, G. R. & Laundre, J. A. (1991). Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72: 242–53.Google Scholar
Nadelhoffer, K. J., Giblin, A. E., Shaver, G. R. & Linkins, A. E. (1992). Microbial processes and plant nutrient availability in arctic soils. In Arctic Ecosystems in a Changing Climate: an Ecophysiological Perspective, ed. Chapin, F. S. I., Jefferies, R. L., Reynolds, J. F., Shaver, G. R. & Svoboda, J., pp. 281–300. San Diego, CA: Academic Press.CrossRef
Nemani, R. R., Keeling, C. D., Hashimoto, H.et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science (Washington, DC) 300: 1560–3.Google Scholar
Ng, E. & Miller, P. C. (1977). Validation of a model of the effect of tundra vegetation on soil temperatures. Arctic and Alpine Research 9: 89–104.Google Scholar
Oechel, W. C. & Sveinbjörnsson, B. (1978). Primary production processes in arctic bryophytes at Barrow, Alaska. In Vegetation and Production Ecology of an Alaskan Arctic Tundra, ed. Tieszen, L. L., pp. 269–98. Ecological Studies29. New York: Springer-Verlag.CrossRef
Overpeck, J., Hughen, K. & Hardy, D. (1997). Arctic environmental changes of the last four centuries. Science (Washington DC) 278: 1251–6.Google Scholar
Parsons, A. N., Press, M. C., Wookey, P. A.et al. (1995). Growth responses of Calamagrostis lapponica to simulated environmental change in the Sub-arctic. Oikos 72: 61–6.Google Scholar
Potter, J. A., Press, M. C., Callaghan, T. V. & Lee, J. A. (1995). Growth responses of Polytrichum commune and Hylocomium splendens to simulated environmental change in the sub-arctic. New Phytologist 131: 533–41.Google Scholar
Press, M. C., Callaghan, T. V. & Lee, J. A. (1998a). How will European arctic ecosystems respond to projected global environmental change?Ambio 27: 306–11.Google Scholar
Press, M. C., Potter, J. A., Burke, M. J. W., Callaghan, T. V. & Lee, J. A. (1998b). Responses of a subarctic dwarf shrub heath community to simulated environmental change. Journal of Ecology 86: 315–27.Google Scholar
Proctor, M. C. F. (2000). Physiological ecology. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 225–47. New York: Cambridge University Press.CrossRef
Quesada, A. & Vincent, W. F. (1997). Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. European Journal of Phycology 32: 335–42.Google Scholar
Richter-Menge, J., Overland, J., Svoboda, M.et al. (2008). Arctic Report Card 2008. http://www.arctic.noaa.gov/reportcard.
Ross, S. E., Callaghan, T. V., Sheffield, E. & Sonesson, M. (2001). Variation and control of growth form in the moss Hylocomium splendens. Journal of Bryology 23: 283–92.Google Scholar
Rosswall, T., Veum, A. & Kärenlampi, L. (1975). Plant litter decomposition at Fennoscandian tundra sites. In Fennoscandian Tundra Ecosystems vol. 1, Plants and Microorganisms, ed. Wiegolaski, F. E., pp. 268–77. Berlin: Springer.CrossRef
Rozema, J., Björn, L. O., Bornman, J. F.et al. (2002). The role of UV-B radiation in aquatic and terrestrial ecosystems – an experimental and functional analysis of the evolution of UV-absorbing compounds. Journal of Photochemistry and Photobiology B. Biology 66: 2–12.Google Scholar
Russell, S. (1990). Bryophyte production and decomposition in tundra ecosystems. Botanical Journal of the Linnean Society 104: 3–22.Google Scholar
Ryan, K. G., Burne, A. & Seppelt, R. D. (2009). Historical ozone concentrations and flavonoid levels in herbarium specimens of the Antarctic moss Bryum argenteum. Global Change Biology 15: 1694–1702.Google Scholar
Sage, R. F. & Kubien, D. S. (2007). The temperature response of C3 and C4 photosynthesis. Plant, Cell & Environment 30: 1086–106.Google Scholar
Sandvik, S. M. & Heegaard, E. (2003). Effects of simulated environmental changes on growth and growth form in a late snowbed population of Pohlia wahlenbergii (Web et Mohr) André. Arctic, Antarctic & Alpine Research 35: 341–8.Google Scholar
Schipperges, B. & Gehrke, C. (1996). Photosynthetic characteristics of subarctic mosses and lichens. Ecological Bulletins 45: 121–6.Google Scholar
Serreze, M. C., Walsh, J. E., Chapin, F. S.et al. (2000). Observational evidence of recent change in the northern high-latitude environment. Climatic Change 46: 159–207.Google Scholar
Smith, R. I. L. (1994). Vascular plants as bioindicators of regional warming in Antarctica. Oecologia 99: 322–8.Google Scholar
Solga, A. & Frahm, J. P. (2006). Nitrogen accumulation by six pleurocarpous moss species and their suitability for monitoring nitrogen deposition. Journal of Bryology 28: 46–52.Google Scholar
Solheim, B., Johanson, U., Callaghan, T. V.et al. (2002). The nitrogen fixation potential of arctic cryptogam species is influenced by enhanced UV-B radiation. Oecologia 133: 90–3.Google Scholar
Sonesson, M., Carlsson, B. A., Callaghan, T. V.et al. (2002). Growth of two peat-forming mosses in subarctic mires: species interactions and effects of simulated climate change. Oikos 99: 151–60.Google Scholar
Sonesson, M., Gehrke, C. & Tjus, M. (1992). Carbon dioxide environment, microclimate and photosynthetic characteristics of the moss Hylocomium splendens in a subarctic habitat. Oecologia (Heidelberg) 92: 23–9.Google Scholar
Sturm, M., Racine, C. & Tape, K. (2001). Increasing shrub abundance in the Arctic. Nature (London) 411: 546–7.Google Scholar
Sundqvist, M. K., Björk, R. G. & Molau, U. (2008). Establishment of boreal forest species in alpine dwarf shrub heath in subarctic Sweden. Plant Ecology & Diversity 1: 67–75.Google Scholar
Svensson, B. M. (1995). Competition between Sphagnum fuscum and Drosera rotundifolia: a case of ecosystems engineering. Oikos 74: 205–12.Google Scholar
Tarnawski, M., Melick, D., Roser, D.et al. (1992). In situ carbon dioxide levels in cushion and turf forms of Grimmia antarctici at Casey Station, East Antarctica. Journal of Bryology 17: 241–9.Google Scholar
Tenhunen, J. D., Lange, O. L., Hahn, S., Siegwolf, R. & Oberbauer, S. F. (1992). The ecosystem role of poikilohydric tundra plants. In Arctic Ecosystems in a Changing Climate, ed. Chapin, F. S. I., Jefferies, R. L., Reynolds, J. F., Shaver, G. R. & Svoboda, J., pp. 213–56. San Diego, CA: Academic Press.CrossRef
Bogaert, R., Walker, D., Jia, G. J.et al. (2008). Recent Changes in Vegetation. In The Arctic Report Card 2008, ed. Richter-Menge, J., Overland, J., Svoboda, M.et al. http://www.arctic.noaa.gov/reportcard.
Cleve, K., Oechel, W. C. & Hom, J. L. (1990). Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Canadian Journal of Forest Research 20: 1530–5.Google Scholar
Wal, R. & Brooker, R. W. (2004). Mosses mediate grazer impacts on grass abundance in arctic ecosystems. Functional Ecology 18: 77–86.Google Scholar
Wal, R., Lieshout, S. & Loonen, M. (2001). Herbivore impact on moss depth, soil temperature and arctic plant growth. Polar Biology 24: 29–32.Google Scholar
Wijk, M. T., Clemmensen, K. E., Shaver, G. R.et al. (2003). Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change. Global Change Biology 10: 105–23.Google Scholar
Vitt, D. H. & Pakarinen, P. (1977). The bryophyte vegetation production and organic components of Truelove Lowland. In Truelove Lowland, Canada: A High Arctic Ecosystem, ed. Bliss, L. C., pp. 225–44. Edmonton: University of Alberta Press.
Walker, M. (1996). Community baseline measurements for ITEX studies. In ITEX manual, 2nd edn, ed. Molau, U. & Mølgaard, P., pp. 39–41. Copenhagen: International Tundra Experiment.
Walker, M. D., Wahren, H. C., Hollister, R. D.et al. (2006). Plant community responses to experimental warming across tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103: 1342–6.Google Scholar
Wasley, J., Robinson, S. A., Lovelock, C. E. & Popp, M. (2006). Some like it wet – biological characteristics and underpinning tolerance of extreme water stress events in Antarctic bryophytes. Functional Plant Ecology 33: 443–55.Google Scholar
Webber, P. J. (1978). Spatial and temporal variation of the vegetation and its production, Barrow, Alaska. In Vegetation and Production Ecology of an Alaskan Arctic Tundra, ed. Tieszen, L. L., pp. 37–112. Ecological Studies 29. New York: Springer-Verlag.CrossRef
Wielgolaski, F. E., Bliss, L. C., Svoboda, J. & Doyle, G. (1981). Primary production of tundra. In Tundra Ecosystems: a Comparative Analysis, ed. Bliss, L. C., Heal, O. W. & Moore, J. J., pp. 187–226. Cambridge: Cambridge University Press.
Wijk, S. (1986). Performance of Salix herbacea in an alpine snow-bed gradient. Journal of Ecology 74: 675–84.Google Scholar
Woolgrove, C. E. & Woodin, S. J. (1996). Current and historical relationships between the tissue nitrogen content of a snowbed bryophyte and nitrogenous air pollution. Environmental Pollution 91: 283–8.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×