Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T08:51:15.376Z Has data issue: false hasContentIssue false

3 - New insights into morphology, anatomy, and systematics of hornworts

Published online by Cambridge University Press:  06 July 2010

Bernard Goffinet
Affiliation:
University of Connecticut
A. Jonathan Shaw
Affiliation:
Duke University, North Carolina
Get access

Summary

Introduction

Hornworts are a key lineage in unraveling the early diversification of land plants. An emerging, albeit surprising, consensus based on recent molecular phylogenies is that hornworts are the closest extant relatives of tracheophytes (Qiu et al. 2006). Prior to comprehensive molecular analyses, discrepant hypotheses positioned hornworts as either sister to all embryophytes except liverworts or the closest living relatives of green algae (Mishler et al. 1994, Qiu et al. 1998, Goffinet 2000, Renzaglia & Vaughn 2000). Morphological features are of little value in resolving the placement of hornworts within the green tree of life because this homogeneous group of approximately 150 species exhibits numerous developmental and structural peculiarities not found in any extant or fossil archegoniate. Until recently, hornworts were neglected at every level of study and thus even the diversity and the relationships within this group have remained obscure.

Virtually every aspect of hornwort evolution has been challenged and/or revised since the publication of the first edition of this book (Duff et al. 2004, 2007, Shaw & Renzaglia 2004, Cargill et al. 2005, Renzaglia et al. 2007). Phylogenetic hypotheses based on multigene sequences have revolutionized our concepts of interrelationships. New classification schemes have arisen from these analyses and continue to be fine-tuned as more taxa are sampled. Three new genera have been named, increasing the number of hornwort genera to 14, namely Leiosporoceros, Anthoceros, Sphaerosporoceros, Folioceros, Hattorioceros, Mesoceros, Paraphymatoceros, Notothylas, Phaeoceros, Phymatoceros, Phaeomegaceros, Megaceros, Dendroceros, and Nothoceros (Duff et al. 2007, Stotler et al. 2005).

Type
Chapter
Information
Bryophyte Biology , pp. 139 - 172
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asthana, A. K. & Srivastava, S. C. (1991). Indian hornworts (a taxonomic study). Bryophytorum Bibliotheca, 42, 1–158.Google Scholar
Bartlett, E. M. (1928). The comparative study of the development of the sporophyte in the Anthocerotaceae, with special reference to the genus Anthoceros. Annals of Botany, 42, 409–30.CrossRefGoogle Scholar
Bower, F. O. (1935). Primitive Land Plants. London: macmillan & Co.Google Scholar
Brown, R. C. & Lemmon, B. E. (1990). Monoplastidic cell division in lower land plants. American Journal of Botany, 77, 559–71.CrossRefGoogle Scholar
Brown, R. C. & Lemmon, B. E. (1993). Diversity of cell division in simple land plants hold clues to evolution of the mitotic and cytokinetic apparatus in higher plants. Memoirs of the Torrey Botanical Club, 25, 45–62.Google Scholar
Brown, R. C. & Lemmon, B. E. (1997). The quadripolar microtubule system in lower land plants. Journal of Plant Research, 110, 93–106.CrossRefGoogle ScholarPubMed
Burr, F. A. (1969). Reduction in chloroplast number during gametophyte regeneration in Megaceros flagellaris. Bryologist, 72, 200–9.CrossRefGoogle Scholar
Campbell, D. H. (1895). The Structure and Development of Mosses and Ferns (Archegoniatae). New York: Macmillan.CrossRefGoogle Scholar
Cargill, D. C. & Scott, G. A. M. (1997). Taxonomic studies of the Australian Anthocerotales I. Journal of the Hattori Botanical Laboratory, 82, 47–60.Google Scholar
Cargill, D. C., Duff, R. J., Villarreal, J. C. & Renzaglia, K. S. (2005). Generic concepts in hornworts: historical review, contemporary insights and future directions. Australian Systematic Botany, 18, 7–16.CrossRefGoogle Scholar
Chitaley, S. D. & Yawale, N. R. (1980). On Notothylites nirulai gen. et sp. nov. A petrified sporogonium from the Deccan-Intertrappean beds of Mohgaonkalan M.P. (India). Botanique, 9, 111–18.Google Scholar
Crandall-Stotler, B. J. (1980). Morphogenetic designs and a theory of bryophyte origins and divergence. BioScience, 30, 580–5.CrossRefGoogle Scholar
Dettmann, M. E. (1994). Cretaceous vegetation: the microfossil record. In History of the Australian Vegetation: Cretaceous to Recent, ed. Hill, R. S., pp. 143–70. Cambridge: Cambridge University Press.Google Scholar
Duckett, J. G. (1975). An ultrastructural study of the differentiation of antheridial plastids in Anthoceros laevis. Cytobiologie, 10, 432–48.Google Scholar
Duckett, J. G. & Renzaglia, K. S. (1988). Ultrastructure and development of plastids in bryophytes. Advances in Bryology, 3, 33–93.Google Scholar
Duff, R. J. & Moore, F. (2005). Pervasive RNA editing inferred from rbcL transcripts among all hornworts except Leiosporoceros. Journal of Molecular Evolution, 61, 571–8.CrossRefGoogle ScholarPubMed
Duff, R. J., Cargill, D. C., Villarreal, J. C. & Renzaglia, K. S. (2004). Phylogenetic relationships of the hornworts based on rbcL sequence data: novel relationships and new insights. Monographs in Systematic Botany, Missouri Botanical Garden, 98, 41–58.Google Scholar
Duff, R. J., Villarreal, J. C., Cargill, D. C. & Renzaglia, K. S. (2007). Progress and challenges toward developing a phylogeny and classification of the hornworts. Bryologist, 110, 214–43.CrossRefGoogle Scholar
Frahm, J.-P. (2005). The first record of a fossil hornwort (Anthocerotophyta) from Dominican Amber. Bryologist, 108, 139–41.CrossRefGoogle Scholar
Frey, W. & Stech, M. (2005). A morpho-molecular classification of the Anthocerotophyta (hornworts). Nova Hedwigia, 80, 542–5.CrossRefGoogle Scholar
Garbary, D. J., Renzaglia, K. S. & Duckett, J. G. (1993). The phylogeny of land plants: a cladistic analysis based on male gametogenesis. Plant Systematics and Evolution, 188, 237–69.CrossRefGoogle Scholar
Goebel, K. (1905). Organography of Plants Especially of the Archegoniate and Spermatophyta. Part II. Special Organography. Oxford: Clarendon Press.Google Scholar
Goffinet, B. (2000). Origin and phylogenetic relationships of bryophytes. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 124–49. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Graham, A. (1987). Miocene communities and paleoenvironments of Southern Costa Rica. American Journal of Botany, 74, 1501–18.CrossRefGoogle Scholar
Graham, L. E. (1993). Origin of Land Plants. New York: John Wiley.Google Scholar
Hanson, D., Andrews, T. J. & Badger, M. R. (2002). Variability of the pyrenoid-based CO2 concentrating mechanism in hornworts (Anthocerotophyta). Functional Plant Biology, 29, 407–16.CrossRefGoogle Scholar
Hasegawa, J. (1983). Taxonomical studies on Asian Anthocerotae. III. Asian species of Megaceros. Journal of the Hattori Botanical Laboratory, 54, 227–40.Google Scholar
Hasegawa, J. (1994). New classification of Anthocerotae. Journal of the Hattori Botanical Laboratory, 76, 21–34.Google Scholar
Hässel de Menéndez, G. G. (1986). Leiosporoceros Hässel n. gen. and Leiosporocerotaceae Hässel n. fam. of Anthocerotopsida. Journal of Bryology, 14, 255–9.CrossRefGoogle Scholar
Hässel de Menéndez, G. G. (1988). A proposal for a new classification of the genera within the Anthocerotophyta. Journal of the Hattori Botanical Laboratory, 64, 71–86.Google Scholar
Hässel de Menéndez, G. G. (2006). Paraphymatoceros, gen. nov. (Anthocerotophyta). Phytologia, 88, 208–11.CrossRefGoogle Scholar
Hooghiemstra, H. (1984). Vegetational and climatic history of the high plain of Bogotá, Colombia: a continuous record of the last 3,5 million years. Dissertationes Botanicae, 79, 1–368.Google Scholar
Hyvönen, J. & Piippo, S. (1993). Cladistic analysis of the hornworts (Anthocerotophyta). Journal of the Hattori Botanical Laboratory, 74, 105–19.Google Scholar
Ivanov, D. A. (1997). Miocene palynomorphs from the southern part of the Forecarpathian Basin (Northwest Bulgaria). Flora Tertiaria Mediterranea, 6 (4), 1–81.Google Scholar
Jarzen, D. H. (1979). Spore morphology of some Anthocerotaceae and the occurrence of Phaeoceros spores in the Cretaceous of North America. Pollen et Spores, 21, 211–31.Google Scholar
Kenrick, P. (2003). Palaeobotany: fishing for the first plants. Nature, 425, 248–9.CrossRefGoogle ScholarPubMed
Kenrick, P. & Crane, P. R (1997). The Origin and Early Diversification of Land Plants: A Cladistic Study. Washington, D.C.: Smithsonian Institution Press.Google Scholar
Leitgeb, H. (1879). Untersuchungen über die Lebermoose, vol. 5, Die Anthoceroteen. Graz: Leuschner & Lubensky.Google Scholar
Ligrone, R. (1988). Ultrastructure of a fungal endophyte in Phaeoceros laevis (L.) Prosk. (Anthocerotophyta). Botanical Gazette, 149, 92–100.CrossRefGoogle Scholar
Ligrone, R. & Renzaglia, K. S. (1990). The sporophyte-gametophyte junction in the hornwort, Dendroceros tubercularis Hatt. (Anthocerotophyta). New Phytologist, 114, 497–505.CrossRefGoogle Scholar
Ligrone, R., Duckett, J. G. & Renzaglia, K. S. (1993). The gametophyte-sporophyte junction in land plants. Advances in Botanical Research, 19, 231–317.CrossRefGoogle Scholar
Mishler, B. D., Lewis, L. A., Buchheim, M. A.et al. (1994). Phylogenetic relationships of the “green algae” and “bryophytes.”Annals of the Missouri Botanical Garden, 81, 451–83.CrossRefGoogle Scholar
Proskauer, J. (1960). Studies on Anthocerotales. VI. Phytomorphology, 10, 1–19.Google Scholar
Qiu, Y. L., Choe, Y., Cox, J. C. & Palmer, J. D. (1998). The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature, 394, 671–4.CrossRefGoogle ScholarPubMed
Qiu, Y. L., Li, L. B., Wang, B.et al. (2006). The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the National Academy of Sciences, U.S.A., 103, 15511–16.CrossRefGoogle ScholarPubMed
Renzaglia, K. S. (1978). A comparative morphology and developmental anatomy of the Anthocerotophyta. Journal of the Hattori Botanical Laboratory, 44, 31–90.Google Scholar
Renzaglia, K. S. (1982). A comparative developmental investigation of the gametophyte generation in the Metzgeriales (Hepatophyta). Bryophytorum Bibliotheca, 24, 1–205.Google Scholar
Renzaglia, K. S. & Carothers, Z. B. (1986). Ultrastructural studies of spermatogenesis in the Anthocerotales. IV. The blepharoplast and mid-stage spermatid of Notothylas. Journal of the Hattori Botanical Laboratory, 60, 97–104.Google Scholar
Renzaglia, R. S. & Duckett, J. G. (1989). Ultrastructural studies of spermatogenesis in the Anthocerotophyta. V. Nuclear metamorphosis and the posterior mitochondrion of Notothylas orbicularis and Phaeoceros laevis. Protoplasma, 151, 137–50.CrossRefGoogle Scholar
Renzaglia, K. S. & Garbary, D. J. (2001). Motile male gametes of land plants: diversity, development and evolution. Critical Review in Plant Sciences, 20, 107–213.CrossRefGoogle Scholar
Renzaglia, K. S. & McFarland, K. D. (1999). Antheridial plants of Megaceros aenigmaticus in the Southern Appalachians: anatomy, ultrastructure and population distribution. Haussknechtia Beiheft, 9, 307–16.Google Scholar
Renzaglia, K. S. & Vaughn, K. C. (2000). Anatomy, development and classification of hornworts. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 1–35. Cambridge: Cambridge University Press.Google Scholar
Renzaglia, K. S., Duff, R. J., Nickrent, D. L. & Garbary, D. J. (2000). Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philosophical Transactions of the Royal Society, B355, 769–93.CrossRefGoogle ScholarPubMed
Renzaglia, K. S., Schuette, S., Duff, R. J.et al. (2007). Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist, 110, 179–213.CrossRefGoogle Scholar
Schiffner, V. (1937). Kritische Bemerkungen über die Europäischen Lebermoose mit Bezug auf die Exemplare des Exsiccatenwerkes. Hepaticae Europaeae Exsiccatae. XII Serie. Wien.
Schofield, W. B. (1985). Introduction to Bryology. New York: Macmillan.Google Scholar
Schuster, R. M. (1987). Preliminary studies on Anthocerotae. Phytologia, 63, 193–200.CrossRefGoogle Scholar
Schuster, R. M. (1992). The Hepaticae and Anthocerotae of North America, vol. VI. Chicago: Field Museum of Natural History.Google Scholar
Shaw, A. J. & Renzaglia, K. S. (2004). Phylogeny and diversification of bryophytes. American Journal of Botany, 91, 1557–81.CrossRefGoogle ScholarPubMed
Smith, E. C. & Griffiths, H. (1996). A pyrenoid-based carbon-concentrating mechanism is present in terrestrial bryophytes of the class Anthocerotae. Planta, 200, 203–12.CrossRefGoogle Scholar
Stech, M., Quandt, D. & Frey, W. (2003). Molecular circumscription of the hornworts (Anthocerotophyta) based on the chloroplast DNA trnL-trnF region. Journal of Plant Research, 116, 389–98.CrossRefGoogle ScholarPubMed
Stotler, R. E. & Crandall-Stotler, B. (2005). A revised classification of the Anthocerotophyta and a checklist of the hornworts of North America, north of Mexico. Bryologist, 108, 16–26.CrossRefGoogle Scholar
Stotler, R. & Doyle, W. T. (2006). Contribution toward a bryoflora of California. III. Keys and annotated species catalogue for liverworts and hornworts. Madroño, 53, 89–197.Google Scholar
Stotler, R. E., Doyle, W. T. & Crandall-Stotler, B. (2005). Phymatoceros Stotler, W. T. Doyle & Crand.-Stotler, gen. nov. (Anthocerotophyta). Phytologia, 87, 113–16.Google Scholar
Vaughn, K. C. & Harper, D. L (1998). Microtubule-organizing centers and nucleating sites in land plants. International Review of Cytology, 181, 75–149.CrossRefGoogle ScholarPubMed
Vaughn, K. C. & Hasegawa, J. (1993). Ultrastructural characteristics of the placental region of Folioceros and their taxonomic significance. Bryologist, 96, 112–21.CrossRefGoogle Scholar
Vaughn, K. C. & Renzaglia, K. S. (1998). Origin of bicentrioles in Anthocerote spermatogenous cells. In Bryology for the Twenty-first Century, ed. Bates, J. W, Ashton, N. W. & Duckett, J. G., pp. 189–203. Leeds: Maney and British Bryological Society.Google Scholar
Vaughn, K. C., Campbell, E. O., Hasegawa, J., Owen, H. A., & Renzaglia, K. S. (1990). The pyrenoid is the site of ribulose 1–5 bisphosphate carboxylase; oxygenase accumulation in the hornwort (Bryophyta: Anthocerotae) chloroplast. Protoplasma, 156, 117–29.CrossRefGoogle Scholar
Vaughn, K. C., Ligrone, R., Owen, H. A.et al. (1992). The anthocerote chloroplast: a review. New Phytologist, 120, 169–90.CrossRefGoogle Scholar
Villarreal, J. C. & Renzaglia, K. S. (2006a). Structure and development of Nostoc strands in Leiosporoceros dussii (Anthocerotophyta): a novel symbiosis in land plants. American Journal of Botany, 93, 693–705.CrossRefGoogle Scholar
Villarreal, J. C. & Renzaglia, K. S. (2006b). Sporophyte structure in the neotropical hornwort Phaeomegaceros fimbriatus: implications for phylogeny, taxonomy and character evolution. International Journal of Plant Sciences, 167, 413–27.CrossRefGoogle Scholar
Villarreal, J. C., Hässel de Menéndez, G. G. & Salazar Allen, N. (2007). Nothoceros superbus (Dendrocerotaceae), a new species of hornwort from Costa Rica. Bryologist, 110, 279–85.CrossRefGoogle Scholar
Wellman, C. H., Osterloff, P. L. & Mohiuddin, U. (2003). Fragments of the earliest land plants. Nature, 425, 282–5.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×