Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T08:38:43.508Z Has data issue: false hasContentIssue false

1 - The metabolic theory of ecology and the role of body size in marine and freshwater ecosystems

Published online by Cambridge University Press:  02 December 2009

James H. Brown
Affiliation:
University of New Mexico Albuquerque
Andrew P. Allen
Affiliation:
National Center for Ecological Analysis and Synthesis Santa Barbara
James F. Gillooly
Affiliation:
University of Florida Gainesville
Alan G. Hildrew
Affiliation:
Queen Mary University of London
David G. Raffaelli
Affiliation:
University of York
Ronni Edmonds-Brown
Affiliation:
University of Hertfordshire
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, J. L., Bellwood, D. R. & Brown, J. H. (2004). The contribution of small individuals to density-body size relationships: examination of energetic equivalence in reef fishes. Oecologia, 138, 568–571.CrossRefGoogle Scholar
Allen, A. P., Brown, J. H. & Gillooly, J. F. (2002). Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science, 297, 1545–1548.CrossRefGoogle ScholarPubMed
Allen, A. P., Gillooly, J. F. & Brown, J. H. (2005). Linking the global carbon cycle to individual metabolism. Functional Ecology, 19, 202–213.CrossRefGoogle Scholar
Belgrano, A., Allen, A. P., Enquist, B. J. & Gillooly, J. F. (2002). Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants. Ecology Letters, 5, 611–613.CrossRefGoogle Scholar
Brooks, J. L. & Dodson, S. I. (1965). Predation, body size and composition of plankton. Science, 150, 28–35.CrossRefGoogle ScholarPubMed
Brown, J. H. & Gillooly, J. F. (2003). Ecological food webs: high-quality data facilitate theoretical unification. Proceedings of the National Academy of Sciences, 100, 1467–1468.CrossRefGoogle ScholarPubMed
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. (2004). Towards a metabolic theory of ecology. Ecology, 85, 1771–1789.CrossRefGoogle Scholar
Calder, W. A. (1984). Size, Function, and Life History. Cambridge, MA: Harvard University Press.Google Scholar
Carpenter, S. R. & Kitchell, J. F. (1988). Consumer control of lake productivity. Bioscience, 38, 764–769.CrossRefGoogle Scholar
Cohen, J. E., Jonsson, T. & Carpenter, S. R. (2003). Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences, 100, 1781–1786.CrossRefGoogle ScholarPubMed
Cyr, H. (2000). Individual energy use and the allometry of population density. In Scaling in Biology, eds. Brown, J. H. and West, G. B.. New York: Oxford University Press, pp. 267–295.Google Scholar
Cyr, H. & Pace, M. L. (1993). Allometric theory-extrapolations from individuals to communities. Ecology, 74, 1234–1245.CrossRefGoogle Scholar
Cyr, H. & Peters, R. H. (1996). Biomass-size spectra and the prediction of fish biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 53, 994–1006.CrossRefGoogle Scholar
Damuth, J. (1981). Population density and body size in mammals. Nature, 290, 699–700.CrossRefGoogle Scholar
Elser, J. J., Dobberfuhl, D. R., MacKay, N. A. & Schampel, J. H. (1996). Organism size, life history, and N:P stoichiometry. Bioscience, 46, 674–684.CrossRefGoogle Scholar
Elser, J. J., Sterner, R. W., Gorokhova, E.et al. (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540–550.CrossRefGoogle Scholar
Ernest, S. K. M., Enquist, B. J., Brown, J. H.et al. (2003). Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecology Letters, 6, 990–995.CrossRefGoogle Scholar
Fenchel, T. & Finlay, B. J. (1983). Respiration rates in heterotrophic, free-living protozoa. Microbial Ecology, 9, 99–122.CrossRefGoogle ScholarPubMed
Gause, G. F. (1934). The Struggle for Existence. Baltimore: Williams and Wilkins.CrossRefGoogle ScholarPubMed
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293, 2248–2251.CrossRefGoogle ScholarPubMed
Gillooly, J. F., Charnov, E. L., West, G. B., Savage, V. M. & Brown, J. H. (2002). Effects of size and temperature on developmental time. Nature, 417, 70–73.CrossRefGoogle ScholarPubMed
Gillooly, J. F., Allen, A. P., Brown, J. H.et al. (2005a). The metabolic basis of whole-organism RNA and phosphorus content. Proceedings of the National Academy of Sciences, 102, 11923–11927.CrossRefGoogle Scholar
Gillooly, J. F., Allen, A. P., West, G. B. & Brown, J. H. (2005b). The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences, 102, 140–145.CrossRefGoogle Scholar
Gillooly, J. F., Allen, A. P. & Brown, J. H. (2006). Food web structure and dynamics: reconciling alternative ecological currencies. In Ecological Networks: Linking Structure to Dynamics in Food Webs, eds. Pasqual, M. and Dunne, J. A.. Oxford: Oxford University Press.Google Scholar
Hemmingsen, A. M. (1960). Energy metabolism as related to body size and respiratory surfaces, and its evolution. Reports of the Steno Memorial Hospital and Nordisk Insulin Laboratorium, 9, 6–110.Google Scholar
Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals. American Naturalist, 93, 145–159.CrossRefGoogle Scholar
Huxley, J. S. (1932). Problems of Relative Growth. London: Methuen.Google Scholar
Kerr, S. R. & Dickie, L. M. (2001). The Biomass Spectrum: A Predator-Prey Theory of Aquatic Production. New York: Columbia University Press.Google Scholar
Leibold, M. A. & Wilbur, H. M. (1992). Interactions between food web structure and nutrients on pond organisms. Nature, 360, 341–343.CrossRefGoogle Scholar
Li, W. K. W. (2002). Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature, 419, 154–157.CrossRefGoogle ScholarPubMed
Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399–417.CrossRefGoogle Scholar
McMahon, T. A. & Bonner, J. T. (1983). On Size and Life. New York: Scientific American Books.Google Scholar
Morin, P. J. (1995). Functional redundancy, nonadditive interactions, and supply-side dynamics in experimental pond communities. Ecology, 76, 133–149.CrossRefGoogle Scholar
Morin, P. J. (1999). Productivity, intraguild predation, and population dynamics in experimental food webs. Ecology, 80, 752–760.CrossRefGoogle Scholar
Odum, H. T. (1956). Efficiencies, size of organisms, and community structure. Ecology, 37, 592–597.CrossRefGoogle Scholar
Paine, R. T. (1974). Intertidal community structure. Experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia, 15, 93–120.CrossRefGoogle ScholarPubMed
Peters, R. H. (1983). The Ecological Implications of Body Size. New York: Cambridge University Press.CrossRefGoogle Scholar
Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46, 205–221.Google Scholar
Savage, V. M., Gillooly, J. F., Woodruff, W. H.et al. (2004a). The predominance of quarter-power scaling in biology. Functional Ecology, 18, 257–282.CrossRefGoogle Scholar
Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. (2004b). Effects of body size and temperature on population growth. American Naturalist, 163, 429–441.CrossRefGoogle Scholar
Schindler, D. W. (1974). Eutrophication and recovery in experimental lakes: implications for lake management. Science, 184, 897–899.CrossRefGoogle ScholarPubMed
Schmidt-Nielsen, K. (1984). Scaling: Why is Animal Size So Important? New York: Cambridge University Press.CrossRefGoogle Scholar
Sheldon, R. W. & Parsons, T. R. (1967). A continuous size spectrum for particulate matter in sea. Journal of the Fisheries Research Board of Canada, 24, 909–915.CrossRefGoogle Scholar
Sheldon, R. W., Prakash, A. & Sutcliffe, W. H. (1972). The size distribution of particles in the ocean. Limnology and Oceanography, 17, 327–340.CrossRefGoogle Scholar
Sheldon, R. W., Sutcliffe, W. H. & Paranjape, M. A. (1977). Structure of pelagic food-chain and relationship between plankton and fish production. Journal of the Fisheries Research Board of Canada, 34, 2344–2353.CrossRefGoogle Scholar
Sprules, W. G. & Bowerman, J. E. (1988). Omnivory and food chain length in zooplankton food webs. Ecology, 69, 418–426.CrossRefGoogle Scholar
Sterner, R. W. & Elser, J. J. (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton, NJ: Princeton University Press.Google Scholar
Thompson, D. W. (1917). On Growth and Form. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
West, G. B., Brown, J. H. & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122–126.CrossRefGoogle ScholarPubMed
West, G. B., Brown, J. H. & Enquist, B. J. (1999). The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science, 284, 1677–1679.CrossRefGoogle ScholarPubMed
Wetzel, R. G. (1984). Detrital dissolved and particulate organic carbon functions in aquatic ecosystems. Bulletin of Marine Science, 35, 503–509.Google Scholar
Yodzis, P. & Innes, S. (1992). Body size and consumer-resource dynamics. American Naturalist, 139, 1151–1175.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×