Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T16:52:24.886Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  31 May 2018

Markus Linckelmann
Affiliation:
City, University of London
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] M., Auslander and J. F., Carlson, Almost split sequences and group rings, J. Algebra 103 (1986), 122–140.Google Scholar
[2] M., Auslander and O., Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409.Google Scholar
[3] M., Auslander and I., Reiten, Representation theory of Artin algebras VI: a functorial approach to almost split sequences, Comm. Algebra 6(3) (1978) 257–300.Google Scholar
[4] M., Auslander, I., Reiten, and S. O., Smalo, Representation theory of Artin algebras, Cambridge studies in advanced mathematics 36, Cambridge University Press (1995).Google Scholar
[5] D. J., Benson, Representations and cohomology, Vol. I: Cohomology of groups and modules, Cambridge studies in advanced mathematics 30, Cambridge University Press (1991).Google Scholar
[6] D. J., Benson, Representations and cohomology, Vol. II: Cohomology of groups and modules, Cambridge studies in advanced mathematics 31, Cambridge University Press (1991).Google Scholar
[7] D. J., Benson and J. F., Carlson, Nilpotent elements in the Green ring, J. Algebra 104 (1986), 329–350.Google Scholar
[8] S. D., Berman, On certain properties of integral group rings, Dokl. Akad. Nauk. SSSR 91 (1953), 7–9.Google Scholar
[9] R., Boltje, A canonical Brauer induction formula, Asterisque 181–182 (1990), 31–59.Google Scholar
[10] S., Bouc, Résolutions de foncteurs de Mackey; in: “Groups, representations: cohomology, group actions and topology” (eds.: A., Adem, J., Carlson, S., Priddy, P., Webb), Proc. Symp. Pure Math. 63 (1998), 31–83.Google Scholar
[11] S., Bouc, Bisets as categories and tensor product of induced bimodules. Appl. Categor. Struct. 18 (2010), 517–521.Google Scholar
[12] M., Broue, Radical, hauteurs, p-sections et blocs, Ann. Math. 107 (1978), 89–107.Google Scholar
[13] M., Broue, On Scott modules and p-permutation modules: an approach through the Brauer homomorphism, Proc. Amer. Math. Soc. 93 (1985), 401–408.Google Scholar
[14] M., Broue, Equivalences of blocks of group algebras, in: Finite dimensional algebras and related topics, Kluwer (1994), 1–26.Google Scholar
[15] M., Broue and L., Puig, Characters and local structure in G-algebras, J. Algebra 63 (1980), 306–317.Google Scholar
[16] R.-O., Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, unpublished manuscript (1987)
[17] D. W., Burry and J. F., Carlson, Restrictions of modules to local subgroups, Proc. Ams 84 (1982), 181–184.Google Scholar
[18] M., Cabanes and M., Enguehard, The representation theory of finite reductive groups. New Mathematical Monographs, Cambridge University Press (2004).Google Scholar
[19] L. G., Chouinard, Transfer maps, Comm. Alg. 8 (1980), 1519–1537.Google Scholar
[20] G., Cliff, W., Plesken, and A., Weiss, Order-theoretic properties of the center of a block, in: The Arcata Conference on Representations of Finite Groups (editor: P., Fong), Proc. Sympos. Pure Math. 47, Amer. Math. Soc, Providence RI (1987), 413–420.Google Scholar
[21] D. B., Coleman, On the modular group ring of a p-group, Proc. AMS 15 (1964), 511–514.Google Scholar
[22] C. W., Curtis and I., Reiner, Methods of representation theory Vol. I, John Wiley and Sons, New York, London, Sydney (1981).Google Scholar
[23] E., Dade, Deux groupes finis ayant la même algèbre de groupe sur tout corps, Math. Z. 119 (1964), 345–348.Google Scholar
[24] E. C., Dade, Block extensions, Illinois J. Math. 17 (1973), 198–272.Google Scholar
[25] E. C., Dade, The Green correspondents of simple group modules, J. Algebra 78 (1982), 357–371.Google Scholar
[26] W. E., Deskins, Finite Abelian groups with isomorphic group algebras, DukeMath. J. 23 (1956), 35–40.Google Scholar
[27] A., Dugas and R. Martinez, Villa, A note on stable equivalences of Morita type, J. Pure Appl. Algebra 208 (2007), 421–433.Google Scholar
[28] A., Facchini, Module theory. Modern Birkhauser Classics. Springer Basel (1998).Google Scholar
[29] W., Feit, The representation theory of finite groups, North-Holland Mathematical Library 25, North-Holland Publishing Company, Amsterdam (1982).Google Scholar
[30] W., Gaschutz, Über den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen. Math. Z. 56 (1952) 376–387.Google Scholar
[31] M., Geck and G., Pfeiffer, Characters of finite Coxeter groups and Iwahori algebras. Oxford University Press (2000).Google Scholar
[32] D., Gorenstein, Finite groups, Chelsea Publishing Company, New York (1980).Google Scholar
[33] J. A., Green, Some remarks on defect groups, Math. Z. 107 (1968), 133–150.Google Scholar
[34] J. A., Green, Polynomial representations of GLn, Lecture Notes in Math. 830 (2007), second edition, Springer Verlag, Berlin Heidelberg.
[35] M., Grime, Adjoint functors and triangulated categories, Comm. Algebra 36 (2008), 3589–3607.Google Scholar
[36] M., Hertweck and M., Soriano, On the modular isomorphism problem: groups of order 26, in: Groups, Rings, Algebras (W., Chin, J., Osterburg, D., Quinn, eds.), Contemp. Math 420, Amer. Math. Soc., Providence, RI (2006), 141–161.Google Scholar
[37] G., Higman, Units in group rings, D. Phil. Thesis, Oxford Univ. (1939).Google Scholar
[38] T., Holm, R., Kessar, and M., Linckelmann, Blocks with a quaternion defect group over a 2-adic ring: the case A4, Glasg. Math. J. 49 (2007), 29–43.Google Scholar
[39] B., Huppert, Bemerkungen zur modularen Darstellungstheorie 1. Absolut unzerlegbare Moduln. Archiv Math. (Basel) 26 (1975), 242–249.
[40] M., Ikeda, On a theorem of Gaschütz. Osaka Math. J. 4 (1952), 53–58.Google Scholar
[41] I. M., Isaacs, Character theory of finite groups, Dover (1994).Google Scholar
[42] D. A., Jackson, The group of units of the integral group rings of finite metabelian and finite nilpotent groups, Quart. J. Math. Oxford 20 (1969), 313–319.Google Scholar
[43] S. A., Jennings, The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175–185.Google Scholar
[44] L., Kadison, On split, separable subalgebras with counitality condition. Hokkaido Math. J. 24 (1995), 527–549.Google Scholar
[45] B., Keller, On the construction of triangle equivalences, in: Derived Equivalences for Group Rings (S., Konig, A., Zimmermann), Lecture Notes in Math. 1685, Springer Verlag, Berlin-Heidelberg (1998), 155–176.Google Scholar
[46] R., Kessar, A remark on Donovan's conjecture, Archiv Math. (Basel) 82 (2004), 391–394.Google Scholar
[47] R., Knorr, On the vertices of irreducible modules, Ann. Math. 110 (1979), 487–499.Google Scholar
[48] S., Konig and A., Zimmermann, Derived equivalences for group rings, Lecture Notes inMathematics 1685, Springer Verlag Berlin Heidelberg (1998) pp. X+246.Google Scholar
[49] B., Kulshammer, Bemerkungen über die Gruppenalgebra als symmetrische Algebra, J. Algebra 72 (1981), 1–7.Google Scholar
[50] B., Kulshammer, T., Okuyama, and A., Watanabe, A lifting theorem with applications to blocks and source algebras, J. Algebra 232 (2000), 299–309.Google Scholar
[51] B., Kulshammer and L., Puig, Extensions of nilpotent blocks, unpublished manuscript.
[52] B., Kulshammer and L., Puig, Extensions of nilpotent blocks, Invent. Math. 102 (1990), 17–71.Google Scholar
[53] B., Kulshammer and G. R., Robinson, Characters of relatively projective modules II, J. London Math. Soc. 36 (1987), 59–67.Google Scholar
[54] S., Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555–563.Google Scholar
[55] M., Linckelmann, Stable equivalences of Morita type for self-injective algebras and p-groups, Math. Z. 223 (1996) 87–100.Google Scholar
[56] M., Linckelmann, On stable equivalences of Morita type, in: S. Konig and A. Zimmermann, Derived equivalences for group rings, Lecture Notes in Mathematics 1685, Springer Verlag Berlin Heidelberg (1998), 221–232.Google Scholar
[57] M., Linckelmann, On splendid derived and stable equivalences between blocks of finite groups, J. Algebra 242 (2001), 819–843.Google Scholar
[58] M., Linckelmann, Induction for interior algebras, Quart. J. Math. 53 (2002), 195–200.Google Scholar
[59] M., Linckelmann, Finite generation of Hochschild cohomology of Hecke algebras of finite classical type in characteristic zero, Bull. London Math. Soc. 43 (2011), 871–885.Google Scholar
[60] M., Linckelmann, Tate duality and transfer in Hochschild cohomology. J. Pure Appl. Algebra 217 (2013), 2387–2399.Google Scholar
[61] M., Linckelmann, On stable equivalences with endopermutation source, J. Algebra 434 (2015), 27–45.Google Scholar
[62] Y., Liu and Ch., Xi, Constructions of stable equivalences of Morita type for finitedimensional algebras. III. J. Lond. Math. Soc. 76 (2007), 567–585.Google Scholar
[63] G., Lusztig, Characters of reductive groups over finite fields, Princeton University Press (1984).Google Scholar
[64] A., Marcus, Representation Theory of Group-graded Algebras, Nova Science Publishers, Inc., Commack NY (1999).Google Scholar
[65] H., Matsumura, Commutative ring theory. Cambridge studies in advanced mathematics 8, Cambridge University Press (1986).Google Scholar
[66] B., Mitchell, Some applications of module theory to functor categories. Bull. Amer. Math. Soc. 84 (1978) 867–885.Google Scholar
[67] T., Okuyama, Module correspondences in finite groups, Hokkaido Math. J. 10 (1981), 299–318.Google Scholar
[68] T., Okuyama and Y., Tsushima, Local properties of p-block algebras of finite groups, Osaka J. Math. 20 (1983), 33–41.Google Scholar
[69] D. S., Passman, Isomorphic groups and group rings, Pacific J. Math. 35 (1965), 561–583.Google Scholar
[70] L., Puig, Sur un théorème de Green, Math. Z. 166 (1979), 117–129.Google Scholar
[71] L., Puig, Pointed groups and construction of characters. Math. Z. 176 (1981), 265– 292.Google Scholar
[72] L., Puig, Local fusion in block source algebras, J. Algebra 104 (1986), 358–369.Google Scholar
[73] L., Puig, Pointed groups and construction of modules, J. Algebra 116 (1988), 7– 129.Google Scholar
[74] L., Puig, On Thévenaz' parametrization of interior G-algebras, Math. Z. 215 (1994), 321–335.Google Scholar
[75] L., Puig, The center of a block, in: Finite Reductive Groups (M. Cabanes, ed.), Progress in Math. 141 (1997), 361–372.Google Scholar
[76] I., Reiner, Topics in integral representation theory, Lecture Notes in Math. 744, Springer Verlag, Berlin Heidelberg (1979).Google Scholar
[77] J., Rickard, Morita theory for derived categories, J. London Math. Soc. 39 (1989), 436–456.Google Scholar
[78] J., Rickard, Derived equivalences as derived functors, J. London Math. Soc. 43 (1991), 37–48.Google Scholar
[79] J., Rickard, Splendid equivalence: derived categories and permutation modules, Proc. London Math. Soc. 72 (1996), 331–358.Google Scholar
[80] J., Rickard, Equivalences of derived categories for symmetric algebras, J. Algebra 257 (2002), 460–481.Google Scholar
[81] K. W., Roggenkamp and L. L., Scott, Isomorphisms of p-adic group rings, Annals Math. 126 (1987), 593–647.Google Scholar
[82] R., Rouquier, The derived category of blocks with cyclic defect groups, in:Derived Equivalences for Group Rings (S., Konig, A., Zimmermann), Lecture Notes in Math. 1685, Springer Verlag, Berlin-Heidelberg, 1998, 199–220.Google Scholar
[83] A. I., Saksononv, On the group ring of finite groups, Publ. Math. Debrecen 18 (1971), 187–209.Google Scholar
[84] J.-P., Serre, Corps locaux, Hermann, Paris (1968).Google Scholar
[85] J.-P., Serre, Linear representations of finite groups, Graduate Texts inMathematics 42, Springer-Verlag, New York (1982).Google Scholar
[86] V., Snaith, Explicit Brauer induction, Invent. Math. 94 (1988), 455–478.Google Scholar
[87] R., Steinberg, Endomorphisms of linear algebraic groups. Mem. Amer.Math. Soc. 80 (1968), Providence.Google Scholar
[88] J., Thevenaz, Extensions of group representations from a normal subgroup, Comm. Algebra 11 (1983), 391–425.Google Scholar
[89] J., Thevenaz, The parametrization of interior algebras, Math. Z. 212 (1993), 411– 454.Google Scholar
[90] J., Thevenaz, G-algebras and modular representation theory, Oxford Science Publications, Clarendon, Oxford (1995).Google Scholar
[91] J., Thompson, Vertices and sources, J. Algebra 6 (1967), 1–6.Google Scholar
[92] P. J., Webb, An introduction to the representations and cohomology of categories, in: (eds: M., Geck, D., Testermann, J., Thevenaz) Group representation theory, EPFL Press, Lausanne (2007).Google Scholar
[93] C. A., Weibel, An introduction to homological algebra, Cambridge studies in advanced mathematics 38, Cambridge University Press (1994).Google Scholar
[94] Ch., Xi, Stable equivalences of adjoint type. Forum Math. 20 (2008), 81–97.Google Scholar
[95] F., Xu, Representations of categories and their applications. J. Algebra 317 (2007), 153–183.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Markus Linckelmann, City, University of London
  • Book: The Block Theory of Finite Group Algebras
  • Online publication: 31 May 2018
  • Chapter DOI: https://doi.org/10.1017/9781108349321.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Markus Linckelmann, City, University of London
  • Book: The Block Theory of Finite Group Algebras
  • Online publication: 31 May 2018
  • Chapter DOI: https://doi.org/10.1017/9781108349321.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Markus Linckelmann, City, University of London
  • Book: The Block Theory of Finite Group Algebras
  • Online publication: 31 May 2018
  • Chapter DOI: https://doi.org/10.1017/9781108349321.007
Available formats
×