Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T18:43:38.977Z Has data issue: false hasContentIssue false

16 - The trophic structure of tropical ant–plant–herbivore interactions: community consequences and coevolutionary dynamics

Published online by Cambridge University Press:  25 August 2009

Doyle McKey
Affiliation:
Université Montpellier 2
Laurence Gaume
Affiliation:
Centre National de Recherches Scientifiques
Carine Brouat
Affiliation:
Institut de Recherche pour le développement
Bruno di Gíusto
Affiliation:
Centre National de Recherches Scientifiques
Laurence Pascal
Affiliation:
Université Montpellier 2
Gabriel Debout
Affiliation:
University of East Anglia
Ambroise Dalecky
Affiliation:
Institut National de Recherche Agronomique
Martin Heil
Affiliation:
Universität Duisburg-Essen
David Burslem
Affiliation:
University of Aberdeen
Michelle Pinard
Affiliation:
University of Aberdeen
Sue Hartley
Affiliation:
University of Sussex
Get access

Summary

Introduction

The first part of this paper examines the consequences of an interlocking set of mutualisms, involving ants, plants, bacteria and phloem-feeding insects, for the structure and functioning of herbivore-based food webs in tropical communities. This part draws heavily from important recent work by Davidson and colleagues (Davidson 1997; Davidson et al. 2003) and extends their discussion of community-level implications of their findings. The second part explores how trophic interactions evolve when coevolution produces specialized symbiotic ant–plant mutualisms, and is based largely on our own work on interactions between ants and Leonardoxa myrmecophytes of African rainforests. The paper complements a recent general review of ant–plant protection mutualisms (Heil & McKey 2003).

Ant–plant–herbivore interactions and tropical food webs

How food webs function, and how trophic interactions shape communities, have long been central questions in ecology. Interactions between organisms at adjacent trophic levels – predators and prey, parasites and hosts – and competitive interactions among organisms at the same trophic level, all occupy major roles in theories to explain the great species richness and other traits of tropical forest ecosystems (Wright 2002). Following the lead of classic studies like those of Hairston et al. (1960) and Paine (1966), investigations of how communities function have increasingly taken into account not only these direct interactions, but also indirect interactions that extend across several trophic levels. Do natural enemies of herbivores have measurable impacts on fitness of individual plants, on relative abundance of plant species, on primary productivity or on plant species diversity?

Type
Chapter
Information
Biotic Interactions in the Tropics
Their Role in the Maintenance of Species Diversity
, pp. 386 - 413
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, G., Armbrecht, I., Jimenez, E., Armbrecht, H. & Ulloa-Chacon, P. 2001. Ant–plant association in two Tococa species from a primary rain forest of Colombian Choco (Hymenoptera: Formicidae). Sociobiology 38: 585–602Google Scholar
Bakker, F. M. & Klein, M. E. 1992. Transtrophic interactions in cassava. Experimental and Applied Acarology 14: 293–311CrossRefGoogle Scholar
Baroni Urbani, C. & Andrade, M. L. 1997. Pollen eating, storing and spitting by ants. Naturwissenschaften 84: 256–258CrossRefGoogle Scholar
Becerra, J. X. & Venable, D. L. 1989. Extrafloral nectaries: a defense against ant–Homoptera mutualism?Oikos 55: 276–280CrossRefGoogle Scholar
Belin-Depoux, M. & Bastien, D. 2002. Regard sur la myrmécophilie en Guyane française. Les dispositifs d'absorption de Maieta guianensis et la triple association Philodendron-fourmis-Aleurodes. Acta Botanica Gallica 149: 299–318CrossRefGoogle Scholar
Bentley, B. L. 1981. Ants, extrafloral nectaries, and the vine life-form: an interaction. Tropical Ecology 22: 127–133Google Scholar
Billen, J. & Buschinger, A. 2000. Morphology and ultrastructure of a specialized bacterial pouch in the digestive tract of Tetraponera ants (Formicidae, Pseudomyrmecinae). Arthropod Structure and Development 29: 259–266CrossRefGoogle Scholar
Blattner, F. R., Weising, K., Bänfer, G., Maschwitz, U. & Fiala, B. 2001. Molecular analysis of phylogenetic relationships among myrmecophytic Macaranga species. Molecular Phylogenetics and Evolution 19: 331–344CrossRefGoogle ScholarPubMed
Blüthgen, N. & Fiedler, K. 2002. Interactions between weaver ants Oecophylla smaragdina, homopterans, trees and lianas in an Australian rain forest canopy. Journal of Animal Ecology 71: 793–801CrossRefGoogle Scholar
Blüthgen, N., Verhaagh, M., Goitia, W., Jaffé, K., Morawetz, W. & Barthlott, W. 2000. How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia 125: 229–240CrossRefGoogle ScholarPubMed
Bourseaux-Eude, C. & Gross, R. 2000. New insights into symbiotic associations between ants and bacteria. Research in Microbiology 151: 513–519CrossRefGoogle Scholar
Breton, L. M. & Addicott, J. F. 1992. Density-dependent mutualism in an aphid–ant interaction. Ecology 73: 2175–2180CrossRefGoogle Scholar
Brouat, C. 2000. Origine et evolution des mutualismes plantes-fourmis: le cas de Leonardoxa, myrmécophyte à domaties caulinaires. Unpublished thesis, Université Montpellier II, France
Brouat, C., Garcia, N., Andary, C. & McKey, D. 2001. Plant lock and ant key: pairwise coevolution of an exclusion filter in an ant–plant mutualism. Proceedings of the Royal Society of London B 268: 2131–2141CrossRefGoogle Scholar
Brouat, C., McKey, D. & Douzery, E. 2004. Differentiation and gene flow in a geographic mosaic of plants coevolving with ants: phylogeny of the Leonardoxa africana complex (Leguminosae: Caesalpinioideae) using AFLP markers. Molecular Ecology 13: 1157–1171CrossRefGoogle Scholar
Caetano, F. H., Jaffé, K. & Crewe, R. W. 1994. The digestive tract of Cataulacus ants: presence of microorganisms in the ileum. In Les Insectes Sociaux (ed. , A. Lenoir, , G. Arnold & , M. Lepage). Paris: Université Paris Nord, p. 391Google Scholar
Carroll, C. R. & Janzen, D. H. 1973. Ecology of foraging by ants. Annual Review of Ecology and Systematics 4: 231–257CrossRefGoogle Scholar
Chenuil, A. & McKey, D. 1996. Molecular phylogenetic study of a myrmecophyte symbiosis: did Leonardoxa–ant associations diversify via cospeciation?Molecular Phylogenetics and Evolution 6: 270–286CrossRefGoogle ScholarPubMed
Cogni, R., Freitas, A. V. L. & Oliveira, P. S. 2003. Interhabitat differences in ant activity on plant foliage: ants at extrafloral nectaries of Hibiscus pernambucensis in sandy and mangrove forests. Entomologia Experimentalis et Applicata 107: 125–131CrossRefGoogle Scholar
Coley, P. D. & Barone, J. A. 1996. Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27: 305–335CrossRefGoogle Scholar
Cushman, J. H. & Addicott, J. F. 1991. Conditional interactions in ant–plant–herbivore mutualisms. In Ant–Plant Interactions (ed. , C. R. Huxley & , D. F. Cutler). Oxford: Oxford University Press, pp. 92–103Google Scholar
Davidson, D. W. 1997. The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biological Journal of the Linnean Society 61: 153–181CrossRefGoogle Scholar
Davidson, D. W. & McKey, D. 1993. The evolutionary ecology of symbiotic ant–plant relationships. Journal of Hymenoptera Research 1: 13–83Google Scholar
Davidson, D. W. & Patrell-Kim, L. 1996. Tropical arboreal ants: why so abundant? In Neotropical Biodiversity and Conservation (ed. , A. C. Gibson), , Mildred E. Mathias Botanical Garden Publication No. 1. Los Angeles: University of California Press, pp. 127–140Google Scholar
Davidson, D. W., Foster, R. B., Snelling, R. R. & Lozada, P. W. 1991. Variable composition of some tropical ant–plant symbioses. In Plant–Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions (ed. , P. W. Price, , T. M. Lewinsohn, , G. W. Fernandes & , W. W. Benson). New York: John Wiley & Sons, pp. 145–162Google Scholar
Davidson, D. W., Cook, S. C., Snelling, R. R. & Chua, T. H. 2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300: 969–972CrossRefGoogle ScholarPubMed
Davidson, D. W., Cook, S. C. & Snelling, R. R. 2004. Liquid feeding performances of ants (Formicidae): ecological and evolutionary implications. Oecologia 139: 255–266CrossRefGoogle ScholarPubMed
Davies, S. J., Lum, S. K. Y., Chan, R. & Wang, L. K. 2001. Evolution of myrmecophytism in western Malesian Macaranga (Euphorbiaceae). Evolution 55: 1542–1559CrossRefGoogle Scholar
Dejean, A., McKey, D., Gibernau, M. & Belin, M. 2000. The arboreal ant mosaic in a Cameroonian rainforest (Hymenoptera: Formicidae). Sociobiology 35: 403–423Google Scholar
Delabie, J. H. C. 2001. Trophobiosis between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an overview. Neotropical Entomology 30: 501–516CrossRefGoogle Scholar
di Giusto, B., Anstett, M. C., Dounias, E. & McKey, D. 2001. Variation in the effectiveness of biotic defence: the case of an opportunistic ant–plant protection mutualism. Oecologia 129: 367–375CrossRefGoogle Scholar
Dyer, L. A. & Letourneau, D. 2003. Top-down and bottom-up diversity cascades in detrital vs. living food webs. Ecology Letters 6: 60–68CrossRefGoogle Scholar
Elser, J. J., Sterner, R. W., Gorokhova, E.et al. 2000. Biological stoichiometry from genes to ecosystems. Ecology Letters 3: 540–550CrossRefGoogle Scholar
Feldhaar, H., Fiala, B., Gadau, J., Mohamed, M. & Maschwitz, U. 2003. Molecular phylogeny of Crematogaster subgenus Decacrema ants (Hymenoptera: Formicidae) and the colonization of Macaranga (Euphorbiaceae) trees. Molecular Phylogenetics and Evolution 27: 441–452CrossRefGoogle ScholarPubMed
Fiala, B., Grunsky, H., Maschwitz, U. & Linsenmair, K. E. 1994. Diversity of ant–plant interactions: protective efficacy in Macaranga species with different degrees of ant association. Oecologia 97: 186–192CrossRefGoogle ScholarPubMed
Fischer, R. C., Richter, A., Wanek, W. & Mayer, V. 2002. Plants feed ants: food bodies of myrmecophytic Piper and their significance for the interaction with Pheidole bicornis ants. Oecologia 133: 186–192CrossRefGoogle ScholarPubMed
Fischer, R. C., Wanek, W., Richter, A. & Mayer, V. 2003. Do ants feed plants? A 15N labelling study of nitrogen fluxes from ants to plants in the mutualism of Pheidole and Piper. Journal of Ecology 91: 126–134CrossRefGoogle Scholar
Fleet, R. R. & Young, B. L. 2000. Facultative mutualism between imported fire ants (Solenopsis invicta) and a legume (Senna occidentalis). Southwestern Naturalist 45: 289–298CrossRefGoogle Scholar
Floren, A., Biun, A. & Linsenmair, K. E. 2002. Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia 131: 137–144CrossRefGoogle ScholarPubMed
Fonseca, C. R. 1993. Nesting space limits colony size of the plant-ant Pseudomyrmex concolor. Oikos 67: 473–482CrossRefGoogle Scholar
Fonseca, C. R. 1999. Amazonian ant-plant interactions and the nesting space limitation hypothesis. Journal of Tropical Ecology 15: 807–825CrossRefGoogle Scholar
Gaedke, U., Hochstadter, S. & Straile, D. 2002. Interplay between energy limitation and nutritional deficiency: empirical data and food web models. Ecological Monographs 72: 251–270CrossRefGoogle Scholar
Gaston, K. J., Gauld, I. D. & Hanson, P. 1996. The size and composition of the hymenopteran fauna of Costa Rica. Journal of Biogeography 23: 105–113CrossRefGoogle Scholar
Gauld, I. D., Gaston, K. J. & Janzen, D. H. 1992. Plant allelochemicals, tritrophic interactions and the anomalous diversity of tropical parasitoids: the nasty host hypothesis. Oikos 65: 353–357CrossRefGoogle Scholar
Gaume, L. 1998. Mutualisme, parasitisme, et évolution des symbioses plantes-fourmis: le cas de Leonardoxa (légumineuse) et de ses fourmis associées. Unpublished thesis, Ecole Nationale Supérieure Agronomique de Montpellier
Gaume, L. & McKey, D. 2002. How identity of the homopteran trophobiont affects sex allocation in a symbiotic plant-ant: the proximate role of food. Behavioral Ecology and Sociobiology 51: 197–205CrossRefGoogle Scholar
Gaume, L., McKey, D. & Terrin, S. 1998. Ant–plant–homopteran mutualism: how the third partner affects the interaction between a plant-specialist ant and its myrmecophyte host. Proceedings of the Royal Society of London B 265: 569–575CrossRefGoogle Scholar
Gil, R., Silva, F. J., Zientz, E.et al. 2003. The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proceedings of the National Academy of Sciences 100: 9388–9393CrossRefGoogle ScholarPubMed
Gullan, P. J. 1997. Relationships with ants. In Soft Scale Insects: Their Biology, Natural Enemies and Control (ed. , Y. Ben-Dov & , C. J. Hodgson). Amsterdam: Elsevier, pp. 351–373Google Scholar
Hairston, N. G. Sr, Smith, F. E. & Slobodkin, L. B. 1960. Community structure, population control, and competition. American Naturalist 44: 421–425CrossRefGoogle Scholar
Halaj, J. & Wise, D. H. 2001. Terrestrial trophic cascades: how much do they trickle?American Naturalist 157: 262–281CrossRefGoogle ScholarPubMed
Heaney, L. R. 2001. Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecology and Biogeography 10: 15–39CrossRefGoogle Scholar
Heil, M. & McKey, D. 2003. Protective ant–plant interactions as model systems in ecological and evolutionary research. Annual Review of Ecology, Systematics and Evolution 34: 425–553CrossRefGoogle Scholar
Heil, M., Fiala, B., Kaiser, W. & Linsenmair, K. E. 1998. Chemical contents of Macaranga food bodies: adaptations to their role in ant attraction and nutrition. Functional Ecology 12: 117–122CrossRefGoogle Scholar
Heil, M., Koch, T., Hilpert, A., Fiala, B., Boland, W. & Linsenmair, K. E. 2001. Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proceedings of the National Academy of Sciences 98: 1083–1088CrossRefGoogle ScholarPubMed
Helms, K. R. & Vinson, S. B. 2002. Widespread association of the invasive ant Solenopsis invicta with an invasive mealybug. Ecology 83: 2425–2438CrossRefGoogle Scholar
Hossaert-McKey, M., Orivel, J., Labeyrie, E., Pascal, L., Delabie, J. H. C. & Dejean, A. 2001. Differential associations with ants of three co-occurring extrafloral nectary-bearing plants. Ecoscience 8: 325–335CrossRefGoogle Scholar
Itino, T. & Itioka, T. 2001. Interspecific variation and ontogenetic change in antiherbivore defense in myrmecophytic Macaranga species. Ecological Research 16: 765–774CrossRefGoogle Scholar
Itino, T., Itioka, T., Hatada, A. & Hamid, A. A. 2001. Effects of food rewards offered by ant-plant Macaranga on the colony size of ants. Ecological Research 16: 775–786CrossRefGoogle Scholar
Itioka, A. & Inoue, T. 1999. The alternation of mutualistic ant species affects the population growth of their trophobiont mealybug. Ecography 22: 169–177CrossRefGoogle Scholar
Itioka, T., Nomura, M., Inui, Y., Itino, T. & Inoue, T. 2000. Difference in intensity of ant defense among three species of Macaranga myrmecophytes in a southeast Asian dipterocarp forest. Biotropica 32: 318–326CrossRefGoogle Scholar
Izzo, T. J. & Vasconcelos, H. L. 2002. Cheating the cheater: domatia loss minimizes the effects of ant castration in an Amazonian ant-plant. Oecologia 133: 200–205CrossRefGoogle Scholar
Jaffé, K., Caetano, F. H., Sánchez, P.et al. 2001. Sensitivity of colonies and individuals of Cephalotes ants to antibiotics imply a feeding symbiosis with gut microorganisms. Canadian Journal of Zoology 79: 1120–1124CrossRefGoogle Scholar
Janzen, D. H. 1966. Coevolution of mutualism between ants and acacias in Central America. Evolution 20: 249–275CrossRefGoogle ScholarPubMed
Janzen, D. H. 1971. Euglossine bees as long-distance pollinators of tropical plants. Science 171: 203–205CrossRefGoogle ScholarPubMed
Janzen, D. H. 1973. Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54: 687–708CrossRefGoogle Scholar
Janzen, D. H. 1974. Tropical blackwater rivers, animals, and mast fruiting by the Dipterocarpaceae. Biotropica 6: 69–103CrossRefGoogle Scholar
Janzen, D. H. 1975. The peak in North-American ichneumonid species richness lies between 38 degrees and 42 degrees N. Ecology 62: 532–537CrossRefGoogle Scholar
Karhu, K. J. 1998. Effects of ant exclusion during outbreaks of a defoliator and a sap-sucker on birch. Ecological Entomology 23: 185–194CrossRefGoogle Scholar
Karhu, K. J. & Neuvonen, S. 1998. Wood ants and a geometrid defoliator of birch: predation outweighs beneficial effects through the host plant. Oecologia 113: 509–516CrossRefGoogle Scholar
Kay, A. 2002. Applying optimal foraging theory to assess nutrient availability ratios for ants. Ecology 83: 1935–1944CrossRefGoogle Scholar
Kiers, E. T., Lovelock, C. E., Krueger, E. L. & Herre, E. A. 2000. Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecology Letters 3: 106–113CrossRefGoogle Scholar
Kruger, O. & McGavin, G. C. 1998. The influence of ants on the guild structure of Acacia insect communities in Mkomazi Game Reserve, north-east Tanzania. African Journal of Ecology 36: 213–220CrossRefGoogle Scholar
Lach, L. 2003. Invasive ants: unwanted partners in ant–plant interactions?Annals of the Missouri Botanical Garden 90: 91–108CrossRefGoogle Scholar
Larsen, K. J., Staehle, L. M. & Dotseth, E. J. 2001. Tending ants (Hymenoptera: Formicidae) regulate Dalbulus quinquenotatus (Homoptera: Cicadellidae) population dynamics. Environmental Entomology 30: 757–762CrossRefGoogle Scholar
Leigh, E. G., Jr & Windsor, D. M. 1982. Forest production and regulation of primary consumers on Barro Colorado Island. In The Ecology of a Tropical Forest. Seasonal Rhythms and Long-term Changes(ed. E. G. Leigh, A. S. Rand & D. M. Windsor). Washington DC: Smithsonian Institution Press, pp. 111–122
Letourneau, D. K. 1990. Code of ant–plant mutualism broken by parasite. Science 248: 215–217CrossRefGoogle ScholarPubMed
Letourneau, D. & Dyer, L. A. 1998. Experimental test in lowland tropical forest shows top-down effects through four trophic levels. Ecology 79: 1678–1687CrossRefGoogle Scholar
Linsenmair, K. E., Heil, M., Kaiser, W. M., Fiala, B., Koch, T. & Boland, W. 2001. Adaptations to biotic and abiotic stress: Macaranga ant-plants optimize investment in biotic defence. Journal of Experimental Botany 52: 2057–2065CrossRefGoogle ScholarPubMed
Longino, J. T. 1986. Ants provide substrate for epiphytes. Selbyana 9: 100–103Google Scholar
MacKay, D. A. 1991. The effects of ants on herbivory and herbivore numbers on foliage of the mallee eucalypt, Eucalyptus incrassata Labill. Australian Journal of Ecology 16: 471–483CrossRefGoogle Scholar
Maeyama, T. & Matsumoto, T. 2000. Genetic relationship of myrmecophyte (Anthorrhiza caerulea) individuals within and among territories of the arboreal ant (Dolichoderus sp.) detected using random amplified polymorphic DNA markers. Australian Journal of Ecology 25: 273–282CrossRefGoogle Scholar
McKey, D. 2000. Leonardoxa africana (Leguminosae: Caesalpinioideae): a complex of mostly allopatric subspecies. Adansonia 22: 71–109Google Scholar
Meunier, L., Dalecky, A., Berticat, C., Gaume, L. & McKey, D. 1999. Worker size variation and the evolution of ant–plant mutualisms: comparative morphometrics of workers of two closely related plant-ants, Petalomyrmex phylax and Aphomyrmex afer (Formicinae). Insectes Sociaux 46: 171–178CrossRefGoogle Scholar
Mondor, E. B. & Addicott, J. F. 2003. Conspicuous extra-floral nectaries are inducible in Vicia faba. Ecology Letters 6: 495–497CrossRefGoogle Scholar
Morales, M. A. 2000. Mechanisms and density dependence of benefit in an ant-membracid mutualism. Ecology 81: 482–489Google Scholar
Nomura, M., Itioka, T. & Itino, T. 2000. Variations in abiotic defense within myrmecophytic and non-myrmecophytic species of Macaranga in a Bornean dipterocarp forest. Ecological Research 15: 1–11CrossRefGoogle Scholar
Novotny, V., Basset, Y., Auga, J.et al. 1999. Predation risk for herbivorous insects on tropical vegetation: a search for enemy-free space and time. Australian Journal of Ecology 24: 477–483CrossRefGoogle Scholar
O'Dowd, D. J., Green, P. T. & Lake, P. S. 2003. Invasional ‘meltdown’ on an oceanic island. Ecology Letters 6: 812–817CrossRefGoogle Scholar
Offenberg, J. 2001. Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behavioral Ecology and Sociobiology 49: 304–310CrossRefGoogle Scholar
Olmstead, K. L. & Wood, T. K. 1990. Altitudinal patterns in species richness of neotropical treehoppers (Homoptera, Membracidae): the role of ants. Proceedings of the Entomological Society of Washington 92: 552–560Google Scholar
Paine, R. T. 1966. Food web complexity and species diversity. American Naturalist 100: 65–76CrossRefGoogle Scholar
Pemberton, R. W. 1998. The occurrence and abundance of plants with extrafloral nectaries, the basis for antiherbivore defensive mutualisms, along a latitudinal gradient in east Asia. Journal of Biogeography 25: 661–668CrossRefGoogle Scholar
Pierce, N. E., Braby, M. F., Heath, A.et al. 2002. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annual Review of Entomology 47: 733–771CrossRefGoogle Scholar
Polis, G. A. & Strong, D. R. 1996. Food web complexity and community dynamics. American Naturalist 147: 813–846CrossRefGoogle Scholar
Rathcke, B. J. & Price, P. W. 1976. Anomalous diversity of tropical ichneumonid parasitoids: a predation hypothesis. American Naturalist 110: 889–893Google Scholar
Raine, N. E., Willmer, P. & Stone, G. N. 2002. Spatial structuring and floral avoidance behavior prevent ant–pollinator conflict in a Mexican ant-acacia. Ecology 83: 3086–3096Google Scholar
Rico-Gray, V., Garcia-Franco, J. G., Palacios-Rios, M., Diaz-Castelazo, C., Parra-Tabla, V. & Navarro, J. A. 1998. Geographical and seasonal variation in the richness of ant–plant interactions in Mexico. Biotropica 30: 190–200CrossRefGoogle Scholar
Risch, S. J. & Rickson, F. 1981. Mutualism in which ants must be present before plants produce food bodies. Nature 291: 149–150CrossRefGoogle Scholar
Rocha, C. F. D. & Bergallo, H. G. 1992. Bigger ant colonies reduce herbivory and herbivore residence time on leaves of an ant–plant: Azteca muelleri vs. Coelomera ruficornis on Cecropia pachystachya. Oecologia 91: 249–252CrossRefGoogle ScholarPubMed
Sagers, C. L., Ginger, S. M. & Evans, R. D. 2000. Carbon and nitrogen isotopes trace nutrient exchange in an ant–plant mutualism. Oecologia 123: 582–586CrossRefGoogle Scholar
Samson, D. A, Rickart, E. A. & Gonzales, P. C. 1997. Ant diversity and abundance along an elevational gradient in the Philippines. Biotropica 29: 349–363CrossRefGoogle Scholar
Schröder, D., Deppisch, H., Obermayer, M.et al. 1996. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Molecular Microbiology 21: 479–489CrossRefGoogle ScholarPubMed
Schmitz, O. J., Hamback, P. A. & Beckerman, A. P. 2000. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. American Naturalist 155: 141–153CrossRefGoogle ScholarPubMed
Schupp, E. W. & Feener, D. H. 1991. Phylogeny, life form, and habitat dependence of ant-defended plants in a Panamanian forest. In Ant–Plant Interactions (ed. , C. R. Huxley & , D. F. Cutler). Oxford: Oxford University Press, pp. 175–197Google Scholar
Scrimgeour, C. M., Gordon, S. C., Handley, L. L. & Woodford, J. A. T. 1995. Trophic levels and anomalous 15N of insects on raspberry (Rubus idaeus L.). Isotopes in Environmental and Health Studies 31: 107–115CrossRefGoogle Scholar
Shurin, J. B., Borer, E. T., Seabloom, E. W.et al. 2002. A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters 5: 785–791CrossRefGoogle Scholar
Solano, P. J. & Dejean, A. 2004. Ant-fed plants: comparison between three geophytic myrmecophytes. Biological Journal of the Linnean Society 83: 433–439CrossRefGoogle Scholar
Terborgh, J., López, L., Nuñez, P.et al. (2003) Ecological meltdown in predator-free forest fragments. Science 294: 1923–1926CrossRefGoogle Scholar
Bael, S. A., Brawn, J. D. & Robinson, S. K. 2003. Birds defend trees from herbivores in a neotropical forest canopy. Proceedings of the National Academy of Sciences 100: 8304–8307CrossRefGoogle Scholar
Borm, S., Buschinger, A., Boomsma, J. J. & Billen, J. 2002. Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proceedings of the Royal Society of London B 269: 2023–2027CrossRefGoogle ScholarPubMed
Vitousek, P. M. & Farrington, H. 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 37: 63–75CrossRefGoogle Scholar
Vogel, M., Bänfer, G., Moog, U. & Weising, K. 2003. Development and characterization of chloroplast microsatellite markers in Macaranga (Euphorbiaceae). Genome 46: 845–857CrossRefGoogle Scholar
Dohlen, C. & Moran, N. A. 1995. Molecular phylogeny of the Homoptera: a paraphyletic taxon. Journal of Molecular Evolution 41: 211–223CrossRefGoogle Scholar
Wagner, D. 1997. The influence of ant nests on Acacia seed production, herbivory and soil nutrients. Journal of Ecology 85: 83–93CrossRefGoogle Scholar
Wagner, D. & Kay, A. 2002. Do extrafloral nectaries distract ants from visiting flowers? An experimental test of an overlooked hypothesis. Evolutionary Ecology Research 4: 293–305Google Scholar
Wimp, G. M. & Whitham, T. G. 2001. Biodiversity consequences of predation and host plant hybridization on an aphid–ant mutualism. Ecology 82: 440–452Google Scholar
Wright, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130: 1–14CrossRefGoogle ScholarPubMed
Yu, D. W. & Pierce, N. E. 1998. A castration parasite of an ant–plant mutualism. Proceedings of the Royal Society of London B 265: 375–382CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×