Book contents
- Frontmatter
- Dedication
- Contents
- List of Contributors
- Preface
- Section 1 Historical perspective
- Section 2 Life cycle
- 2 Ontogeny of the mammalian ovary
- 3 Gene networks in oocyte meiosis
- 4 Follicle formation and oocyte death
- 5 The early stages of follicular growth
- 6 Follicle and oocyte developmental dynamics
- 7 Mouse models to identify genes throughout oogenesis
- Section 3 Developmental biology
- Section 4 Imprinting and reprogramming
- Section 5 Pathology
- Section 6 Technology and clinical medicine
- Index
- References
3 - Gene networks in oocyte meiosis
from Section 2 - Life cycle
Published online by Cambridge University Press: 05 October 2013
- Frontmatter
- Dedication
- Contents
- List of Contributors
- Preface
- Section 1 Historical perspective
- Section 2 Life cycle
- 2 Ontogeny of the mammalian ovary
- 3 Gene networks in oocyte meiosis
- 4 Follicle formation and oocyte death
- 5 The early stages of follicular growth
- 6 Follicle and oocyte developmental dynamics
- 7 Mouse models to identify genes throughout oogenesis
- Section 3 Developmental biology
- Section 4 Imprinting and reprogramming
- Section 5 Pathology
- Section 6 Technology and clinical medicine
- Index
- References
Summary
Introduction
In the current era of the genome, the amount of information available about gene expression, protein products, their interactions and pathways in almost any physiological system has become quite overwhelming. The processes of mammalian meiosis and oocyte development are no exception. Most of these data have been generated using high throughput genomic and proteomic screening systems. However, various experimental approaches over several decades, such as targeted mutagenesis, modification/suppression of specific genes both in vivo and in vitro, have also contributed greatly to our understanding of the genetic basis for meiotic processes and oogenesis [1]. Such studies have also been greatly enhanced using comparative analyses of these processes across the animal kingdom, allowing us to identify key genetic pathways that are functionally conserved in germ cells. With all the available information from multiple online databases, gaining an understanding of a complex process like meiosis, which spans several years and involves numerous cellular pathways, is challenging. It is especially difficult when trying to obtain a view that encompasses the cellular events of meiosis, yet also puts these processes in the context of the overall physiology and systems biology of the ovary. Representation of biological interactions within the cell in terms of gene networks provides an accurate and explanatory basis for studying cellular events. In addition, creating gene networks, by its very nature, helps us to define common processes amongst many different species, allowing us to appreciate both the similarities and the differences in these processes across the animal kingdom. At the same time, we can identify commonalities among cellular processes in terms of the networks that they utilize.
- Type
- Chapter
- Information
- Biology and Pathology of the OocyteRole in Fertility, Medicine and Nuclear Reprograming, pp. 24 - 37Publisher: Cambridge University PressPrint publication year: 2013