Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T09:24:38.293Z Has data issue: false hasContentIssue false

3 - Melatonin, Light, and the Circadian System

Published online by Cambridge University Press:  07 October 2023

Laura K. Fonken
Affiliation:
University of Texas, Austin
Randy J. Nelson
Affiliation:
West Virginia University
Get access

Summary

This review summarizes evidence on the modulation of functional responses mediated by activation of the MT1 and/or MT2 melatonin receptors by endogenous or exogenous melatonin. Selective MT1 inverse agonists, discovered by docking ultra large compound libraries to the MT1 crystal structure, decelerated the rate of re-entrainment of activity rhythms to a new dark onset. Surprisingly, these inverse agonists advanced circadian phase when given at subjective dusk mimicking melatonin through actions at MT1 receptors. The efficacy of environmental carbamates with structural similarity to melatonin interact with melatonin receptors and in turn advance circadian clock phase, as with melatonin. In summary, melatonin receptors are targets for drugs modulating circadian rhythms to yield therapeutic effects (i.e., synchronization), as well as for environmental chemicals that may induce harmful effects on human health due to actions on melatonin and on/off target receptors (e.g., serotonin) involved in signaling circadian time at inappropriate times of day.

Type
Chapter
Information
Biological Implications of Circadian Disruption
A Modern Health Challenge
, pp. 58 - 83
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamah-Biassi, E. B., Hudson, R. L., & Dubocovich, M. L. (2014). Genetic deletion of MT1 melatonin receptors alters spontaneous behavioral rhythms in male and female C57BL/6 mice. Horm Behav, 66(4), 619627.Google Scholar
Adamah-Biassi, E. B., Stepien, I., Hudson, R. L., & Dubocovich, M. L. (2012). Effects of the melatonin receptor antagonist (MT2)/inverse agonist (MT1) luzindole on re‐entrainment of wheel running activity and spontaneous homecage behaviors in C3H/HeN mice. Hoboken, NJ: Wiley Online Library.Google Scholar
Adamah-Biassi, E. B., Stepien, I., Hudson, R. L., & Dubocovich, M. L. (2013). Automated video analysis system reveals distinct diurnal behaviors in C57BL/6 and C3H/HeN mice. Behav Brain Res, 243, 306312.Google Scholar
Antle, M. C., & Silver, R. (2005). Orchestrating time: Arrangements of the brain circadian clock. Trends Neurosci, 28(3), 145151.Google Scholar
Armstrong, S. M., McNulty, O. M., Guardiola-Lemaitre, B., & Redman, J. R. (1993). Successful use of S20098 and melatonin in an animal model of delayed sleep-phase syndrome (DSPS). Pharmacol Biochem Behav, 46(1), 4549.Google Scholar
Audinot, V., Mailliet, F., Lahaye-Brasseur, C., Bonnaud, A., Le Gall, A., Amosse, C., Dromaint, S., Rodriguez, M., Nagel, N., Galizzi, J. P., Malpaux, B., Guillaumet, G., Lesieur, D., Lefoulon, F., Renard, P., Delagrange, P., & Boutin, J. A. (2003). New selective ligands of human cloned melatonin MT1 and MT2 receptors. Naunyn-Schmiedeberg’s Arch Pharmacol, 367(6), 553561.Google Scholar
Baba, K., Davidson, A. J., & Tosini, G. (2015). Melatonin entrains PER2::LUC bioluminescence circadian rhythm in the mouse cornea. Invest Ophthalmol Vis Sci, 56(8), 47534758.Google Scholar
Baumert, B. O., Carnes, M. U., Hoppin, J. A., Jackson, C. L., Sandler, D. P., Freeman, L. B., Henneberger, P. K., Umbach, D. M., Shrestha, S., Long, S., & London, S. J. (2018). Sleep apnea and pesticide exposure in a study of US farmers. Sleep Health, 4(1), 2026.Google Scholar
Beard, J. D., Hoppin, J. A., Richards, M., Alavanja, M. C., Blair, A., Sandler, D. P., & Kamel, F. (2013). Pesticide exposure and self-reported incident depression among wives in the Agricultural Health Study. Environ Res, 126, 3142.CrossRefGoogle ScholarPubMed
Beard, J. D., Umbach, D. M., Hoppin, J. A., Richards, M., Alavanja, M. C. R., Blair, A., Sandler, D., & Kamel, F. (2014). Pesticide exposure and depression among male private pesticide applicators in the Agricultural Health Study. Environ Health Persp, 122(9), 984991.Google Scholar
Benloucif, S., & Dubocovich, M. L. (1996). Melatonin and light induce phase shifts of circadian activity rhythms in the C3H/HeN mouse. J Biol Rhythms, 11(2), 113125.Google Scholar
Brown, G. M., Pandi-Perumal, S. R., Trakht, I., & Cardinali, D. P. (2009). Melatonin and its relevance to jet lag. Travel Med Infect Dis, 7(2), 6981.Google Scholar
Browning, C., Beresford, I., Fraser, N., & Giles, H. (2000). Pharmacological characterization of human recombinant melatonin MT1 and MT2 receptors. Br J Pharmacol, 129(5), 877886.Google Scholar
Burgess, H. J., Revell, V. L., & Eastman, C. I. (2008). A three pulse phase response curve to three milligrams of melatonin in humans. J Physiol, 586(2), 639647.Google Scholar
Burgess, H. J., Revell, V. L., Molina, T. A., & Eastman, C. I. (2010). Human phase response curves to three days of daily melatonin: 0.5 mg versus 3.0 mg. J Clin Endocrinol Metab, 95(7), 33253331.Google Scholar
Cecon, E., Oishi, A., & Jockers, R. (2018). Melatonin receptors: Molecular pharmacology and signalling in the context of system bias. Br J Pharmacol, 175(16), 32633280.Google Scholar
Chen, R., Weitzner, A. S., McKennon, L. A., & Fonken, L. K. (2021). Chronic circadian phase advance in male mice induces depressive-like responses and suppresses neuroimmune activation. Brain Behav Immun Health, 17, 100337.CrossRefGoogle ScholarPubMed
Colborn, T., Dumanoski, D., & Myers, J. P. (1996). Our stolen future: Are we threatening our fertility, intelligence, and survival? A scientific detective story. New York: Dutton.Google Scholar
Copinga, S., Tepper, P. G., Grol, C. J., Horn, A. S., & Dubocovich, M. L. (1993). 2-Amido-8-methoxytetralins: A series of nonindolic melatonin-like agents. J Med Chem, 36(20), 28912898.Google Scholar
De Bodinat, C., Guardiola-Lemaitre, B., Mocaër, E., Renard, P., Muñoz, C., & Millan, M. J. (2010). Agomelatine, the first melatonergic antidepressant: Discovery, characterization and development. Nat Rev Drug Discov, 9(8), 628642.Google Scholar
Descamps-François, C., Yous, S., Chavatte, P., Audinot, V., Bonnaud, A., Boutin, J. A., Delagrange, P., Bennejean, C., Renard, P., & Lesieur, D. (2003). Design and synthesis of naphthalenic dimers as selective MT1 melatoninergic ligands. J Med Chem, 46(7), 11271129.Google Scholar
Doolen, S., Krause, D. N., & Duckles, S. P. (1999). Estradiol modulates vascular response to melatonin in rat caudal artery. Am J Physiol, 276(4), H1281H1288.Google ScholarPubMed
Dubocovich, M. L. (1983). Melatonin is a potent modulator of dopamine release in the retina. Nature, 306(5945), 782784.Google Scholar
Dubocovich, M. L. (1988). Pharmacology and function of melatonin receptors. FASEB J, 2(12), 27652773.Google Scholar
Dubocovich, M. L. (2007). Melatonin receptors: Role on sleep and circadian rhythm regulation. Sleep Med, 8, 3442.Google Scholar
Dubocovich, M. L., Delagrange, P., Krause, D. N., Sugden, D., Cardinali, D. P., & Olcese, J. (2010). International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev, 62(3), 343380.Google Scholar
Dubocovich, M. L., Hudson, R. L., Sumaya, I. C., Masana, M. I., & Manna, E. (2005). Effect of MT sub(1) melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse. J Pineal Res, 39(2), 113120.CrossRefGoogle Scholar
Dubocovich, M. L., & Markowska, M. (2005). Functional MT1 and MT2 melatonin receptors in mammals. Endocrine, 27(2), 101110.Google Scholar
Dubocovich, M. L, & Masana, M. I. (1998). The efficacy of melatonin receptor analogues is dependent on the level of human melatonin receptor subtype expression. In Touitou, Y. (ed.), Biological clocks, mechanisms and applications: Proceedings of the International Congress on Chronobiology, Paris, September 7–11, 1997, 289293.Google Scholar
Dubocovich, M. L., Masana, M. I., Iacob, S., & Sauri, D. M. (1997). Melatonin receptor antagonists that differentiate between the human Mel1a and Mel1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Naunyn-Schmiedeberg’s Arch Pharmacol, 355(3), 365375.Google Scholar
Dubocovich, M. L., Rivera-Bermudez, M. A., Gerdin, M. J., & Masana, M. I. (2003). Molecular pharmacology, regulation and function of mammalian melatonin receptors. Front Biosci, 8(4), 10931108.Google Scholar
Dubocovich, M. L., & Takahashi, J. S. (1987). Use of 2-[125I] iodomelatonin to characterize melatonin binding sites in chicken retina. Proc Natl Acad Sci, 84(11), 39163920.Google Scholar
Dubocovich, M. L., Yun, K., Al‐Ghoul, W. M., Benloucif, S., & Masana, M. I. (1998). Selective MT2 melatonin receptor antagonists block melatonin‐mediated phase advances of circadian rhythms. FASEB J, 12(12), 12111220.Google Scholar
Emens, J., Lewy, A., Kinzie, J. M., Arntz, D., & Rough, J. (2009). Circadian misalignment in major depressive disorder. Psychiatry Res, 168(3), 259261.Google Scholar
Ersahin, C., Masana, M. I., & Dubocovich, M. L. (2002). Constitutively active melatonin MT1 receptors in male rat caudal arteries. Eur J Pharmacol, 439(1–3), 171172.Google Scholar
Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C., Elvidge, C. D., Baugh, K., Portnov, B. A., Rybnikova, N. A., & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Sci Adv, 2(6), e1600377.Google Scholar
Gerdin, M. J., Masana, M. I., Rivera-Bermúdez, M. A., Hudson, R. L., Earnest, D. J., Gillette, M. U., & Dubocovich, M. L. (2004). Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: Relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin. FASEB J, 18(14), 16461656.CrossRefGoogle ScholarPubMed
Gern, W. A., & Ralph, C. L. (1979). Melatonin synthesis by the retina. Science, 204(4389), 183184.Google Scholar
Gillette, M. U., & Mitchell, J. W. (2002). Signaling in the suprachiasmatic nucleus: Selectively responsive and integrative. Cell Tissue Res, 309(1), 99107.Google Scholar
Glaser, J., Masana, M., & Dubocovich, M. (1998). Selective MT2 melatonin receptor antagonists are inverse agonists on human mt (1) melatonin receptors. FASEB J, 12(4), A153.Google Scholar
Glatfelter, G. C., Jones, A. J., Rajnarayanan, R., & Dubocovich, M. L. (2021). Pharmacological actions of carbamate insecticides at mammalian melatonin receptors. J Pharmacol Exp Ther, 376(2), 306321.Google Scholar
Glatfelter, G. C., Rajnarayanan, R. V., & Dubocovich, M. L. (2018). Carbamate insecticide carbaryl targets melatonin receptors and modulates circadian rhythms. FASEB J, 32, 691693.Google Scholar
Gobbi, G., & Comai, S. (2019). Differential function of melatonin MT1 and MT2 receptors in REM and NREM sleep. Front Endocrinol, 10, 87.Google Scholar
Goto, M., Oshima, I., Tomita, T., & Ebihara, S. (1989). Melatonin content of the pineal gland in different mouse strains. J Pineal Res, 7(2), 195204.Google Scholar
Hardeland, R. (2017). Melatonin and the electron transport chain. Cell Mol Life Sci, 74(21), 38833896.CrossRefGoogle ScholarPubMed
Hardeland, R., Madrid, J. A., Tan, D. X., & Reiter, R. J. (2012). Melatonin, the circadian multioscillator system and health: The need for detailed analyses of peripheral melatonin signaling. J Pineal Res, 52(2), 139166.Google Scholar
Haruo, K., Akira, Y., Toshihiko, K., Keiko, S., Tetsuji, O., & Kumi, S. (1985). Effects of insecticidal carbamates on brain acetylcholine content, acetylcholinesterase activity and behavior in mice. Toxicol Lett, 29(2–3), 153159.Google Scholar
Hoffman, R. A., & Reiter, R. J. (1965). Pineal gland: Influence on gonads of male hamsters. Science, 148(3677), 16091611.Google Scholar
Hudson, R. L., Karakas, A., & Dubocovich, M. L. (2007). Ramelteon phase advanced circadian rhythms of neuronal firing in the suprachiasmatic bucleus (SCN) brain slice by activation of both MT1 and MT2 melatonin (MLT) receptors. Hoboken, NJ: Wiley Online Library.Google Scholar
Hudson, R. L., Stepien, I., Ginter, P., & Dubocovich, M. L. (2005). Distinct roles for MT1 and MT2 melatonin (MLT) receptors in MLT-mediated phase shifts of circadian rhythms. Neuropharmacology, 30, S267.Google Scholar
Hunt, A. E., Al-Ghoul, W. M., Gillette, M. U., & Dubocovich, M. L. (2001). Activation of MT2 melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol, 280(1), C110C118.Google Scholar
Iuvone, P. M., Tosini, G., Pozdeyev, N., Haque, R., Klein, D. C., & Chaurasia, S. S. (2005). Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog Retinal Eye Res, 24(4), 433456.Google Scholar
Jin, X., Von Gall, C., Pieschl, R. L., Gribkoff, V. K., Stehle, J. H., Reppert, S. M., & Weaver, D. R. (2003). Targeted disruption of the mouse Mel1b melatonin receptor. Mol Cell Biol, 23(3), 10541060.Google Scholar
Jockers, R., Delagrange, P., Dubocovich, M. L., Markus, R. P., Renault, N., Tosini, G., Cecon, E., & Zlotos, D. P. (2016). Update on melatonin receptors: IUPHAR Review 20. Br J Pharmacol, 173(18), 27022725.Google Scholar
Johansson, L. C., Stauch, B., McCorvy, J. D., Han, G. W., Patel, N., Huang, X.-P., Batyuk, A., Gati, C., Slocum, S. T., Li, C., Grandner, J. M., Hao, S., Olsen, R. H. J., Tribo, A. R., Zaare, S., Zhu, L., Zatsepin, N. A., Weierstall, U., Yous, S., … Cherezov, V. (2019). XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature (London), 569(7755), 289292.Google Scholar
Johnsa, J. D., & Neville, M. W. (2014). Tasimelteon: A melatonin receptor agonist for non-24-hour sleep-wake disorder. Ann Pharmacother, 48(12), 16361641.Google Scholar
Jones, A. J., Mastrandrea, L. D., Rajnarayanan, R. R., & Dubocovich, M. L. (2019). Carbamate insecticides modulate G protein‐dependent signaling in cells expressing melatonin receptors. FASEB J, 33(S1), 813814.Google Scholar
Kamal, M., Gbahou, F., Guillaume, J.-L., Daulat, A. M., Benleulmi-Chaachoua, A., Luka, M., Chen, P., Anaraki, D. K., Baroncini, M., & la Cour, C. M. (2015). Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. J Biol Chem, 290(18), 1153711546.Google Scholar
Karamitri, A., Plouffe, B., Bonnefond, A., Chen, M., Gallion, J., Guillaume, J.-L., Hegron, A., Boissel, M., Canouil, M., & Langenberg, C. (2018). Type 2 diabetes-associated variants of the MT2 melatonin receptor affect distinct modes of signaling. Sci Signal, 11(545), eaan6622.Google Scholar
Kasahara, T., Abe, K., Mekada, K., Yoshiki, A., & Kato, T. (2010). Genetic variation of melatonin productivity in laboratory mice under domestication. Proc Natl Acad Sci, 107(14), 64126417.Google Scholar
Keating, G. M. (2016). Tasimelteon: A review in non-24-hour sleep–wake disorder in totally blind individuals. CNS Drugs, 30(5), 461468.Google Scholar
Kenakin, T. (2018). A pharmacology primer: Techniques for more effective and strategic drug discovery. Cambridge, MA: Academic Press.Google Scholar
Klein, D. C., Coon, S. L., Roseboom, P. H., Weller, J., Bernard, M., Gastel, J. A., Zatz, M., Iuvone, P. M., Rodriguez, I. R., & Bégay, V. (1997). The melatonin rhythm-generating enzyme: Molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res, 52, 307357; discussion 357.Google Scholar
Laposky, A. D., Van Cauter, E., & Diez-Roux, A. V. (2015). Reducing health disparities: The role of sleep deficiency and sleep disorders. Sleep Med, 18, 36.Google Scholar
Legros, C., Yous, S., & Boutin, J. A. (2022). Alternative ligands at melatonin receptors. In Melatonin (pp. 151162). New York: Springer.CrossRefGoogle ScholarPubMed
Lewy, A., Emens, J., Lefler, B., & Bauer, V. (2005). In winter depression (SAD), the sweet spot for the 10 pg/ml plasma dim light melatonin onset (DLMO) is six hours before mid-sleep. Neuropsychopharmacology. Presented at the 44th Annual Meeting of the American College of Neuropsychopharmacology, Vol. 30.Google Scholar
Lewy, A. J. (2003). Clinical applications of melatonin in circadian disorders. Dialogues Clin Neurosci, 5(4), 399413.Google Scholar
Lewy, A. J., Bauer, V. K., Ahmed, S., Thomas, K. H., Cutler, N. L., Singer, C. M., Moffit, M. T., & Sack, R. L. (1998). The human phase response curve (PRC) to melatonin is about 12 hours out of phase with the PRC to light. Chronobiol Int, 15(1), 7183.Google Scholar
Lewy, A. J., Rough, J. N., Songer, J. B., Mishra, N., Yuhas, K., & Emens, J. S. (2007). The phase shift hypothesis for the circadian component of winter depression. Dialogues Clin Neurosci, 9(3), 291300.Google Scholar
Li, Q., Kobayashi, M., & Kawada, T. (2015). Carbamate pesticide-induced apoptosis in human T lymphocytes. Int J Environ Res Publ Health, 12(4), 36333645.Google Scholar
Liu, C., Weaver, D. R., Jin, X., Shearman, L. P., Pieschl, R. L., Gribkoff, V. K., & Reppert, S. M. (1997). Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron, 19(1), 91102.Google Scholar
Liu, J., Clough, S. J., Hutchinson, A. J., Adamah-Biassi, E. B., Popovska-Gorevski, M., & Dubocovich, M. L. (2016). MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu Rev Pharmacol Toxicol, 56, 361383.Google Scholar
Liu, J. A., Walton, J. C., Bumgarner, J. R., Walker, W. H., Meléndez-Fernández, O. H., DeVries, A. C., & Nelson, R. J. (2022). Chronic exposure to dim light at night disrupts cell-mediated immune response and decreases longevity in aged female mice. Chronobiol Int, 39(12), 16741683.Google Scholar
Lockley, S. W., Dressman, M. A., Licamele, L., Xiao, C., Fisher, D. M., Flynn-Evans, E. E., Hull, J. T., Torres, R., Lavedan, C., & Polymeropoulos, M. H. (2015). Tasimelteon for non-24-hour sleep–wake disorder in totally blind people (SET and RESET): Two multicentre, randomised, double-masked, placebo-controlled phase 3 trials. Lancet, 386(10005), 17541764.Google Scholar
Masana, M., Benloucif, S., & Dubocovich, M. (2000). Circadian rhythm of mt1 melatonin receptor expression in the suprachiasmatic nucleus of the C3H/HeN mouse 1. J Pineal Res, 28(3), 185192.Google Scholar
Masana, M. I., Soares, J. M. Jr, & Dubocovich, M. L. (2005). 17β-Estradiol modulates hMT1 melatonin receptor function. Neuroendocrinology, 81(2), 8795.Google Scholar
Masuda, K., & Zhdanova, I. V. (2010). Intrinsic activity rhythms in Macaca mulatta: Their entrainment to light and melatonin. J Biol Rhythms, 25(5), 361371.Google Scholar
McArthur, A. J., Hunt, A. E., & Gillette, M. U. (1997). Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: Activation of protein kinase C at dusk and dawn. Endocrinology, 138(2), 627634.Google Scholar
Millan, M. J., Gobert, A., Lejeune, F., Dekeyne, A., Newman-Tancredi, A., Pasteau, V., Rivet, J.-M., & Cussac, D. (2003). The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther, 306(3), 954964.Google Scholar
Montgomery, M. P., Kamel, F., Saldana, T. M., Alavanja, M. C. R., & Sandler, D. P. (2008). Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural health study, 1993–2003. Am J Epidemiol, 167(10), 12351246.Google Scholar
Moser, V. C. (1995). Comparisons of the acute effects of cholinesterase inhibitors using a neurobehavioral screening battery in rats. Neurotoxicol Teratol, 17(6), 617625.Google Scholar
Moser, V. C., McCormick, J. P., Creason, J. P., & MacPhail, R. C. (1988). Comparison of chlordimeform and carbaryl using a functional observational battery. Fundam Appl Toxicol, 11(2), 189206.Google Scholar
Moser, V. C., Phillips, P. M., & McDaniel, K. L. (2015). Assessment of biochemical and behavioral effects of carbaryl and methomyl in Brown-Norway rats from preweaning to senescence. Toxicology, 331, 113.Google Scholar
Mukherjee, S., & Maitra, S. K. (2015). Gut melatonin in vertebrates: Chronobiology and physiology. Front Endocrinol, 6, 112.CrossRefGoogle ScholarPubMed
Mundey, K., Benloucif, S., Harsanyi, K., Dubocovich, M. L., & Zee, P. C. (2005). Phase-dependent treatment of delayed sleep phase syndrome with melatonin. Sleep, 28(10), 12711278.Google Scholar
Nelson, R. J., Bumgarner, J. R., Liu, J. A., Love, J. A., Meléndez-Fernández, O. H., Becker-Krail, D. D., Walker, W. H., Walton, J. C., DeVries, A. C., & Prendergast, B. J. (2022). Time of day as a critical variable in biology. BMC Biol, 20(1), 116.Google Scholar
Nishimon, S., Nishimon, M., & Nishino, S. (2019). Tasimelteon for treating non-24-h sleep-wake rhythm disorder. Expert Opin Pharmacother, 20(9), 10651073.Google Scholar
Nonno, R., Pannacci, M., Lucini, V., Angeloni, D., Fraschini, F., & Stankov, B. M. (1999). Ligand efficacy and potency at recombinant human MT2 melatonin receptors: Evidence for agonist activity of some mt1‐antagonists. Br J Pharmacol, 127(5), 12881294.Google Scholar
Ochoa-Sanchez, R., Comai, S., Lacoste, B., Bambico, F. R., Dominguez-Lopez, S., Spadoni, G., Rivara, S., Bedini, A., Angeloni, D., Fraschini, F., Mor, M., Tarzia, G., Descarries, L., & Gobbi, G. (2011). Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J Neurosci, 31(50), 1843918452.Google Scholar
Patel, N., Huang, X. P., Grandner, J. M., Johansson, L. C., Stauch, B., McCorvy, J. D., Liu, Y., Roth, B., & Katritch, V. (2020). Structure-based discovery of potent and selective melatonin receptor agonists. Elife, 9, e53779.Google Scholar
Petit, L., Lacroix, I., De Coppet, P., Strosberg, A. D., & Jockers, R. (1999). Differential signaling of human Mel1a and Mel1b melatonin receptors through the cyclic guanosine 3′-5′-monophosphate pathway. Biochem Pharmacol, 58(4), 633639.Google Scholar
Pfeffer, M., Plenzig, S., Gispert, S., Wada, K., Korf, H.-W., & Von Gall, C. (2012). Disturbed sleep/wake rhythms and neuronal cell loss in lateral hypothalamus and retina of mice with a spontaneous deletion in the ubiquitin carboxyl-terminal hydrolase L1 gene. Neurobiol Aging, 33(2), 393403.Google Scholar
Pfeffer, M., Rauch, A., Korf, H.-W., & von Gall, C. (2012). The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors. Chronobiol Int, 29(4), 415429.CrossRefGoogle ScholarPubMed
Popovska-Gorevski, M., Dubocovich, M. L., & Rajnarayanan, R. V. (2017). Carbamate insecticides target human melatonin receptors. Chem Res Toxicol, 30(2), 574582.Google Scholar
Quay, W. (1970). Precocious entrainment and associated characteristics of activity patterns following pinealectomy and reversal of photoperiod. Physiol Behav, 5(11), 12811290.Google Scholar
Rajaratnam, S. M. W. P., Polymeropoulos, M. H. M. D., Fisher, D. M. M. D., Roth, T. P., Scott, C. M. S., Birznieks, G. M. S., & Klerman, E. B. D. (2009). Melatonin agonist tasimelteon (VEC-162) for transient insomnia after sleep-time shift: Two randomised controlled multicentre trials. Lancet, 373(9662), 482491.Google Scholar
Rawashdeh, O., Hudson, R. L., Stepien, I., & Dubocovich, M. L. (2011). Circadian periods of sensitivity for ramelteon on the onset of running-wheel activity and the peak of suprachiasmatic nucleus neuronal firing rhythms in C3H/HeN mice. Chronobiol Int, 28(1), 3138.Google Scholar
Reid, K. J., Chang, A., Dubocovich, M. L., Turek, F. W., Takahashi, J. S., & Zee, P. C. (2001). Familial advanced sleep phase syndrome. Arch Neurol, 58(7), 10891094.Google Scholar
Reiter, R. J. (1991). Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocrine Rev, 12(2), 151180.Google Scholar
Reppert, S. M., Godson, C., Mahle, C. D., Weaver, D. R., Slaugenhaupt, S. A., & Gusella, J. (1995). Molecular characterization of a second melatonin receptor expressed in human retina and brain: The Mel1b melatonin receptor. Proc Natl Acad Sci, 92(19), 87348738.Google Scholar
Reppert, S. M., Weaver, D. R., & Ebisawa, T. (1994). Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron, 13(5), 11771185.Google Scholar
Richter, H. G., Torres-Farfan, C., Rojas-García, P. P., Campino, C., Torrealba, F., & Serón-Ferré, M. (2004). The circadian timing system: making sense of day/night gene expression. Biol Res, 37(1), 1128.Google Scholar
Rivera-Bermúdez, M. A., Masana, M. I., Brown, G. M., Earnest, D. J., & Dubocovich, M. L. (2004). Immortalized cells from the rat suprachiasmatic nucleus express functional melatonin receptors. Brain Res, 1002(1–2), 2127.Google Scholar
Roka, F., Brydon, L., Waldhoer, M., Strosberg, A. D., Freissmuth, M., Jockers, R., & Nanoff, C. (1999). Tight association of the human Mel1a-melatonin receptor and Gi: Precoupling and constitutive activity. Mol Pharmacol, 56(5), 10141024.Google Scholar
Roseboom, P. H., Namboodiri, M. A., Zimonjic, D. B., Popescu, N. C., Rodriguez, I. R., Gastel, J. A., & Klein, D. C. (1998). Natural melatonin knockdown in C57BL/6J mice: Rare mechanism truncates serotonin N-acetyltransferase. Mol Brain Res, 63(1), 189197.Google Scholar
Ruf, T., & Geiser, F. (2015). Daily torpor and hibernation in birds and mammals. Biol Rev, 90(3), 891926.Google Scholar
Ruppert, P. H., Cook, L. L., Dean, K. F., & Reiter, L. W. (1983). Acute behavioral toxicity of carbaryl and propoxur in adults rats. Pharmacol Biochem Behavior, 18(4), 579584.Google Scholar
Schroeder, A. M., & Colwell, C. S. (2013). How to fix a broken clock. Trends Pharmacol Sci, 34(11), 605619.Google Scholar
Slominski, A., Tobin, D. J., Zmijewski, M. A., Wortsman, J., & Paus, R. (2008). Melatonin in the skin: Synthesis, metabolism and functions. Trends Endocrinol Metab, 19(1), 1724.Google Scholar
Soares, P., Trovisco, V., Rocha, A. S., Lima, J., Castro, P., Preto, A., Maximo, V., Botelho, T., Seruca, R., & Sobrinho-Simoes, M. (2003). BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene, 22(29), 45784580.Google Scholar
Sosa, J., Lipinski, J., Tsakalidou, V., Papanastasiou, I., Sakellaropoulou, A., Tsotinis, A., & Dubocovich, M. (2021). Selective MT2 melatonin receptor antagonist modulates circadian activity via inhibition of the endogenous melatonin signal in the east bound jet lag model. FASEB J, 35(S1).Google Scholar
Spadoni, G., Bedini, A., Piersanti, G., Mor, M., Rivara, S., & Tarzia, G. (2003). Strategies leading to MT 2 selective melatonin receptor antagonists. Adv Exp Med Biol, 527, 577585.Google Scholar
Srinivasan, V., Spence, D. W., Pandi-Perumal, S. R., Trakht, I., & Cardinali, D. P. (2008). Jet lag: Therapeutic use of melatonin and possible application of melatonin analogs. Travel Med Infect Dis, 6(1–2), 1728.Google Scholar
Stauch, B., Johansson, L. C., McCorvy, J. D., Patel, N., Han, G. W., Huang, X.-P., Gati, C., Batyuk, A., Slocum, S. T., Ishchenko, A., Brehm, W., White, T. A., Michaelian, N., Madsen, C., Zhu, L., Grant, T. D., Grandner, J. M., Shiriaeva, A., Olsen, R. H. J., … Cherezov, V. (2019). Structural basis of ligand recognition at the human MT1 melatonin receptor (vol 569, pg 284, 2019). Nature, 569(7756), E6.Google Scholar
Stein, R. M., Kang, H. J., McCorvy, J. D., Glatfelter, G. C., Jones, A. J., Che, T., Slocum, S., Huang, X.-P., Savych, O., & Moroz, Y. S. (2020). Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature, 579(7800), 609614.Google Scholar
Sulkava, S., Muggalla, P., Sulkava, R., Ollila, H. M., Peuralinna, T., Myllykangas, L., Kaivola, K., Stone, D. J., Traynor, B. J., & Renton, A. E. (2018). Melatonin receptor type 1A gene linked to Alzheimer’s disease in old age. Sleep, 41(7), zsy103.Google Scholar
Sumaya, I., Masana, M., & Dubocovich, M. (2005). The antidepressant‐like effect of the melatonin receptor ligand luzindole in mice during forced swimming requires expression of MT2 but not MT1 melatonin receptors. J Pineal Res, 39(2), 170177.Google Scholar
Suofu, Y., Li, W., Jean-Alphonse, F. G., Jia, J., Khattar, N. K., Li, J., Baranov, S. V., Leronni, D., Mihalik, A. C., & He, Y. (2017). Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci, 114(38), E7997E8006.Google Scholar
Tosini, G., Davidson, A. J., Fukuhara, C., Kasamatsu, M., & Castanon‐Cervantes, O. (2007). Localization of a circadian clock in mammalian photoreceptors. FASEB J, 21(14), 38663871.Google Scholar
Tuomi, T., Nagorny, C. L. F., Singh, P., Bennet, H., Yu, Q., Alenkvist, I., Isomaa, B., Östman, B., Söderström, J., Pesonen, A.-K., Martikainen, S., Räikkönen, K., Forsén, T., Hakaste, L., Almgren, P., Storm, P., Asplund, O., Shcherbina, L., Fex, M., … Mulder, H. (2016). Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab, 23(6), 10671077.Google Scholar
Turek, F. W. (1987). Pharmacological probes of the mammalian circadian clock: Use of the phase response curve approach. Trends Pharmacol Sci, 8(6), 212217.Google Scholar
Wan, Q., Man, H. Y., Liu, F., Braunton, J., Niznik, H. B., Pang, S. F., Brown, G. M., & Wang, Y. T. (1999). Differential modulation of GABA(A) receptor function by Mel(1a) and Mel(1b) receptors. Nature Neurosci, 2(5), 401403.Google Scholar
Wesseling, C., van Wendel de Joode, B., Keifer, M., London, L., Mergler, D., & Stallones, L. (2010). Symptoms of psychological distress and suicidal ideation among banana workers with a history of poisoning by organophosphate or n-methyl carbamate pesticides. Occup Environ Med, 67(11), 778784.CrossRefGoogle ScholarPubMed
Witt-Enderby, P. A., & Dubocovich, M. L. (1996). Characterization and regulation of the human ML1A melatonin receptor stably expressed in Chinese hamster ovary cells. Mol Pharmacol, 50(1), 166174.Google Scholar
Zhang, C., Clough, S. J., Adamah‐Biassi, E. B., Sveinsson, M. H., Hutchinson, A. J., Miura, I., Furuse, T., Wakana, S., Matsumoto, Y. K., & Okanoya, K. (2021). Impact of endogenous melatonin on rhythmic behaviors, reproduction, and survival revealed in melatonin‐proficient C57BL/6J congenic mice. J Pineal Res, 71(2), e12748.Google Scholar
Zhang, Y., Fan, Y., Rui, C., Zhang, H., Xu, N., Dai, M., Chen, X., Lu, X., Wang, D., & Wang, J. (2021). Melatonin improves cotton salt tolerance by regulating ROS scavenging system and Ca 2+ signal transduction. Front Plant Sci, 12, 1239.Google Scholar
Zhang, Y., Liu, X., Bai, X., Lin, Y., Li, Z., Fu, J., Li, M., Zhao, T., Yang, H., & Xu, R. (2018). Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR‐223/NLRP3 axis. J Pineal Res, 64(2), e12449.Google Scholar
Zisapel, N. (2018). New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br J Pharmacol, 175(16), 31903199.Google Scholar
Zlotos, D. P., Jockers, R., Cecon, E., Rivara, S., & Witt-Enderby, P. A. (2014). MT1 and MT2 melatonin receptors: Ligands, models, oligomers, and therapeutic potential. J Med Chem, 57(8), 31613185.Google Scholar
Zlotos, L., Thompson, I. D., & Boyter, A. C. (2015). Integration of an online simulated prescription analysis into undergraduate pharmacy teaching using supplemental and replacement models. Am J Pharm Educ, 79(3), 37.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×