Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T18:59:15.354Z Has data issue: false hasContentIssue false

15 - Light Effects across Species in Nature

A Focus on Solutions

Published online by Cambridge University Press:  07 October 2023

Laura K. Fonken
Affiliation:
University of Texas, Austin
Randy J. Nelson
Affiliation:
West Virginia University
Get access

Summary

Artificial light at night (ALAN) puts major pressure on the natural environment. There are five main ways of mitigating its biological impacts: avoidance of using ALAN, minimizing ALAN use, restoring or rehabilitating areas from ALAN, and offsetting the use of ALAN. Their potential effectiveness can be better understood through careful consideration of how organisms respond to light. Here we focus particularly on responses to altering recurring natural periods of light and darkness that affect the internal clock of organisms. All clocks are light sensitive and, depending on the photoreceptors of the organism, they show maximal responsiveness to different wavelengths, from UV to near infrared. Moreover, they show a high light-sensitivity, with a threshold at about intensities occurring during full moon or even less. This suggests that minimizing the use of ALAN through dimming of emissions and reducing the daily periods for which those lamps are in use may provide valuable benefits. However, if the biological effects of ALAN are to be widely reduced additional measures will need to be taken, including strengthening protection of the remaining dark spaces, reducing numbers of existing lights and restoring darkness in previously lit areas, and extensive shielding of those lights that are retained.

Type
Chapter
Information
Biological Implications of Circadian Disruption
A Modern Health Challenge
, pp. 338 - 355
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altimus, C. M., Guler, A. D., Alam, N. M., Cyrus, A. A., Prusky, G. T., Sampath, A. P., & Hattar, S. (2010). Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci, 13, 11071112.Google Scholar
Azam, C., Kerbiriou, C., Vernet, A., Julien, J.-F., Bas, Y., Plichard, L., Maratrat, J., & Le Viol, I. (2015). Is part-night lighting an effective measure to limit the impacts of artificial lighting on bats? Global Change Biol, 21, 43334341.Google Scholar
Bennie, J., Davies, T. W., Cruse, D., & Gaston, K. J. (2016). Ecological effects of artificial light at night on wild plants. J Ecol, 104, 611620.CrossRefGoogle Scholar
Block, G. D., & Wallace, D. G. (1982). Localization of a circadian pacemaker in the eye of a mollusk Bulla. Science, 217, 155157.Google Scholar
Challéat, S., Barré, K., Laforge, A., Lapostolle, D., Franchomme, M., Sirami, C., Le Viol, I., Milian, J., & Kerbiriou, C. (2021). Grasping darkness: The dark ecological network as a social-ecological framework to limit the impacts of light pollution on biodiversity. Ecol Society, 26, 15.CrossRefGoogle Scholar
Clarke, J. A., Chopko, J. T., & Mackessy, S. P. (1996). The effect of moonlight on activity patterns of adult and juvenile prairie rattlesnakes (Crotalus viridis viridis). J Herpetol, 2, 192197.CrossRefGoogle Scholar
Coomans, C. P., Ramkisoensing, A., & Meijer, J. H. (2015). The suprachiasmatic nuclei as a seasonal clock. Front Neuroendocrinol, 37, 2942.CrossRefGoogle ScholarPubMed
Cox, D. T. C., Gardner, A. S., & Gaston, K. J. (2022). Global and regional erosion of mammalian functional diversity across the diel cycle. Sci Adv, 8, eabn6008.Google Scholar
Day, J., Baker, J., Schofield, H., Mathews, F., & Gaston, K. J. (2015). Part-night lighting: Implications for bat conservation. Animal Conserv, 18, 512516.CrossRefGoogle Scholar
van Diepen, H., Foster, R. G., & Meijer, J. H. (2015). A colourful clock. PLoS Biol, 13, e1002160.Google Scholar
van Diepen, H., Schoonderwoerd, R. A., Ramkisoensing, A., Janse, J. A. M., Hattar, S., & Meijers, J. H. (2021). Distinct contribution of cone photoreceptor subtypes to the mammalian biological clock. Proc Natl Acad Sci USA, 118, e2024500118.Google Scholar
van Diepen, H. C., Ramkisoensing, A., Peirson, S. N., Foster, R. G., & Meijer, J. H. (2013). Irradiance encoding in the suprachiasmatic nuclei by rod and cone photoreceptors. FASEB J, 27, 42044212.Google Scholar
Dominoni, D. M., Goymann, W., Helm, B., & Parteck, J. (2013). Urban-like night illumination reduces melatonin release in European blackbirds (Turdus merula): Implications of city life for biological time-keeping of songbirds. Front Zool, 10, 60.Google Scholar
Ebling, F. J. P., & Barrett, P. (2008). The regulation of seasonal changes in food intake and body weight. J Neuroendocrinol, 20, 827833.Google Scholar
Evans, J. A., Elliott, J. A., & Gorman, M. R. (2007). Circadian effects of light no brighter than moonlight. J Biol Rhythms, 22, 356367.Google Scholar
Falchi, F., Cinzano, P., Elvidge, C. D., Keith, D. M., & Haim, A. (2011). Limiting the impact of light pollution on human health, environment and stellar visibility. J Environ Manage, 92, 27142722.Google Scholar
Falkenberg, J. C., & Clarke, J. A. (1998). Microhabitat use of deer mice: Effects of interspecific interaction risks. J Mammal, 79, 558565.Google Scholar
Fustin, J. M., Ye, S., Raker, C., Keneko, K., Fukumoto, K., Yamano, M., Versteven, M., Grünewald, E., Cargill, S. J., Tamai, T. K., Xu, Y., Jabbur, M. L., Kojima, R., Lamberti, M. L., Yoshioka-Kobayashi, K., Whitmore, D., Tammam, S., Howell, P. L., Kageyama, R., … Okamura, H. (2020). Methylation deficiency disrupts biological rhythms from bacteria to humans. Comm Biol, 3, 11.Google ScholarPubMed
Garrett, J. K., Donald, P. F., & Gaston, K. J. (2020). Skyglow extends into world’s key biodiversity areas. Animal Conserv, 23, 153159.Google Scholar
Gaston, K. J. (2010). Urbanisation. In Gaston, K. J. (ed.), Urban ecology (pp. 1034). Cambridge: Cambridge University Press.Google Scholar
Gaston, K. J., Ackermann, S., Bennie, J., Cox, D. T. C., Phillips, B. B., Sánchez de Miguel, A., & Sanders, D. (2021). Pervasiveness of biological impacts of artificial light at night. Integr Comp Biol, 61, 10981110.Google Scholar
Gaston, K. J., Bennie, J., Davies, T. W., & Hopkins, J. (2013). The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biol Rev, 8, 912927.CrossRefGoogle Scholar
Gaston, K. J., Davies, T. W., Bennie, J., & Hopkins, J. (2012). Reducing the ecological consequences of night-time light pollution: Options and developments. J Appl Ecol, 49, 12561266.CrossRefGoogle ScholarPubMed
Gaston, K. J., Duffy, J. P., & Bennie, J. (2015). Quantifying the erosion of natural darkness in the global protected area system. Conserv Biol, 29, 11321141.Google Scholar
Gaston, K. J., Duffy, J. P., Gaston, S., Bennie, J., & Davies, T. W. (2014). Human alteration of natural light cycles: Causes and ecological consequences. Oecologia, 176, 917931.Google Scholar
Gaston, K. J., Gaston, S., Bennie, J., & Hopkins, J. (2015). Benefits and costs of artificial nighttime lighting of the environment. Environ Rev, 23, 1423.Google Scholar
Gaston, K. J., & Holt, L. A. (2018). Nature, extent and ecological implications of night-time light from road vehicles. J Appl Ecol, 55, 22962307.Google Scholar
Gaston, K. J., & Sánchez de Miguel, A. (2022). Environmental impacts of artificial light at night. Ann Rev Environ Resources, 47, 373398.Google Scholar
Gaston, K. J., Warren, P. H., Thompson, K., & Smith, R. M. (2005). Urban domestic gardens (IV): The extent of the resource and its associated features. Biodivers Conserv, 14, 33273349.Google Scholar
van Geffen, K. G., van Eck, E., de Boer, R. A., van Grunsven, R. H. A., Salis, L., Berendse, F, & Veenendaal, E. M. (2015). Artificial light at night inhibits mating in a Geometrid moth. Insect Conserv Divers, 8, 282287.Google Scholar
van Geffen, K. G., Groot, A. T., van Grunsven, R. H. A., Donners, M., Berendse, F., & Veenendaal, E. M. (2015). Artificial night lighting disrupts sex pheromone in a noctuid moth. Ecol Entomol, 40, 401408.Google Scholar
Groos, G. A., Mason, R., & Meijer, J. H. (1983). Electrical and pharmacological properties of the suprachiasmatic nuclei. Fed Proc, 42, 27902795.Google Scholar
Groot, A. T. (2014). Circadian rhythms of sexual activities in moths: A review. Front Ecol Evol, 2, 43.Google Scholar
Hastings, M. H., Maywood, E. S., & Brancaccio, M. (2018). Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci, 19, 453469.Google Scholar
Hazlerigg, D., & Loudon, A. (2008). New insights into ancient seasonal life timers. Curr Biol, 18, R795R804.Google Scholar
de Jong, M., Caro, S. P., Gienapp, P., Spoelstra, K., & Visser, M. E. (2017). Early birds by light at night: Effects of light color and intensity on daily activity patterns in blue tits. J Biol Rhythms, 32, 323333.Google Scholar
Knop, E., Zoller, L., Ryser, R., Gerpe, C., Horler, M., & Fontaine, C. (2017). Artificial light at night as a new threat to pollination. Nature, 548, 206209.Google Scholar
Kramer, K. M., & Birney, E. C. (2001). Effect of light intensity on activity patterns of Patagonian leaf-eared mice, Phyllotis xanthopygus. J Mammal, 82, 535544.2.0.CO;2>CrossRefGoogle Scholar
La Sorte, F. A., & Horton, K. G. (2021). Seasonal variation in the effects of artificial light at night on the occurrence of nocturnally migrating birds in urban areas. Environ Pollut, 270, 116085.CrossRefGoogle ScholarPubMed
vanderLeest, H. T., Houben, T., Michel, S., Deboer, T., Albus, H., Vansteensel, M. J., Block, G. D., & Meijer, J. H. (2007). Seasonal encoding by the circadian pacemaker of the SCN. Curr Biol, 17, 468473.CrossRefGoogle ScholarPubMed
Loram, A., Tratalos, J., Warren, P. H., & Gaston, K. J. (2007). Urban domestic gardens (X): The extent and structure of the resource in five cities. Landsc Ecol, 22, 601615.Google Scholar
Luginbuhl, C. B., Boley, P. A., & Davis, D. R. (2014). The impact of light source spectral power distribution on skyglow. J Quant Spectrosc Radiat Transf, 139, 2126.Google Scholar
Mariton, L., Kerbiriou, C., Bas, Y., Zanda, B., & Le Viol, I. (2022). Even low light pollution levels affect the spatial distribution and timing of activity of a “light tolerant” bat species. Environ Pollut, 305, 119267.CrossRefGoogle ScholarPubMed
Meijer, J. H., Daan, S., Overkamp, G. J. F., & Hermann, P. M. (1990). The two-oscillator circadian system of Tree Shrew (Tupaia belangeri) and its response to light and dark pulses. J Biol Rhythms, 5, 116.Google Scholar
Meijer, J. H., Michel, S., vanderLeest, H. T., & Rohling, J. H. T. (2010). Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network. Eur J Neurosci, 32, 21432151.CrossRefGoogle ScholarPubMed
Meijer, J. H., & Rietveld, W. J. (1989). Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev, 6, 56715707.Google Scholar
Meijer, J. H., Thio, B., Albus, H., Schaap, J., & Ruijs, A. C. J. (1999). Functional absence of extraocular photoreception in hamster circadian rhythm entrainment. Brain Res, 831, 337339.Google Scholar
Menaker, M., & Underwood, H. (1976). Extraretinal photoreception in birds. Photophysiology, 23, 299306.Google Scholar
Miller, M. W. (2006). Apparent effects of light pollution on singing behavior of American Robins. Condor, 108, 130139.Google Scholar
Mishra, I., Knerr, R. M., Stewart, A. A., Payette, W. I., Richter, M. M., & Ashley, N. T. (2019). Light at night disrupts diel patterns of cytokine gene expression and endocrine profiles in zebra finch (Taeniopygia guttata). Sci Rep, 9, 15833.Google Scholar
Olde Engberink, A. H. O., Huisman, J., Michel, S., & Meijers, J. H. (2020). Brief light exposure at dawn and dusk can encode day-length in the neuronal network of the mammalian circadian pacemaker. FASEB J, 34, 1368513695.Google Scholar
van Oosterhout, F., Fisher, S. P., van Diepen, H. C., Watson, T. S., Houben, T., Vanderleest, H. T., Thompson, S., Peirson, S. N., Foster, R. G., & Meijer, J. H. (2012). Ultraviolet light provides a major input to non-image-forming light detection in mice. Curr Biol, 22, 12971402.Google Scholar
Peregrym, M., Kónya, E. P., & Falchi, F. (2020). Very important dark sky areas in Europe and the Caucasus region. J Environ Manage, 274, 111167.Google Scholar
Robert, K. A., Lesku, J. A., Partecke, J., & Chambers, B. (2015). Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc R Soc B, 282, 20151745.Google Scholar
Sanders, D., Frago, E., Kehoe, R., Patterson, C., & Gaston, K. J. (2021). A meta-analysis of biological impacts of artificial light at night. Nat Ecol Evol, 5, 7481.CrossRefGoogle ScholarPubMed
Sanders, D., Kehoe, R., Cruse, D., van Veen, F. J. F., & Gaston, K. J. (2018). Low levels of artificial light at night change food web dynamics. Curr Biol, 28, 24742478.CrossRefGoogle Scholar
Schaap, J., Albus, H., VanderLeest, H. T., Eilers, P. H. C., Détári, L., & Meijer, J. H. (2003). Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding. Proc Natl Acad Sci USA, 100, 1599415999.Google Scholar
Schlichting, M., Grebler, R., Peschel, N., Yoshii, T., & Helfrich-Forster, C. (2014). Moonlight detection by Drosophila’s endogenous clock depends on multiple photopigments in the compound eyes. J Biol Rhythms, 29, 7586.Google Scholar
Schoonderwoerd, R. A., de Rover, M., Janse, J. A. M., Hirschler, L., Willemse, C. R., Scholten, L., Klop, I., van Berloo, S., van Osch, M. J. P., Swaab, D. F., & Meijer, J. H. (2022). The photobiology of the human circadian clock. Proc Natl Acad Sci USA, 119, e2118803119.Google Scholar
Sordello, R., Busson, S., Cornuau, J. H., Deverchère, P., Faure, B., Guetté, A., Hölker, F., Kerbiriou, C., Lengagne, T., Viol, I. L., Longcore, T., Moeschler, P., Ranzoni, J., Ray, N., Reyjol, Y., Roulet, Y., Schroer, S., Secondi, J., Valet, N., … Vauclair, S. (2022). A plea for a worldwide development of dark infrastructure for biodiversity: Practical examples and ways to go forward. Landsc Urban Plan, 219, 104332.CrossRefGoogle Scholar
Spoelstra, K., van Grunsven, R. H. A., Ramakers, J. J. C., Ferguson, K. B., Raap, T., Donners, M., Veenendaal, E. M., & Visser, M. A. (2017). Response of bats to light with different spectra: Light-shy and agile bat presence is affected by white and green, but not red light. Proc R Soc B, 284, 20170075.Google Scholar
Takahashi, J. S. (2017). Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet, 18, 164179.Google Scholar
Underwood, H., & Groos, G. 1982. Vertebrate circadian rhythms: Retinal and extraretinal photoreception. Experientia, 38, 10131021.Google Scholar
Vanin, S., Bhuttani, S., Montelli, S., Menegazzi, P., Green, E. W., Pegoraro, M., Sandrelli, F., Costa, R., & Kyriacou, C. P. (2012). Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature, 484, 371376.Google Scholar
Vansteensel, M. J., Michel, S., & Meijer, J. H. (2008). Organization of cell and tissue circadian pacemakers: A comparison among species. Brain Res Rev, 58, 1847.Google Scholar
Watson, J. E. M., Shanahan, D. F., Marco, M. D., Allan, J., Laurance, W. F., Sanderson, E. W., Mackey, B., & Venter, O. (2016). Catastrophic declines in wilderness areas undermine global environment targets. Curr Biol, 26, 29292934.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×