Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T01:51:18.012Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Simo Särkkä
Affiliation:
Aalto University, Finland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agamennoni, G., Nieto, J., and Nebot, E. 2011. An outlier-robust Kalman filter. Pages 1551–1558 of: IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
Akashi, H. and Kumamoto, H. 1977. Random sampling approach to state estimation in switching environments. Automatica, 13(4), 429–434.CrossRefGoogle Scholar
Alspach, D. L. and Sorenson, H. W. 1972. Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Transactions on Automatic Control, 17(4).CrossRefGoogle Scholar
Andrieu, C., De Freitas, N., and Doucet, A. 2002. Rao-Blackwellised particle filtering via data augmentation. In: Dietterich, T. G., Becker, S., and Ghahramani, Z. (eds.), Advances in Neural Information Processing Systems 14. MIT Press.Google Scholar
Andrieu, C., Doucet, A., Singh, S., and Tadic, V. 2004. Particle methods for change detection, system identification, and control. Proceedings of the IEEE, 92(3), 423–438.CrossRefGoogle Scholar
Andrieu, C. and Thoms, J. 2008. A tutorial on adaptive MCMC. Statistics and Computing, 18(4), 343–373.CrossRefGoogle Scholar
Andrieu, C., Doucet, A., and Holenstein, R. 2010. Particle Markov chain Monte Carlo methods. The Royal Statistical Society: Series B (Statistical Methodology), 72(3), 269–342.Google Scholar
Arasaratnam, I. and Haykin, S. 2009. Cubature Kalman filters. IEEE Transactions on Automatic Control, 54(6), 1254–1269.CrossRefGoogle Scholar
Arasaratnam, I. and Haykin, S. 2011. Cubature Kalman smoothers. Automatica, 47(10), 2245–2250.CrossRefGoogle Scholar
Arasaratnam, I., Haykin, S., and Elliott, R. J. 2007. Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature. Proceedings of the IEEE, 95(5), 953–977.CrossRefGoogle Scholar
Arasaratnam, I., Haykin, S., and Hurd, T. R. 2010. Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Transactions on Signal Processing, 58(10), 4977–4993.CrossRefGoogle Scholar
Bar-Shalom, Y. and Li, X.-R. 1995. Multitarget-Multisensor Tracking: Principles and Techniques. YBS Publishing.Google Scholar
Bar-Shalom, Y., Li, X.-R., and Kirubarajan, T. 2001. Estimation with Applications to Tracking and Navigation. Wiley.CrossRefGoogle Scholar
Barber, D. 2006. Expectation correction for smoothed inference in switching linear dynamical systems. The Journal of Machine Learning Research, 7, 2515–2540.Google Scholar
Barber, D. 2011. Approximate inference in switching linear dynamical systems using Gaussian mixtures. Chapter 8, pages 166–181 of: Barber, D., Cemgil, A. T., and Chiappa, S.(eds.), Bayesian Time Series Models. Cambridge University Press.CrossRefGoogle Scholar
Berger, J. O. 1985. Statistical Decision Theory and Bayesian Analysis. Springer.CrossRefGoogle Scholar
Bernardo, J. M. and Smith, A. F. M. 1994. Bayesian Theory. John Wiley & Sons.CrossRefGoogle Scholar
Bierman, G. J. 1977. Factorization Methods for Discrete Sequential Estimation. Academic Press.Google Scholar
Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer.Google Scholar
Blackman, S. and Popoli, R. 1999. Design and Analysis of Modern Tracking Systems. Artech House Radar Library.Google Scholar
Briers, M., Doucet, A., and Maskell, S. 2010. Smoothing algorithms for state-space models. Annals of the Institute of Statistical Mathematics, 62(1), 61–89.CrossRefGoogle Scholar
Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. 2011. Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC.CrossRefGoogle Scholar
Cappé, O., Moulines, E., and Rydén, T. 2005. Inference in Hidden Markov Models. Springer.Google Scholar
Challa, S., Morelande, M. R., Mušicki, D., and Evans, R. J. 2011. Fundamentals of Object Tracking. Cambridge University Press.CrossRefGoogle Scholar
Chen, R. and Liu, J. S. 2000. Mixture Kalman filters. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(3), 493–508.Google Scholar
Cox, H. 1964. On the estimation of state variables and parameters for noisy dynamic systems. IEEE Transactions on Automatic Control, 9(1), 5–12.CrossRefGoogle Scholar
Crassidis, J. L. and Junkins, J. L. 2004. Optimal Estimation of Dynamic Systems. Chapman & Hall/CRC.CrossRefGoogle Scholar
Creal, D. 2012. A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews, 31(3), 245–296.CrossRefGoogle Scholar
Crisan, D. and Doucet, A. 2002. A survey of convergence results on particle filtering for practitioners. IEEE Transactions on Signal Processing, 50(3), 736–746.CrossRefGoogle Scholar
Crisan, D. and Rozovskii, B. (eds.) 2011. The Oxford Handbook of Nonlinear Filtering. Oxford University Press.
Daum, F. and Huang, J. 2003. Curse of dimensionality and particle filters. Pages 1979–1993 of: Proceedings of the IEEE Aerospace Conference,vol.4.Google Scholar
Deisenroth, M. P., Huber, M. F., and Hanebeck, U. D. 2009. Analytic moment-based Gaussian process filtering. In: Proceedings of the 26th International Conference on Machine Learning.Google Scholar
Deisenroth, M., Turner, R., Huber, M., Hanebeck, U., and Rasmussen, C. 2012. Robust filtering and smoothing with Gaussian processes. IEEE Transactions on Automatic Control, 57(7), 1865–1871.CrossRefGoogle Scholar
Dempster, A., Laird, N., and Rubin, D. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1–38.Google Scholar
Djuric, P. and Miguez, J. 2002. Sequential particle filtering in the presence of additive Gaussian noise with unknown parameters. Pages 1621–1624 of: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol.2.Google Scholar
Douc, R., Garivier, A., Moulines, E., and Olsson, J. 2011. Sequential Monte Carlo smoothing for general state space hidden Markov models. Annals of Applied Probability, 21(6), 2109–2145.CrossRefGoogle Scholar
Doucet, A., Godsill, S. J., and Andrieu, C. 2000. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3), 197–208.CrossRefGoogle Scholar
Doucet, A., De Freitas, N., and Gordon, N. 2001. Sequential Monte Carlo Methods in Practice. Springer.CrossRefGoogle Scholar
Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. 1987. Hybrid Monte Carlo. Physics Letters B, 195(2), 216–222.CrossRefGoogle Scholar
Fearnhead, P. 2002. Markov chain Monte Carlo, sufficient statistics, and particle filters. Journal of Computational and Graphical Statistics, 11(4), 848–862.CrossRefGoogle Scholar
Fearnhead, P. and Clifford, P. 2003. On-line inference for Hidden Markov models via particle filters. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(4), 887–899.Google Scholar
Fong, W., Godsill, S. J., Doucet, A., and West, M. 2002. Monte Carlo smoothing with application to audio signal enhancement. IEEE Transactions on Signal Processing, 50(2), 438–449.CrossRefGoogle Scholar
Fraser, D. and Potter, J. 1969. The optimum linear smoother as a combination of two optimum linear filters. IEEE Transactions on Automatic Control, 14(4), 387–390.CrossRefGoogle Scholar
Gelb, A. 1974. Applied Optimal Estimation. MIT Press.Google Scholar
Gelb, A. and Vander Velde, W. 1968. Multiple-Input Describing Functions and Nonlinear System Design. McGraw-Hill.Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. R. 2004. Bayesian Data Analysis. Second edn. Chapman & Hall.Google Scholar
Gilks, W., Richardson, S., and Spiegelhalter, D. (eds.) 1996. Markov Chain Monte Carlo in Practice. Chapman & Hall.
Godsill, S. J. and Rayner, P. J. 1998. Digital Audio Restoration: a Statistical Model Based Approach. Springer-Verlag.CrossRefGoogle Scholar
Godsill, S. J., Doucet, A., and West, M. 2004. Monte Carlo smoothing for nonlinear time series. Journal of the American Statistical Association, 99(465), 156–168.CrossRefGoogle Scholar
Golub, G. H. and van Loan, C. F. 1996. Matrix Computations. Third edn. The Johns Hopkins University Press.Google Scholar
Golub, G. H. and Welsch, J. H. 1969. Calculation of Gauss quadrature rules. Mathematics of Computation, 23(106), 221–230.CrossRefGoogle Scholar
Gonzalez, R. C. and Woods, R. E. 2008. Digital Image Processing. Third edn. Prentice-Hall.Google Scholar
Gordon, N. J., Salmond, D. J., and Smith, A. F. M. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. Pages 107–113 of: IEEE Proceedings on Radar and Signal Processing, vol. 140.Google Scholar
Grewal, M. S. and Andrews, A. P. 2001. Kalman Filtering, Theory and Practice Using MATLAB. Wiley.Google Scholar
Grewal, M. S., Miyasako, R. S., and Smith, J. M. 1988. Application of fixed point smoothing to the calibration, alignment and navigation data of inertial navigation systems. Pages 476–479 of: Position Location and Navigation Symposium.Google Scholar
Grewal, M. S., Weill, L. R., and Andrews, A. P. 2001. Global Positioning Systems, Inertial Navigation and Integration. Wiley.Google Scholar
Gupta, N. and Mehra, R. 1974. Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations. IEEE Transactions on Automatic Control, 19(6), 774–783.CrossRefGoogle Scholar
Gustafsson, F. and Hendeby, G. 2012. Some relations between extended and unscented Kalman filters. IEEE Transactions on Signal Processing, 60(2), 545–555.CrossRefGoogle Scholar
Haario, H., Saksman, E., and Tamminen, J. 1999. Adaptive proposal distribution for random walk Metropolis algorithm. Computational Statistics, 14(3), 375–395.CrossRefGoogle Scholar
Haario, H., Saksman, E., and Tamminen, J. 2001. An adaptive Metropolis algorithm. Bernoulli, 7(2), 223–242.CrossRefGoogle Scholar
Hartikainen, J. and Särkkä, S. 2010. Kalman filtering and smoothing solutions to temporal Gaussian process regression models. Pages 379–384 of: Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP).Google Scholar
Hauk, O. 2004. Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data. NeuroImage, 21(4), 1612–1621.CrossRefGoogle ScholarPubMed
Hayes, M. H. 1996. Statistical Digital Signal Processing and Modeling. John Wiley & Sons, Inc.Google Scholar
Haykin, S. 2001. Kalman Filtering and Neural Networks. Wiley.CrossRefGoogle Scholar
Hiltunen, P., Särkkä, S., Nissilä, I., Lajunen, A., and Lampinen, J. 2011. State space regularization in the nonstationary inverse problem for diffuse optical tomography. Inverse Problems, 27, 025–009.CrossRefGoogle Scholar
Ho, Y. C. and Lee, R. C. K. 1964. A Bayesian approach to problems in stochastic estimation and control. IEEE Transactions on Automatic Control, 9(4), 333–339.CrossRefGoogle Scholar
Hu, X., Schön, T., and Ljung, L. 2008. A basic convergence result for particle filtering. IEEE Transactions on Signal Processing, 56(4), 1337–1348.CrossRefGoogle Scholar
Hu, X., Schön, T., and Ljung, L. 2011. A general convergence result for particle filtering. IEEE Transactions on Signal Processing, 59(7), 3424–3429.CrossRefGoogle Scholar
Hurzeler, M. and Kunsch, H. R. 1998. Monte Carlo approximations for general statespace models. Journal of Computational and Graphical Statistics, 7(2), 175–193.Google Scholar
Ito, K. and Xiong, K. 2000. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control, 45(5), 910–927.CrossRefGoogle Scholar
Jazwinski, A. H. 1966. Filtering for nonlinear dynamical systems. IEEE Transactions on Automatic Control, 11(4), 765–766.CrossRefGoogle Scholar
Jazwinski, A. H. 1970. Stochastic Processes and Filtering Theory. Academic Press.Google Scholar
Julier, S. J. and Uhlmann, J. K. 1995. A General Method of Approximating Nonlinear Transformations of Probability Distributions. Tech. rept. Robotics Research Group, Department of Engineering Science, University of Oxford.Google Scholar
Julier, S. J. and Uhlmann, J. K. 2004. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401–422.Google Scholar
Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. 1995. A new approach for filtering nonlinear systems. Pages 1628–1632 of: Proceedings of the 1995 American Control, Conference, Seattle, Washington.Google Scholar
Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F. 2000. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45(3), 477–482.CrossRefGoogle Scholar
Kailath, T., Sayed, A. H., and Hassibi, B. 2000. Linear Estimation. Prentice Hall.Google Scholar
Kaipio, J. and Somersalo, E. 2005. Statistical and Computational Inverse Problems. Applied Mathematical Sciences no. 160. Springer.Google Scholar
Kalman, R. E. 1960a. Contributions to the theory of optimal control. Boletin de la Sociedad Matematica Mexicana, 5(1), 102–119.Google Scholar
Kalman, R. E. 1960b. A new approach to linear filtering and prediction problems. Transactions of the ASME, Journal of Basic Engineering, 82(1), 35–45.CrossRefGoogle Scholar
Kalman, R. E. and Bucy, R. S. 1961. New results in linear filtering and prediction theory. Transactions of the ASME, Journal of Basic Engineering, 83(3), 95–108.CrossRefGoogle Scholar
Kantas, N., Doucet, A., Singh, S., and Maciejowski, J. 2009. An overview of sequential Monte Carlo methods for parameter estimation in general state-space models. In: Proceedings IFAC Symposium on System Identification (SYSID).Google Scholar
Kaplan, E. D. 1996. Understanding GPS, Principles and Applications. Artech House.Google Scholar
Keeling, M. and Rohani, P. 2007. Modeling Infectious Diseases in Humans and Animals. Princeton University Press.Google Scholar
Kelly, C. N. and Anderson, B. D. O. 1971. On the stability of fixed-lag smoothing algorithms. Journal of Franklin Institute, 291(4), 271–281.CrossRefGoogle Scholar
Kim, C.-J. 1994. Dynamic linear models with Markov-switching. Journal of Econo-metrics, 60, 1–22.Google Scholar
Kitagawa, G. 1987. Non-Gaussian state-space modeling of nonstationary time series. Journal of the American Statistical Association, 82(400), 1032–1041.Google Scholar
Kitagawa, G. 1994. The two-filter formula for smoothing and an implementation of the Gaussian-sum smoother. Annals of the Institute of Statistical Mathematics, 46(4), 605–623.CrossRefGoogle Scholar
Kitagawa, G. 1996. Monte Carlo filter and smoother for Non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5(1), 1–25.Google Scholar
Lee, R. C. K. 1964. Optimal Estimation, Identification and Control. MIT Press.Google Scholar
Lefebvre, T., Bruyninckx, H., and Schutter, J. D. 2002. Comment on “A new method for the nonlinear transformation of means and covariances in filters and estimators” [and authors' reply]. IEEE Transactions on Automatic Control, 47(8), 1406–1409.CrossRefGoogle Scholar
Leondes, C. T., Peller, J. B., and Stear, E. B. 1970. Nonlinear smoothing theory. IEEE Transactions on Systems Science and Cybernetics, 6(1), 63–71.CrossRefGoogle Scholar
Lin, F.-H., Wald, L. L., Ahlfors, S. P., Hämäläinen, M. S., Kwong, K. K., and Belliveau, J. W. 2006. Dynamic magnetic resonance inverse imaging of human brain function. Magnetic Resonance in Medicine, 56(4), 787–802.CrossRefGoogle ScholarPubMed
Lindsten, F. 2011. Rao-Blackwellised Particle Methods for Inference and Identification. Licentiate's thesis, Linkoping University.Google Scholar
Liu, J. S. 2001. Monte Carlo Strategies in Scientific Computing. Springer.Google Scholar
Liu, J. S. and Chen, R. 1995. Blind deconvolution via sequential imputations. Journal of the American Statistical Association, 90(430), 567–576.CrossRefGoogle Scholar
Luenberger, D. G. and Ye, Y. 2008. Linear and Nonlinear Programming. Third edn. Springer.Google Scholar
Maybeck, P. 1982a. Stochastic Models, Estimation and Control. Vol. 3. Academic Press.Google Scholar
Maybeck, P. 1982b. Stochastic Models, Estimation and Control. Vol. 2. Academic Press.Google Scholar
Mbalawata, I. S., Särkkä, S., and Haario, H. 2013. Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering. Computational Statistics, 28(3), 1195–1223.CrossRefGoogle Scholar
Meditch, J. S. 1969. Stochastic Optimal Linear Estimation and Control. McGraw-Hill.Google Scholar
Milton, J. S. and Arnold, J. C. 1995. Introduction to Probability and Statistics, Principles and Applications for Engineering and the Computing Sciences. McGraw-Hill.Google Scholar
Moore, J. B. 1973. Discrete-time fixed-lag smoothing algorithms. Automatica, 9(2), 163–174.CrossRefGoogle Scholar
Moore, J. B. and Tam, P. 1973. Fixed-lag smoothing of nonlinear systems with discrete measurement. Information Sciences, 6, 151–160.CrossRefGoogle Scholar
Morf, M., Levy, B., and Kailath, T. 1978. Square-root algorithms for the continuous-time linear least-square estimation problem. IEEE Transactions on Automatic Control, 23(5), 907–911.CrossRefGoogle Scholar
Murray, J. D. 1993. Mathematical Biology. Springer.Google Scholar
Murray, L. and Storkey, A. 2011. Particle smoothing in continuous time: a fast approach via density estimation. IEEE Transactions on Signal Processing, 59(3), 1017–1026.CrossRefGoogle Scholar
Neal, R. M. 2011. MCMC using Hamiltonian dynamics. Chapter 5 of: Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. (eds.), Handbook of Markov Chain Monte Carlo. Chapman & Hall/CRC.Google Scholar
Neal, R. and Hinton, G. 1999. A view of the EM algorithm that justifies incremental, sparse, and other variants. Pages 355–370 of: Jordan, M. I. (ed.), Learning in Graphical Models. MIT Press.Google Scholar
Ninness, B. and Henriksen, S. 2010. Bayesian system identification via Markov chain Monte Carlo techniques. Automatica, 46(1), 40–51.CrossRefGoogle Scholar
Ninness, B., Wills, A., and Schön, T. B. 2010. Estimation of general nonlinear statespace systems. Pages 6371–6376 of: Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta USA.Google Scholar
Nørgaard, M., Poulsen, N. K., and Ravn, O. 2000. New developments in state estimation for nonlinear systems. Automatica, 36(11), 1627–1638.CrossRefGoogle Scholar
O'Hagan, A. 1991. Bayes-Hermite quadrature. Journal of Statistical Planning and Inference, 29 (3), 245–260.CrossRefGoogle Scholar
Øksendal, B. 2003. Stochastic Differential Equations: an Introduction with Applications. Sixth edn. Springer-Verlag.CrossRefGoogle Scholar
Olsson, R., Petersen, K., and Lehn-Schiøler, T. 2007. State-space models: from the EM algorithm to a gradient approach. Neural Computation, 19(4), 1097–1111.CrossRefGoogle Scholar
Piché, R., Särkkä, S., and Hartikainen, J. 2012. Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate Student-t distribution. In: Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP).Google Scholar
Pitt, M. K. and Shephard, N. 1999. Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association, 94(446), 590–599.CrossRefGoogle Scholar
Poyiadjis, G., Doucet, A., and Singh, S. 2011. Particle approximations of the score and observed information matrix in state space models with application to parameter estimation. Biometrika, 98(1), 65–80.CrossRefGoogle Scholar
Proakis, J. G. 2001. Digital Communications. Fourth edn. McGraw-Hill.
Punskaya, E., Doucet, A., and Fitzgerald, W. J. 2002. On the use and misuse of particle filtering in digital communications. In: Proceedings of EUSIPCO.Google Scholar
Raiffa, H. and Schlaifer, R. 2000. Applied Statistical Decision Theory. John Wiley & Sons, Wiley Classics Library.
Rasmussen, C. E. and Williams, C. K. I. 2006. Gaussian Processes for Machine Learning. MIT Press.Google Scholar
Rauch, H. E. 1963. Solutions to the linear smoothing problem. IEEE Transactions on Automatic Control, 8(4), 371–372.CrossRefGoogle Scholar
Rauch, H. E., Tung, F., and Striebel, C. T. 1965. Maximum likelihood estimates of linear dynamic systems. AIAA Journal, 3(8), 1445–1450.CrossRefGoogle Scholar
Ristic, B., Arulampalam, S., and Gordon, N. 2004. Beyond the Kalman Filter. Artech House.Google Scholar
Roberts, G. O. and Rosenthal, J. S. 2001. Optimal scaling for various Metropolis-Hastings algorithms. Statistical Science, 16(4), 351–367.CrossRefGoogle Scholar
Roweis, S. and Ghahramani, Z. 2001. Learning nonlinear dynamical systems using the expectation-maximization algorithm. Chapter 6, pages 175–220 of: Haykin, S. (ed.), Kalman Filtering and Neural Networks. Wiley-Interscience.Google Scholar
Sage, A. P. and Melsa, J. L. 1971. Estimation Theory with Applications to Communications and Control. McGraw-Hill.Google Scholar
Saha, S., Ozkan, E., Gustafsson, F., and Smidl, V. 2010. Marginalized particle filters for Bayesian estimation of Gaussian noise parameters. Pages 1–8 of: 13th Conference on Information Fusion (FUSION).Google Scholar
Sandblom, F. and Svensson, L. 2012. Moment estimation using a marginalized transform. IEEE Transactions on Signal Processing, 60(12), 6138–6150.CrossRefGoogle Scholar
Särkkä, S. 2006. Recursive Bayesian Inference on Stochastic Differential Equations. Doctoral dissertation, Helsinki University of Technology.Google Scholar
Särkkä, S. 2007. On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Transactions on Automatic Control, 52(9), 1631–1641.CrossRefGoogle Scholar
Särkkä, S. 2008. Unscented Rauch-Tung-Striebel smoother. IEEE Transactions on Automatic Control, 53(3), 845–849.CrossRefGoogle Scholar
Särkkä, S. 2010. Continuous-time and continuous-discrete-time unscented Rauch-Tung-Striebel smoothers. Signal Processing, 90(1), 225–235.CrossRefGoogle Scholar
Särkkä, S. 2011. Linear operators and stochastic partial differential equations in Gaussian process regression. In: Proceedings of ICANN.Google Scholar
Särkkä, S. and Hartikainen, J. 2010a. On Gaussian optimal smoothing of non-linear state space models. IEEE Transactions on Automatic Control, 55(8), 1938–1941.CrossRefGoogle Scholar
Särkkä, S. and Hartikainen, J. 2010b. Sigma point methods in optimal smoothing of non-linear stochastic state space models. Pages 184–189 of: Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP).Google Scholar
Särkkä, S. and Hartikainen, J. 2012. Infinite-dimensional Kalman filtering approach to spatio-temporal Gaussian process regression. In: Proceedings of AISTATS 2012.Google Scholar
Särkkä, S. and Nummenmaa, A. 2009. Recursive noise adaptive Kalman filtering by variational Bayesian approximations. IEEE Transactions on Automatic Control, 54(3), 596–600.CrossRefGoogle Scholar
Särkkä, S. and Sarmavuori, J. 2013. Gaussian filtering and smoothing for continuous-discrete dynamic systems. Signal Processing, 93(2), 500–510.CrossRefGoogle Scholar
Särkkä, S. and Solin, A. 2012. On continuous-discrete cubature Kalman filtering. Pages 1210–1215 of: Proceedings of SYSID 2012.Google Scholar
Särkkä, S. and Sottinen, T. 2008. Application of Girsanov theorem to particle filtering of discretely observed continuous-time non-linear systems. Bayesian Analysis, 3(3), 555–584.CrossRefGoogle Scholar
Särkkä, S., Vehtari, A., and Lampinen, J. 2007a. CATS benchmark time series prediction by Kalman smoother with cross-validated noise density. Neurocomputing, 70(13–15), 2331–2341.CrossRefGoogle Scholar
Särkkä, S., Vehtari, A., and Lampinen, J. 2007b. Rao-Blackwellized particle filter for multiple target tracking. Information Fusion Journal, 8(1), 2–15.CrossRefGoogle Scholar
Särkkä, S., Bunch, P., and Godsill, S. J. 2012a. A backward-simulation based Rao-Blackwellized particle smoother for conditionally linear Gaussian models. Pages 506–511 of: Proceedings of SYSID 2012.Google Scholar
Särkkä, S., Solin, A., Nummenmaa, A., Vehtari, A., Auranen, T., Vanni, S., and Lin, F.-H. 2012b. Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER. NeuroImage, 60(2), 1517–1527.CrossRefGoogle ScholarPubMed
Sarmavuori, J. and Särkkä, S. 2012a. Fourier-Hermite Kalman filter. IEEE Transactions on Automatic Control, 57(6), 1511–1515.CrossRefGoogle Scholar
Sarmavuori, J. and Särkkä, S. 2012b. Fourier-Hermite Rauch-Tung-Striebel Smoother. In: Proceedings of EUSIPCO.Google Scholar
Schön, T. and Gustafsson, F. 2003. Particle filters for system identification of statespace models linear in either parameters or states. Pages 1287–1292 of: Proceedings of the 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands.Google Scholar
Schön, T., Gustafsson, F., and Nordlund, P.-J. 2005. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Transactions on Signal Processing, 53(7), 2279–2289.CrossRefGoogle Scholar
Schön, T., Wills, A., and Ninness, B. 2011. System identification of nonlinear statespace models. Automatica, 47(1), 39–49.CrossRefGoogle Scholar
Segal, M. and Weinstein, E. 1989. A new method for evaluating the log-likelihood gradient, the Hessian, and the Fisher information matrix for linear dynamic systems. IEEE Transactions on Information Theory, 35(3), 682–687.CrossRefGoogle Scholar
Šhiryaev, A. N. 1996. Probability. Springer.CrossRefGoogle Scholar
Shumway, R. and Stoffer, D. 1982. An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3(4), 253–264.CrossRefGoogle Scholar
Simandl, M. and Dunik, J. 2006. Design of derivative-free smoothers and predictors. Pages 991–996 of: Preprints of the 14th IFAC Symposium on System Identification.Google Scholar
Singer, H. 2008. Nonlinear continuous time modeling approaches in panel research. Statistica Neerlandica, 62(1), 29–57.Google Scholar
Singer, H. 2011. Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms. AStA Advances in Statistical Analysis, 95(4), 375–413.CrossRefGoogle Scholar
Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J. 2008. Obstacles to high-dimensional particle filtering. Monthly Weather Review, 136(12), 4629–4640.CrossRefGoogle Scholar
Stengel, R. F. 1994. Optimal Control and Estimation. Dover.Google Scholar
Stone, L. D., Barlow, C. A., and Corwin, T. L. 1999. Bayesian Multiple Target Tracking. Artech House.Google Scholar
Storvik, G. 2002. Particle filters in state space models with the presence of unknown static parameters. IEEE Transactions on Signal Processing, 50(2), 281–289.CrossRefGoogle Scholar
Stratonovich, R. L. 1968. Conditional Markov Processes and Their Application to the Theory of Optimal Control. Elsevier.Google Scholar
Striebel, C. T. 1965. Partial differential equations for the conditional distribution of a Markov process given noisy observations. Journal of Mathematical Analysis and Applications, 11, 151–159.CrossRefGoogle Scholar
Tam, P., Tam, D., and Moore, J. 1973. Fixed-lag demodulation of discrete noisy measurements of FM signals. Automatica, 9(6), 725–729.CrossRefGoogle Scholar
Tarantola, A. 2004. Inverse Problem Theory and Methods for Model Parameter Esti-mation. SIAM.Google Scholar
Titterton, D. H. and Weston, J. L. 1997. Strapdown Inertial Navigation Technology. Peter Peregrinus Ltd.Google Scholar
Väänänen, V. 2012. Gaussian Filtering and Smoothing Based Parameter Estimation in Nonlinear Models for Sequential Data. Master's Thesis, Aalto University.Google Scholar
Van der Merwe, R. and Wan, E. 2003. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models. In: Proceedings of the Workshop on Advances in Machine Learning.Google Scholar
Van der Merwe, R. and Wan, E. A. 2001. The square-root unscented Kalman filter for state and parameter estimation. Pages 3461–3464 of: International Conference on Acoustics, Speech, and Signal Processing.Google Scholar
Van der Merwe, R., De Freitas, N., Doucet, A., and Wan, E. 2001. The unscented particle filter. Pages 584–590 of: Advances in Neural Information Processing Systems 13.Google Scholar
Van Trees, H. L. 1968. Detection, Estimation, and Modulation Theory Part I. John Wiley & Sons.Google Scholar
Van Trees, H. L. 1971. Detection, Estimation, and Modulation Theory Part II. John Wiley & Sons.Google Scholar
Vihola, M. 2012. Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics and Computing, 22(5), 997–1008.CrossRefGoogle Scholar
Viterbi, A. J. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2).CrossRefGoogle Scholar
Wan, E. A. and Van der Merwe, R. 2001. The unscented Kalman filter. Chapter 7 of: Haykin, S. (ed.), Kalman Filtering and Neural Networks. Wiley.Google Scholar
West, M. and Harrison, J. 1997. Bayesian Forecasting and Dynamic Models. Springer-Verlag.Google Scholar
Wiener, N. 1950. Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications. John Wiley & Sons.Google Scholar
Wills, A., Schön, T. B., Ljung, L., and Ninness, B. 2013. Identification of Hammerstein-Wiener models. Automatica, 49(1), 70–81.CrossRefGoogle Scholar
Wu, Y., Hu, D., Wu, M., and Hu, X. 2005. Unscented Kalman filtering for additive noise case: augmented versus nonaugmented. IEEE Signal Processing Letters, 12(5), 357–360.Google Scholar
Wu, Y., Hu, D., Wu, M., and Hu, X. 2006. A numerical-integration perspective on Gaussian filters. IEEE Transactions on Signal Processing, 54(8), 2910–2921.CrossRefGoogle Scholar
Ypma, A. and Heskes, T. 2005. Novel approximations for inference in nonlinear dynamical systems using expectation propagation. Neurocomputing, 69(1), 85–99.CrossRefGoogle Scholar
Zoeter, O. and Heskes, T. 2011. Expectation propagation and generalized EP methods for inference in switching linear dynamical systems. Chapter 7, pages 141–165 of: Bayesian Time Series Models. Cambridge University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Simo Särkkä, Aalto University, Finland
  • Book: Bayesian Filtering and Smoothing
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139344203.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Simo Särkkä, Aalto University, Finland
  • Book: Bayesian Filtering and Smoothing
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139344203.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Simo Särkkä, Aalto University, Finland
  • Book: Bayesian Filtering and Smoothing
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139344203.016
Available formats
×