Published online by Cambridge University Press: 05 February 2012
Introduction
To solve the fundamental problems of aerodynamics defined in Chapter 1, it is necessary to formulate a mathematical representation of the underlying fluid dynamics. The appropriate mathematical expressions or sets of equations may be algebraic, integral, or differential in character but will always represent basic physical laws or principles. In this chapter, the fundamental equations necessary for the solution of aerodynamics problems are derived directly from the basic laws of nature. The resulting mathematical formulations represent a large class of fluid mechanics problems within which aerodynamics is an important subclass.
Some problems in aerodynamics require solutions for all of the variables needed to describe a moving stream of gas—namely, velocity, pressure, temperature, and density. Because velocity is a vector quantity (i.e., with magnitude and direction), in a general case there are three scalar velocity components. Thus, in many cases of interest, there is a total of six unknowns: three velocity components and the scalar thermodynamic quantities of pressure, temperature, and density.* This requires six independent equations to be written to solve for the six unknowns. The physical laws of conservation of mass, momentum, and energy supply five such equations (i.e., the momentum equation is a vector equation; therefore, conservation of momentum leads in general to three component equations). For all of the subject matter in this book, the assumption of an ideal gas is physically realistic. Thus, the perfect gas law (i.e., equation of state) p = ρRT, which relates pressure, density, and temperature, supplies the final equation needed to solve for the six unknowns.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.