from Part IV - Processes Related to Boundary Layer Clouds
Published online by Cambridge University Press: 05 July 2015
The Influence of Longwave Radiative Cooling: Dry Stratocumulus
Under clear sky conditions, the surface and entrainment turbulent fluxes are the ones introducing heat in the boundary layer and consequently driving the CBL growth and the thermodynamic variability. The presence of clouds introduces two new processes that influence the potential temperature budget: the divergence of longwave radiation at the top of the CBL and the water phase changes. In this chapter we study the first. The radiative emission or absorption by clouds has a strong influence on the boundary layer development since it is an additional cooling contribution to the potential temperature budget within the convective boundary layer. In this chapter, we will mainly focus on processes related to the stratocumulus formed above marine boundary layers (MBL). As such, the chapter can serve to introduce some of the relevant characteristics of the MBL. However, stratocumulus are also formed and present in ABL over land. In that respect, understanding the role of the divergence of longwave radiation driven by stratocumulus is also important in the development of convective boundary layers over land.
To study the effect of the radiative term, we focus on an important boundary layer cloud: stratocumulus. We will assume that these clouds are forming a deck with a large horizontal extension, that is, total overcast. To provide a first impression of the spatial structure of stratocumulus, Figure 14.1 shows a cross section of the fluctuation of specific moisture qt including the streamlines (left panel) with the half hour average of the specific moisture and the liquid water content ql (see Box 15.1) (see right panel). The cloud base is above 400 m and the cloud top at 800 m. The three-dimensional calculations of the state variables are made using the large-eddy simulation technique, and the numerical experiment is based on observations taken on the West Coast of California during the DYCOMS-II field experiment (Stevens et al., 2002).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.