Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T03:29:11.216Z Has data issue: false hasContentIssue false

Section IV - Precursor Hematopoietic Neoplasms and Related Neoplasms

Published online by Cambridge University Press:  25 November 2023

Silvia Tse Bunting
Affiliation:
Cleveland Clinic Florida Weston
Xiayuan Liang
Affiliation:
University of Colorado
Michele E. Paessler
Affiliation:
University of Pennsylvania School of Medicine
Satheesh Chonat
Affiliation:
Emory University, Atlanta
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Borowitz, MJ, Chan, JKC, Downing, JR, Le Beau, MM, Arber, DA. B-lymphoblastic leukaemia/lymphoma with recurrent genetic abnormalities. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC Press; 2017:203–9.Google Scholar
Geethakumari, PR, Hoffmann, MS, Pemmaraju, N, Hu, S, Jorgensen, JL, O’Brien, S, Daver, N. Extramedullary B lymphoblastic leukemia/lymphoma (B-ALL/LBL): A diagnostic challenge. Clin Lymphoma, Myeloma Leukemia. 2014 Aug; 14(4): e115.CrossRefGoogle Scholar
Cortelazzo, S, Ponzoni, M, Ferreri, AJ, Hoelzer, D. Lymphoblastic lymphoma. Crit Rev Oncol/Hematol. 2011 Sep 1; 79(3): 330–43.CrossRefGoogle ScholarPubMed
Lin, P, Jones, D, Dorfman, DM, Medeiros, LJ. Precursor B-cell lymphoblastic lymphoma: A predominantly extranodal tumor with low propensity for leukemic involvement. Am J Surg Pathol. 2000 Nov 1; 24(11): 1480–90.CrossRefGoogle ScholarPubMed
Soslow, RA, Baergen, RN, Warnke, RA. B‐lineage lymphoblastic lymphoma is a clinicopathologic entity distinct from other histologically similar aggressive lymphomas with blastic morphology. Cancer. 1999 Jun 15; 85(12): 2648–54.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Maitra, A, McKenna, RW, Weinberg, AG, Schneider, NR, Kroft, SH. Precursor B-cell lymphoblastic lymphoma: A study of nine cases lacking blood and bone marrow involvement and review of the literature. Am J Clin Pathol. 2001 Jun 1; 115(6): 868–75.CrossRefGoogle ScholarPubMed
Perkins, SL, McKenna, R. Precursor lymphoid neoplasms. In Kjeldsberg, CR, Perkins, SL, eds. Practical diagnosis of hematologic disorders, 5th ed., Volume 2, Malignant disorders. Singapore: American Society for Clinical Pathology; 2010:691719.Google Scholar
Duffied, AS, Racke, FK, Borowitz, MJ. Precursor B- and T-cell neoplasms. In Jaffe, E, Arber, D, Campo, E, Harris, NL, Quintanilla-Martinez, L, eds. Hematopathology. 2nd ed. Philadelphia, PA: Elsevier; 2017:761–73.Google Scholar
Inaba, H, Mullighan, CG. Pediatric acute lymphoblastic leukemia. Haematologica. 2020 Nov 1; 105(11): 2524–39.CrossRefGoogle ScholarPubMed
Hunger, SP, Mullighan, CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015 Oct 15; 373(16): 1541–52.CrossRefGoogle ScholarPubMed
Van der Linden, MH, Valsecchi, MG, De Lorenzo, P, Möricke, A, Janka, G, Leblanc, TM, et al. Outcome of congenital acute lymphoblastic leukemia treated on the Interfant-99 protocol. Blood. 2009 Oct 29; 114(18): 3764–8.CrossRefGoogle ScholarPubMed
Pieters, R, Schrappe, M, De Lorenzo, P, Hann, I, De Rossi, G, Felice, M, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): An observational study and a multicentre randomised trial. Lancet. 2007 Jul 21; 370(9583): 240–50.CrossRefGoogle Scholar
Van der Linden, MH, Creemers, S, Pieters, R. Diagnosis and management of neonatal leukaemia. Semin Fetal Neonatal Med. 2012 Aug 1; 17(4): 192–5.CrossRefGoogle ScholarPubMed
Knez, V, Liu, X, Schowinsky, J, Pan, Z, Wang, D, Lorsbach, R, et al. Clinicopathologic and genetic spectrum of infantile B-lymphoblastic leukemia: A multi-institutional study. Leukemia Lymphoma. 2019 Mar 21; 60(4): 1006–13.CrossRefGoogle ScholarPubMed
Kang, H, Wilson, CS, Harvey, RC, Chen, I, Murphy, MH, Atlas, SR, et al. Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: A Children’s Oncology Group study. Blood. 2012 Feb 23; 119(8): 1872–81.CrossRefGoogle ScholarPubMed
Sakaki, H, Kanegane, H, Nomura, K, Goi, K, Sugita, K, Miura, M, et al. Early lineage switch in an infant acute lymphoblastic leukemia. Int J Hematol. 2009 Dec; 90(5): 653–5.CrossRefGoogle Scholar
Rossi, JG, Bernasconi, AR, Alonso, CN, Rubio, PL, Gallego, MS, Carrara, CA, et al. Lineage switch in childhood acute leukemia: An unusual event with poor outcome. Am J Hematol. 2012 Sep; 87(9): 890–7.CrossRefGoogle ScholarPubMed
Park, M, Koh, KN, Kim, BE, Im, HJ, Jang, S, Park, CJ, et al. Lineage switch at relapse of childhood acute leukemia: A report of four cases. J Korean Med Sci. 2011 Jun; 26(6): 829–31.CrossRefGoogle ScholarPubMed
Borowitz, MJ, Chan, JKC, Béné, M-C, Arber, A. T-lymphoblastic leukaemia/lymphoma. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC Press; 2017:209–12.Google Scholar
Raetz, EA, Perkins, SL, Bhojwani, D, Smock, K, Philip, M, Carroll, WL, Min, DJ. Gene expression profiling reveals intrinsic differences between T‐cell acute lymphoblastic leukemia and T‐cell lymphoblastic lymphoma. Pediatr Blood Cancer. 2006 Aug; 47(2): 130–40.CrossRefGoogle ScholarPubMed
Uyttebroeck, A, Vanhentenrijk, V, Hagemeijer, A, Boeckx, N, Renard, M, Wlodarska, I, et al. Is there a difference in childhood T-cell acute lymphoblastic leukaemia and T-cell lymphoblastic lymphoma? Leukemia Lymphoma. 2007; 48(9): 1745–54.CrossRefGoogle Scholar
Coustan-Smith, E, Mullighan, CG, Onciu, M, Behm, FG, Raimondi, SC, Pei, D, et al. Early T-cell precursor leukaemia: A subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009 Feb 1; 10(2): 147–56.CrossRefGoogle ScholarPubMed

References

Facchetti, FP, Petrella, T, Pileri, SA. Blastic plasmacytoid dendritic cell neoplasm. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al. eds. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed., revised ed. Lyon: International Agency for Research on Cancer; 2017:174–7.Google Scholar
Martín-Martín, LLA, Vidriales, B, Caballero, MD, Rodrigues, AS, Ferreira, SI, Lima, M, et al. Classification and clinical behavior of blastic plasmacytoid dendritic cell neoplasms according to their maturation-associated immunophenotypic profile. Oncotarget. 2015; 6(22): 19204–16.CrossRefGoogle ScholarPubMed
Gurbaxani, S. Blastic plasmacytoid dendritic cell neoplasm. In Larson, RA, ed. UpToDate. Waltham, MA: Wolters Kluwer; 2019.Google Scholar
Jegalian, AG, Buxbaum, NP, Facchetti, F, Raffeld, M, Pittaluga, S, Wayne, AS, et al. Blastic plasmacytoid dendritic cell neoplasm in children: Diagnostic features and clinical implications. Haematologica. 2010; 95(11): 1873–9.CrossRefGoogle ScholarPubMed
Tzankov, A, Hebeda, K, Kremer, M, Leguit, R, Orazi, A, Van der Walt, J, et al. Plasmacytoid dendritic cell proliferations and neoplasms involving the bone marrow: Summary of the workshop cases submitted to the 18th Meeting of the European Association for Haematopathology (EAHP) organized by the European Bone Marrow Working Group, Basel 2016. Ann Hematol. 2017; 96(5): 765–77.CrossRefGoogle Scholar
Bekkenk, MW, Jansen, PM, Meijer, CJLM, Willemze, R. CD56+ hematological neoplasms presenting in the skin: A retrospective analysis of 23 new cases and 130 cases from the literature. Ann Oncol. 2004; 15(7): 10971108.CrossRefGoogle ScholarPubMed
Pagano, L, Valentini, CG, Pulsoni, A, Fisogni, S, Carluccio, P, Mannelli, F, et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: An Italian multicenter study. Haematologica. 2013; 98(2): 239–46.CrossRefGoogle ScholarPubMed
Dijkman, R, Van Doorn, R, Szuhai, K, Willemze, R, Vermeer, MH, Tensen, CP. Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood. 2007; 109(4): 1720–7.CrossRefGoogle ScholarPubMed
Suzuki, Y, Kato, S, Kohno, K, Satou, A, Eladl, AE, Asano, N, et al. Clinicopathological analysis of 46 cases with CD4(+) and/or CD56(+) immature haematolymphoid malignancy: Reappraisal of blastic plasmacytoid dendritic cell and related neoplasms. Histopathology. 2017; 71(6): 972–84.CrossRefGoogle ScholarPubMed
Facchetti, F, Cigognetti, M, Fisogni, S, Rossi, G, Lonardi, S, Vermi, W. Neoplasms derived from plasmacytoid dendritic cells. Mod Pathol. 2016; 29(2): 98111.CrossRefGoogle ScholarPubMed
Sukswai, N, Aung, PP, Yin, CC, Li, S, Wang, W, Wang, SA, et al. Dual expression of TCF4 and CD123 is highly sensitive and specific for blastic plasmacytoid dendritic cell neoplasm. Am J Surg Pathol. 2019; 43(10): 1429–37.CrossRefGoogle ScholarPubMed
Leroux, D, Mugneret, F, Callanan, M, Radford-Weiss, I, Dastugue, N, Feuillard, J, et al. CD4(+), CD56(+) DC2 acute leukemia is characterized by recurrent clonal chromosomal changes affecting 6 major targets: A study of 21 cases by the Groupe Francais de Cytogenetique Hematologique. Blood. 2002; 99(11): 4154–9.CrossRefGoogle ScholarPubMed
Lucioni, M, Novara, F, Fiandrino, G, Riboni, R, Fanoni, D, Arra, M, et al. Twenty-one cases of blastic plasmacytoid dendritic cell neoplasm: Focus on biallelic locus 9p21.3 deletion. Blood. 2011; 118(17): 4591–4.CrossRefGoogle ScholarPubMed
Menezes, J, Acquadro, F, Wiseman, M, Gomez-Lopez, G, Salgado, RN, Talavera-Casanas, JG, et al. Exome sequencing reveals novel and recurrent mutations with clinical impact in blastic plasmacytoid dendritic cell neoplasm. Leukemia. 2014; 28(4): 823–9.CrossRefGoogle ScholarPubMed
Taylor, J, Kim, SS, Stevenson, KE, Yoda, A, Kopp, N, Louissaint, A, et al. Loss-of-function mutations in the splicing factor ZRSR2 are common in blastic plasmacytoid dendritic cell neoplasm and have male predominance. Blood. 2013; 122(21): 741.CrossRefGoogle Scholar

References

Arber, DA, Brunning, RD, Le Beau, MM, Falini, B, Vardiman, JW, Porwit, A, et al. Acute myeloid leukemia with recurrent genetic abnormalities. In Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC Press; 2017:130–49.Google Scholar
Arber, DA, Brunning, RD, Orazi, A, Porwit, A, Peterson, LC, Thiele, J, et al. Acute myeloid leukemia, NOS. In Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC Press; 2017:156–66.Google Scholar
Arber, DA, Brunning, RD, Orazi, A, Bain, BJ, Porwit, A, Le Beau, MM, Greenberg, PL. Acute myeloid leukemia with myelodysplasia-related changes. In Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC Press; 2017:150–2.Google Scholar
Vardiman, JW, Arber, DA, Brunning, RD, Larson, RA, Matutes, E, Baumann, I, Kvasnicka, HM. Therapy-related myeloid neoplasms. In Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC Press; 2017:153–5.Google Scholar
Pileri, SA, Orazi, A, Falini, B. Myeloid sarcoma. In Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed.Lyon: IARC Press; 2017:167–8.Google Scholar
Matynia, AP, Szankasi, P, Shen, W, Kelley, TW. Molecular genetic biomarkers in myeloid malignancies. Arch Pathol Lab Med. 2015 May; 139(5): 594601.CrossRefGoogle ScholarPubMed
Greenberg, PL, Stone, RM, Bejar, R, Bennett, JM, Bloomfield, CD, Borate, U, et al. Myelodysplastic syndromes, version 2.2015. J Natl Compr Canc Netw. 2015 Mar 1; 13(3): 261–72.CrossRefGoogle ScholarPubMed
Wang, SA. Myelodysplastic syndromes and therapy-related myeloid neoplasms. In Proytcheva, MA, ed. Diagnostic pediatric hematopathology. Cambridge: Cambridge University Press; 2011:253–71.Google Scholar
Coenen, EA, Zwaan, CM, Reinhardt, D, Harrison, CJ, Haas, OA, de Haas, V, et al. Pediatric acute myeloid leukemia with t (8; 16) (p11; p13), a distinct clinical and biological entity: A collaborative study by the International-Berlin-Frankfurt-Münster AML-study group. Blood. 2013 Oct 10;122(15): 2704–13.CrossRefGoogle Scholar
Borowitz, MJ, Bene, MC, Harris, NL, Porwit, A, Matutes, E, Arber, DA. Acute leukemias of ambiguous lineage. In Swerdlow, SH, Campo, E, Harris, NL, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC Press; 2017:180–7.Google Scholar
Döhner, H, Estey, E, Grimwade, D, Amadori, S, Appelbaum, FR, Büchner, T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017 Jan 26; 129(4): 424–47.CrossRefGoogle ScholarPubMed
Alexander, TB, Gu, Z, Iacobucci, I, Dickerson, K, Choi, JK, Xu, B, et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature. 2018 Oct; 562(7727): 373–9.CrossRefGoogle ScholarPubMed

References

Arber, DA, Orazi, A, Hasserjian, RP, Brunning, RD, Le Beau, MM, Porwit, A, et al. Introduction and overview of the classification of myeloid neoplasms. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017:1627.Google Scholar
Vardiman, JW, Melo, JV, Baccarani, M, Radich, JP, Kvasnicka, HM. Chronic myeloid leukaemia, BCR-ABL1-positive. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017:30–6.Google Scholar
Ianotto, JC, Curto-Garcia, N, Lauermanova, M, Radia, D, Kiladjian, JJ, Harrison, CN. Characteristics and outcomes of patients with essential thrombocythemia or polycythemia vera diagnosed before 20 years of age: A systematic review. Haematologica. 2019; 104(8): 1580–8.CrossRefGoogle ScholarPubMed
Thiele, J, Kvasnicka, HM, Orazi, A, Gianelli, U, Tefferi, A, Gisslinger, H, et al. Essential thrombocythaemia. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017:50–3.Google Scholar
Kucine, N, Al-Kawaaz, M, Hajje, D, Bussel, J, Orazi, A. Difficulty distinguishing essential thrombocythaemia from polycythaemia vera in children with JAK2 V617F-positive myeloproliferative neoplasms. Br J Haematol. 2019; 185(1): 136–9.CrossRefGoogle ScholarPubMed
Giona, F, Teofili, L, Capodimonti, S, Laurino, M, Martini, M, Marzella, D, et al. CALR mutations in patients with essential thrombocythemia diagnosed in childhood and adolescence. Blood. 2014; 123(23): 3677–9.CrossRefGoogle ScholarPubMed
Giona, F, Teofili, L, Moleti, ML, Martini, M, Palumbo, G, Amendola, A, et al. Thrombocythemia and polycythemia in patients younger than 20 years at diagnosis: Clinical and biologic features, treatment, and long-term outcome. Blood. 2012; 119(10): 2219–27.CrossRefGoogle ScholarPubMed
Thiele, J, Kvasnicka, HM, Orazi, A, Tefferi, A, Birgegard, G, Barbui, T. Polycythaemia vera. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017:3943.Google Scholar
Teofili, L, Giona, F, Martini, M, Cenci, T, Guidi, F, Torti, L, et al. The revised WHO diagnostic criteria for Ph-negative myeloproliferative diseases are not appropriate for the diagnostic screening of childhood polycythemia vera and essential thrombocythemia. Blood. 2007; 110(9): 3384–6.CrossRefGoogle Scholar
Karow, A, Nienhold, R, Lundberg, P, Peroni, E, Putti, MC, Randi, ML, et al. Mutational profile of childhood myeloproliferative neoplasms. Leukemia. 2015; 29(12): 2407–9.CrossRefGoogle ScholarPubMed
Teofili, L, Giona, F, Martini, M, Cenci, T, Guidi, F, Torti, L, et al. Markers of myeloproliferative diseases in childhood polycythemia vera and essential thrombocythemia. J Clin Oncol. 2007; 25(9): 1048–53.CrossRefGoogle ScholarPubMed
Thiele, J, Kvasnicka, HM, Orazi, A, Gianelli, U, Barbui, T, Barosi, G, et al. Primary myelofibrosis. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017:4450.Google Scholar
DeLario, MR, Sheehan, AM, Ataya, R, Bertuch, AA, Vega, C, 2nd, Webb, CR, et al. Clinical, histopathologic, and genetic features of pediatric primary myelofibrosis: An entity different from adults. Am J Hematol. 2012; 87(5): 461–4.CrossRefGoogle ScholarPubMed
An, W, Wan, Y, Guo, Y, Chen, X, Ren, Y, Zhang, J, et al. CALR mutation screening in pediatric primary myelofibrosis. Pediatr Blood Cancer. 2014; 61(12): 2256–62.CrossRefGoogle ScholarPubMed
Druhan, LJ, McMahon, DP, Steuerwald, N, Price, AE, Lance, A, Gerber, JM, et al. Chronic neutrophilic leukemia in a child with a CSF3 R T618I germ line mutation. Blood. 2016; 128(16): 2097–9.CrossRefGoogle Scholar
Hasle, H. Incidence of essential thrombocythaemia in children. Br J Haematol. 2000; 110(3): 751.CrossRefGoogle ScholarPubMed
Uygun, V, Daloglu, H, Ozturkmen, S, Karasu, G, Avci, Z, Yesilipek, A. Chronic neutrophilic leukemia, an extremely rare cause of neutrophilia in childhood: Cure with hematopoietic stem cell transplantation. Pediatr Transplant. 2018; 22(5): e13199.CrossRefGoogle ScholarPubMed
Bain, BJ, Brunning, RD, Orazi, A, Thiele, J. Chronic neutrophilic leukaemia. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017:37–8.Google Scholar
Kvasnicka, HM, Thiele, J, Orazi, A, Horny, H-P, Bain, BJ. Myeloproliferative neoplasm, unclassifiable. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017:57–9.Google Scholar

References

Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017.Google Scholar
Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008.Google Scholar
Friedman, JM. Neurofibromatosis 1. Adam, MP, Ardinger, HH, Pagon, RA, et al., eds. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2022. www.ncbi.nlm.nih.gov/books/NBK1109” www.ncbi.nlm.nih.gov/books/NBK1109.Google Scholar
Denayer, E, Peeters, H, Sevenants, L, Derbent, M, Fryns, JP, Legius, E. NRAS mutations in Noonan syndrome. Mol Syndromol. 2012; 3: 34–8.CrossRefGoogle ScholarPubMed
Bhambhani, V, Muenke, M. Noonan syndrome. Am Fam Physician. 2014; 89: 3743.Google ScholarPubMed
Digilio, MC, Marino, B. Clinical manifestations of Noonan syndrome. Images Paediatr Cardiol. 2001; 3: 1930.Google ScholarPubMed
Calvo, KR, Price, S, Braylan, RC, Oliveira, JB, Lenardo, M, Fleisher, TA, et al. JMML and RALD (RAS-associated autoimmune leukoproliferative disorder): Common genetic etiology yet clinically distinct entities. Blood. 2015; 125: 2753–8.CrossRefGoogle ScholarPubMed
Ganapathi, KA, Schafernak, KT, Rao, VK, Calvo, KR. Pediatric myelodysplastic/myeloproliferative neoplasms and related diseases. J Hematopathol. 2015; 8: 159–67.CrossRefGoogle Scholar
Lanzarotti, N, Bruneau, J, Trinquand, A, Stoltzenberg, MC, Neven, B, Fregeac, J, et al. RAS-associated lymphoproliferative disease evolves into severe juvenile myelo-monocytic leukemia. Blood. 2014; 123: 1960–3.CrossRefGoogle ScholarPubMed
Niemeyer, CM, Flotho, C. Juvenile myelomonocytic leukemia: Who’s the driver at the wheel? Blood. 2019; 133: 1060–70.CrossRefGoogle ScholarPubMed
Röttgers, S, Gombert, M, Teigler-Schlegel, A, Busch, K, Gamerdinger, U, Slany, R, et al. ALK fusion genes in children with atypical myeloproliferative leukemia. Leukemia. 2010; 24: 1197200.CrossRefGoogle ScholarPubMed

References

Hasserjian, RP OA, Brunning, RD, Germing, U, Le Beau, MM, Porwit, A, et al. Myelodysplastic syndromes: Overview. In Swerdlow, SH, Campo, E, Harris, NL, et al., eds. World Health Organization classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC Press; 2017:97106.Google Scholar
Hasle, H. Myelodysplastic and myeloproliferative disorders of childhood. Hematology Am Soc Hematol Educ Program. 2016; 2016(1): 598604.CrossRefGoogle ScholarPubMed
Niemeyer, CM, Baumann, I. Classification of childhood aplastic anemia and myelodysplastic syndrome. Hematology Am Soc Hematol Educ Program. 2011; 2011: 84–9.Google ScholarPubMed
Babushok, DV, Bessler, M, Olson, TS. Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk Lymphoma. 2016; 57(3): 520–36.CrossRefGoogle ScholarPubMed
Kardos, G, Baumann, I, Passmore, SJ, Locatelli, F, Hasle, H, Schultz, KR, et al. Refractory anemia in childhood: A retrospective analysis of 67 patients with particular reference to monosomy 7. Blood. 2003; 102(6): 19972003.CrossRefGoogle ScholarPubMed
Göhring, G, Michalova, K, Beverloo, HB, Betts, D, Harbott, J, Haas, OA, et al. Complex karyotype newly defined: The strongest prognostic factor in advanced childhood myelodysplastic syndrome. Blood. 2010; 116(19): 3766–9.CrossRefGoogle ScholarPubMed
Pastor, V, Hirabayashi, S, Karow, A, Wehrle, J, Kozyra, EJ, Nienhold, R, et al. Mutational landscape in children with myelodysplastic syndromes is distinct from adults: Specific somatic drivers and novel germline variants. Leukemia. 2017; 31(3): 759–62.CrossRefGoogle ScholarPubMed
Hasle, H, Baumann, I, Bergsträsser, E, Fenu, S, Fischer, A, Kardos, G, et al. The International Prognostic Scoring System (IPSS) for childhood myelodysplastic syndrome (MDS) and juvenile myelomonocytic leukemia (JMML). Leukemia. 2004; 18(12): 2008–14.CrossRefGoogle ScholarPubMed
Baumann, I NC, Bennett, JM. Childhood myelodysplastic syndrome. In Swerdlow, SH, Campo, E, Harris, NL, et al., eds. World Health Organization classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon, IARC Press; 2017:116–20.Google Scholar
Iwafuchi, H, Ito, M. Differences in the bone marrow histology between childhood myelodysplastic syndrome with multilineage dysplasia and refractory cytopenia of childhood without multilineage dysplasia. Histopathology. 2019; 74(2): 239–47.CrossRefGoogle ScholarPubMed
Niemeyer, CM, Baumann, I. Myelodysplastic syndrome in children and adolescents. Semin Hematol. 2008; 45(1): 6070.CrossRefGoogle ScholarPubMed
Olcay, L, Yetgin, S. Disorders mimicking myelodysplastic syndrome and difficulties in its diagnosis. In Fuchs, O., ed. Myelodysplastic syndromes. London, IntechOpen; 2016:4394.Google Scholar
Wong, TN, Ramsingh, G, Young, AL, Miller, CA, Touma, W, Welch, JS, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015; 518(7540): 552–5.CrossRefGoogle ScholarPubMed
Yoshizato, T, Dumitriu, B, Hosokawa, K, Makishima, H, Yoshida, K, Townsley, D, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015; 373(1): 3547.CrossRefGoogle ScholarPubMed
Baumann, I, Führer, M, Behrendt, S, Campr, V, Csomor, J, Furlan, I, et al. Morphological differentiation of severe aplastic anaemia from hypocellular refractory cytopenia of childhood: Reproducibility of histopathological diagnostic criteria. Histopathology. 2012; 61(1): 1017.CrossRefGoogle ScholarPubMed
Olney, HJ LBM. Meylodysplastic syndromes. In Heim, S, Mitelman, F, eds. Cancer cytogenetics. 4th ed. Hoboken, NJ, Wiley Blackwell; 2015:126–52.Google Scholar

References

Swerdlow, SH, Campo, E, Pileri, SA, Harris, NL, Stein, H, Siebert, R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016; 127(20): 2375–90.CrossRefGoogle ScholarPubMed
Babushok, DV, Bessler, M, Olson, TS. Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk Lymphoma. 2016; 57(3): 520–36.CrossRefGoogle ScholarPubMed
Weinberg, OK, Kuo, F, Calvo, KR. Germline predisposition to hematolymphoid neoplasia. Am J Clin Pathol. 2019; 152(3): 258–76.CrossRefGoogle ScholarPubMed
Song, WJ, Sullivan, MG, Legare, RD, Hutchings, S, Tan, X, Kufrin, D, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999; 23(2): 166–75.CrossRefGoogle ScholarPubMed
Smith, ML, Cavenagh, JD, Lister, TA, Fitzgibbon, J. Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med. 2004; 351(23): 2403–7.CrossRefGoogle ScholarPubMed
Pabst, T, Eyholzer, M, Haefliger, S, Schardt, J, Mueller, BU. Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. J Clin Oncol. 2008; 26(31): 5088–93.CrossRefGoogle ScholarPubMed
Taskesen, E, Bullinger, L, Corbacioglu, A, Sanders, MA, Erpelinck, CA, Wouters, BJ, et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: Further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood. 2011; 117(8): 2469–75.CrossRefGoogle Scholar
Tawana, K, Rio-Machin, A, Preudhomme, C, Fitzgibbon, J. Familial CEBPA-mutated acute myeloid leukemia. Semin Hematol. 2017; 54(2): 8793.CrossRefGoogle ScholarPubMed
Maciejewski, JP, Padgett, RA, Brown, AL, Müller-Tidow, C. DDX41-related myeloid neoplasia. Semin Hematol. 2017; 54(2): 94–7.CrossRefGoogle ScholarPubMed
Lewinsohn, M, Brown, AL, Weinel, LM, Phung, C, Rafidi, G, Lee, MK, et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 2016; 127(8): 1017–23.CrossRefGoogle ScholarPubMed
Schlegelberger, B, Heller, PG. RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM). Semin Hematol. 2017; 54(2): 7580.CrossRefGoogle ScholarPubMed
Chisholm, KM, Denton, C, Keel, S, Geddis, AE, Xu, M, Appel, BE, et al. Bone marrow morphology associated with germline RUNX1 mutations in patients with familial platelet disorder with associated myeloid malignancy. Pediatr Dev Pathol. 2019; 22(4): 315–28.CrossRefGoogle ScholarPubMed
Kanagal-Shamanna, R, Loghavi, S, DiNardo, CD, Medeiros, LJ, Garcia-Manero, G, Jabbour, E, et al. Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation. Haematologica. 2017; 102(10): 1661–70.CrossRefGoogle ScholarPubMed
Pippucci, T, Savoia, A, Perrotta, S, Pujol-Moix, N, Noris, P, Castegnaro, G, et al. Mutations in the 5’ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am J Hum Genet. 2011; 88(1): 115–20.CrossRefGoogle ScholarPubMed
Hock, H, Shimamura, A. ETV6 in hematopoiesis and leukemia predisposition. Semin Hematol. 2017; 54(2): 98104.CrossRefGoogle ScholarPubMed
Zhang, MY, Churpek, JE, Keel, SB, Walsh, T, Lee, MK, Loeb, KR, et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet. 2015; 47(2): 180–5.CrossRefGoogle ScholarPubMed
Spinner, MA, Sanchez, LA, Hsu, AP, Shaw, PA, Zerbe, CS, Calvo, KR, et al. GATA2 deficiency: A protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014; 123(6): 809–21.CrossRefGoogle ScholarPubMed
Wlodarski, MW, Hirabayashi, S, Pastor, V, Starý, J, Hasle, H, Masetti, R, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016; 127(11): 1387–97; quiz 518.CrossRefGoogle ScholarPubMed
Nováková, M, Žaliová, M, Suková, M, Wlodarski, M, Janda, A, Froňková, E, et al. Loss of B cells and their precursors is the most constant feature of GATA-2 deficiency in childhood myelodysplastic syndrome. Haematologica. 2016; 101(6): 707–16.CrossRefGoogle ScholarPubMed
Valdez, JM, Nichols, KE, Kesserwan, C. Li-Fraumeni syndrome: A paradigm for the understanding of hereditary cancer predisposition. Br J Haematol. 2017; 176(4): 539–52.CrossRefGoogle ScholarPubMed
Dokal, I. Dyskeratosis congenita. Hematology Am Soc Hematol Educ Program. 2011; 2011: 480–6.Google ScholarPubMed
Savage, SA, Bertuch, AA. The genetics and clinical manifestations of telomere biology disorders. Genet Med. 2010; 12(12): 753–64.CrossRefGoogle ScholarPubMed
Alter, BP. Fanconi anemia and the development of leukemia. Best Pract Res Clin Haematol. 2014; 27 (3-4): 214-21.CrossRefGoogle ScholarPubMed
Burroughs, L, Woolfrey, A, Shimamura, A. Shwachman-Diamond syndrome: A review of the clinical presentation, molecular pathogenesis, diagnosis, and treatment. Hematol Oncol Clin North Am. 2009; 23(2): 233–48.CrossRefGoogle ScholarPubMed
Vlachos, A, Ball, S, Dahl, N, Alter, BP, Sheth, S, Ramenghi, U, et al. Diagnosing and treating Diamond Blackfan anaemia: Results of an international clinical consensus conference. Br J Haematol. 2008; 142(6): 859–76.CrossRefGoogle ScholarPubMed
Skokowa, J, Dale, DC, Touw, IP, Zeidler, C, Welte, K. Severe congenital neutropenias. Nat Rev Dis Primers. 2017; 3: 17032.CrossRefGoogle ScholarPubMed
Narumi, S, Amano, N, Ishii, T, Katsumata, N, Muroya, K, Adachi, M, et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet. 2016; 48(7): 792–7.CrossRefGoogle Scholar
Chen, DH, Below, JE, Shimamura, A, Keel, SB, Matsushita, M, Wolff, J, et al. Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L. Am J Hum Genet. 2016; 98(6): 1146–58.CrossRefGoogle ScholarPubMed
Davidsson, J, Puschmann, A, Tedgård, U, Bryder, D, Nilsson, L, Cammenga, J. SAMD9 and SAMD9L in inherited predisposition to ataxia, pancytopenia, and myeloid malignancies. Leukemia. 2018; 32(5): 1106–15.CrossRefGoogle ScholarPubMed
Germeshausen, M, Ancliff, P, Estrada, J, Metzler, M, Ponstingl, E, Rütschle, H, et al. MECOM-associated syndrome: A heterogeneous inherited bone marrow failure syndrome with amegakaryocytic thrombocytopenia. Blood Adv. 2018; 2(6): 586–96.CrossRefGoogle ScholarPubMed
Ahmed, M, Sternberg, A, Hall, G, Thomas, A, Smith, O, O’Marcaigh, A, et al. Natural history of GATA1 mutations in Down syndrome. Blood. 2004; 103(7): 2480–9.CrossRefGoogle ScholarPubMed
Khan, I, Malinge, S, Crispino, J. Myeloid leukemia in Down syndrome. Crit Rev Oncog. 2011; 16 (1–2): 2536.CrossRefGoogle ScholarPubMed
Labuhn, M, Perkins, K, Matzk, S, Varghese, L, Garnett, C, Papaemmanuil, E, et al. Mechanisms of progression of myeloid preleukemia to transformed myeloid leukemia in children with Down syndrome. Cancer Cell. 2019; 36(2): 123–38.e10.CrossRefGoogle ScholarPubMed

References

Kratz, CP, Stanulla, M, Cavé, H. Genetic predisposition to acute lymphoblastic leukemia: Overview on behalf of the I-BFM ALL Host Genetic Variation Working Group. Eur J Med Genet. 2016; 59(3): 111–15.CrossRefGoogle Scholar
Tran, H, Nourse, J, Hall, S, Green, M, Griffiths, L, Gandhi, MK. Immunodeficiency-associated lymphomas. Blood Rev. 2008; 22(5): 261–81.CrossRefGoogle ScholarPubMed
Shah, S, Schrader, KA, Waanders, E, Timms, AE, Vijai, J, Miething, C, et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet. 2013; 45(10): 1226–31.CrossRefGoogle ScholarPubMed
Churchman, ML, Qian, M, Te Kronnie, G, Zhang, R, Yang, W, Zhang, H, et al. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell. 2018; 33(5): 937–48.CrossRefGoogle ScholarPubMed
Hock, H, Shimamura, A. ETV6 in hematopoiesis and leukemia predisposition. Semin Hematol. 2017; 54(2): 98104.CrossRefGoogle ScholarPubMed
Rampersaud, E, Ziegler, DS, Iacobucci, I, Payne-Turner, D, Churchman, ML, Schrader, KA, et al. Germline deletion of ETV6 in familial acute lymphoblastic leukemia. Blood Adv. 2019; 3(7): 1039–46.CrossRefGoogle ScholarPubMed
Noetzli, L, Lo, RW, Lee-Sherick, AB, Callaghan, M, Noris, P, Savoia, A, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet. 2015; 47(5): 535–8.CrossRefGoogle ScholarPubMed
Valdez, JM, Nichols, KE, Kesserwan, C. Li-Fraumeni syndrome: A paradigm for the understanding of hereditary cancer predisposition. Br J Haematol. 2017; 176(4): 539–52.CrossRefGoogle ScholarPubMed
Comeaux, EQ, Mullighan, CG. TP53 mutations in hypodiploid acute lymphoblastic leukemia. Cold Spring Harb Perspect Med. 2017; 7(3): a026286.CrossRefGoogle ScholarPubMed
Brown, AL, de Smith, AJ, Gant, VU, Yang, W, Scheurer, ME, Walsh, KM, et al. Inherited genetic susceptibility to acute lymphoblastic leukemia in Down syndrome. Blood. 2019; 134(15): 1227–37.CrossRefGoogle ScholarPubMed
Lim, MS, Straus, SE, Dale, JK, Fleisher, TA, Stetler-Stevenson, M, Strober, W, et al. Pathological findings in human autoimmune lymphoproliferative syndrome. Am J Pathol. 1998; 153(5): 1541–50.CrossRefGoogle ScholarPubMed
Xie, Y, Pittaluga, S, Price, S, Raffeld, M, Hahn, J, Jaffe, ES, et al. Bone marrow findings in autoimmune lymphoproliferative syndrome with germline FAS mutation. Haematologica. 2017; 102(2): 364–72.CrossRefGoogle ScholarPubMed
Lucas, CL, Chandra, A, Nejentsev, S, Condliffe, AM, Okkenhaug, K. PI3Kδ and primary immunodeficiencies. Nat Rev Immunol. 2016; 16(11): 702–14.CrossRefGoogle ScholarPubMed
Dulau Florea, AE, Braylan, RC, Schafernak, KT, Williams, KW, Daub, J, Goyal, RK, et al. Abnormal B-cell maturation in the bone marrow of patients with germline mutations in PIK3 CD. J Allergy Clin Immunol. 2017; 139(3): 1032–5.e6.CrossRefGoogle Scholar
Kuehn, HS, Ouyang, W, Lo, B, Deenick, EK, Niemela, JE, Avery, DT, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014; 345(6204): 1623–7.CrossRefGoogle ScholarPubMed
Lo, B, Fritz, JM, Su, HC, Uzel, G, Jordan, MB, Lenardo, MJ. CHAI and LATAIE: New genetic diseases of CTLA-4 checkpoint insufficiency. Blood. 2016; 128(8): 1037–42.CrossRefGoogle ScholarPubMed
Niehues, T, Perez-Becker, R, Schuetz, C. More than just SCID: The phenotypic range of combined immunodeficiencies associated with mutations in the recombinase activating genes (RAG) 1 and 2. Clin Immunol. 2010; 135(2): 183–92.CrossRefGoogle Scholar
Riaz, IB, Faridi, W, Patnaik, MM, Abraham, RS. A systematic review on predisposition to lymphoid (B and T cell) neoplasias in patients with primary immunodeficiencies and immune dysregulatory disorders (inborn errors of immunity). Front Immunol. 2019; 10: 777.CrossRefGoogle Scholar
Coffey, AJ, Brooksbank, RA, Brandau, O, Oohashi, T, Howell, GR, Bye, JM, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998; 20(2): 129–35.CrossRefGoogle Scholar
Gaspar, HB, Sharifi, R, Gilmour, KC, Thrasher, AJ. X-linked lymphoproliferative disease: Clinical, diagnostic and molecular perspective. Br J Haematol. 2002; 119(3): 585–95.CrossRefGoogle ScholarPubMed
Pachlopnik Schmid, J, Canioni, D, Moshous, D, Touzot, F, Mahlaoui, N, Hauck, F, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood. 2011; 117(5): 1522–9.Google ScholarPubMed
Amirifar, P, Ranjouri, MR, Yazdani, R, Abolhassani, H, Aghamohammadi A. Ataxia-telangiectasia: A review of clinical features and molecular pathology. Pediatr Allergy Immunol. 2019; 30(3): 277–88.CrossRefGoogle ScholarPubMed
Suarez, F, Mahlaoui, N, Canioni, D, Andriamanga, C, Dubois d’Enghien, C, Brousse, N, et al. Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: A report from the French national registry of primary immune deficiencies. J Clin Oncol. 2015; 33(2): 202–8.CrossRefGoogle Scholar
Buchbinder, D, Nugent, DJ, Fillipovich, AH. Wiskott-Aldrich syndrome: Diagnosis, current management, and emerging treatments. Appl Clin Genet. 2014; 7: 5566.CrossRefGoogle ScholarPubMed
Cotelingam, JD, Witebsky, FG, Hsu, SM, Blaese, RM, Jaffe, ES. Malignant lymphoma in patients with the Wiskott-Aldrich syndrome. Cancer Invest. 1985; 3(6): 515–22.CrossRefGoogle ScholarPubMed

References

Arber, DA, Orazi, A, Hasserjian, RP, Brunning, RD, Le Beau, MM, Porwit, A, et al. Introduction and overview of the classification of myeloid neoplasms. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017:1627.Google Scholar
Vardiman, JW, Brunning, RD, Arber, DA, Le Beau, MM, Porwit, A, Tefferi, A, et al. Introduction and overview of the classification of the myeloid neoplasms. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008:1830.Google Scholar
Hartmann, K, Escribano, L, Grattan, C, Brockow, K, Carter, MC, Alvarez-Twose, I, et al. Cutaneous manifestations in patients with mastocytosis: Consensus report of the European Competence Network on Mastocytosis; the American Academy of Allergy, Asthma & Immunology; and the European Academy of Allergology and Clinical Immunology. J Allergy Clin Immunol. 2016; 137(1): 3545.CrossRefGoogle ScholarPubMed
Carter, MC, Bai, Y, Ruiz-Esteves, KN, Scott, LM, Cantave, D, Bolan, H, et al. Detection of KIT D816V in peripheral blood of children with manifestations of cutaneous mastocytosis suggests systemic disease. Br J Haematol. 2018; 183(5): 775–82.CrossRefGoogle ScholarPubMed
Carter, MC, Clayton, ST, Komarow, HD, Brittain, EH, Scott, LM, Cantave, D, et al. Assessment of clinical findings, tryptase levels, and bone marrow histopathology in the management of pediatric mastocytosis. J Allergy Clin Immunol. 2015; 136(6): 1673–9 e3.CrossRefGoogle ScholarPubMed
Horny, H-P, Akin, C, Arber, DA, Peterson, LC, Tefferi, A, Metcalfe, DD, et al. Mastocytosis. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017:62–9.Google Scholar
Gadage, VS, Kadam Amare, PS, Galani, KS, Mittal, N. Systemic mastocytosis with associated acute myeloid leukemia with t (8; 21) (q22; q22). Indian J Pathol Microbiol. 2012; 55(3): 409–12.CrossRefGoogle Scholar
Johnson, RC, Savage, NM, Chiang, T, Gotlib, JR, Cherry, AM, Arber, DA, et al. Hidden mastocytosis in acute myeloid leukemia with t(8;21)(q22;q22). Am J Clin Pathol. 2013; 140(4): 525–35.CrossRefGoogle Scholar
Rabade, N, Tembhare, P, Patkar, N, Amare, P, Arora, B, Subramanian, PG, et al. Childhood systemic mastocytosis associated with t (8; 21) (q22; q22) acute myeloid leukemia. Indian J Pathol Microbiol. 2016; 59(3): 407–9.Google Scholar
Mahadeo, KM, Wolgast, L, McMahon, C, Cole, PD. Systemic mastocytosis in a child with t(8;21) acute myeloid leukemia. Pediatr Blood Cancer. 2011; 57(4): 684–7.CrossRefGoogle Scholar
Bain, BJ, Horny, H-P, Hasserjian, RP, Orazi, A. Chronic eosinophilic leukaemia, NOS. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017:54–6.Google Scholar
Patterer, V, Schnittger, S, Kern, W, Haferlach, T, Haferlach, C. Hematologic malignancies with PCM1-JAK2 gene fusion share characteristics with myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB, and FGFR1. Ann Hematol. 2013; 92(6): 759–69.CrossRefGoogle ScholarPubMed
Bain, BJ, Horny, H-P, Arber, DA, Tefferi, A, Hasserjian, RP. Myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB or FGFR1, or with PCM1-JAK2. In Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., eds. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2017:72–9.Google Scholar
Farruggia, P, Giugliano, E, Russo, D, Trizzino, A, Lorenzatti, R, Santoro, A, et al. FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome in childhood: A case report and review of literature. J Pediatr Hematol Oncol. 2014; 36(1): e28e30.CrossRefGoogle ScholarPubMed
Rathe, M, Kristensen, TK, Moller, MB, Carlsen, NL. Myeloid neoplasm with prominent eosinophilia and PDGFRA rearrangement treated with imatinib mesylate. Pediatr Blood Cancer. 2010; 55(4): 730–2.CrossRefGoogle ScholarPubMed
Rives, S, Alcorta, I, Toll, T, Tuset, E, Estella, J, Cross, NC. Idiopathic hypereosinophilic syndrome in children: Report of a 7-year-old boy with FIP1L1-PDGFRA rearrangement. J Pediatr Hematol Oncol. 2005; 27(12): 663–5.CrossRefGoogle ScholarPubMed
Oberley, MJ, Denton, C, Ji, J, Hiemenz, M, Bhojwani, D, Ostrow, D, et al. A neoplasm with FIP1L1-PDGFRA fusion presenting as pediatric T-cell lymphoblastic leukemia/lymphoma without eosinophilia. Cancer Genet. 2017; 216–17: 91–9.Google ScholarPubMed
Reiter, A, Gotlib, J. Myeloid neoplasms with eosinophilia. Blood. 2017; 129(6): 704–14.CrossRefGoogle ScholarPubMed
Abraham, S, Salama, M, Hancock, J, Jacobsen, J, Fluchel, M. Congenital and childhood myeloproliferative disorders with eosinophilia responsive to imatinib. Pediatr Blood Cancer. 2012; 59(5): 928–9.CrossRefGoogle ScholarPubMed
Bielorai, B, Leitner, M, Goldstein, G, Mehrian-Shai, R, Trakhtenbrot, L, Fisher, T, et al. Sustained response to imatinib in a pediatric patient with concurrent myeloproliferative disease and lymphoblastic lymphoma associated with a CCDC88C-PDGFRB fusion gene. Acta Haematol. 2019; 141(2): 119–27.CrossRefGoogle Scholar
Hidalgo-Curtis, C, Apperley, JF, Stark, A, Jeng, M, Gotlib, J, Chase, A, et al. Fusion of PDGFRB to two distinct loci at 3p21 and a third at 12q13 in imatinib-responsive myeloproliferative neoplasms. Br J Haematol. 2010; 148(2): 268–73.CrossRefGoogle Scholar
Brown, LM, Bartolo, RC, Davidson, NM, Schmidt, B, Brooks, I, Challis, J, et al. Targeted therapy and disease monitoring in CNTRL-FGFR1-driven leukaemia. Pediatr Blood Cancer. 2019; 66(10): e27897.CrossRefGoogle ScholarPubMed
Chen, X, Zhang, Y, Li, Y, Lei, P, Zhai, Y, Liu, L. Biphenotypic hematologic malignancy: A case report of the 8p11 myeloproliferative syndrome in a child. J Pediatr Hematol Oncol. 2010; 32(6): 501–3.CrossRefGoogle ScholarPubMed
Dolan, M, Cioc, A, Cross, NC, Neglia, JP, Tolar, J. Favorable outcome of allogeneic hematopoietic cell transplantation for 8p11 myeloproliferative syndrome associated with BCR-FGFR1 gene fusion. Pediatr Blood Cancer. 2012; 59(1): 194–6.CrossRefGoogle ScholarPubMed
Lv, H, Hu, S, Lu, J, Zhai, Q, Zhai, Z, Du, Z, et al. Precursor T-lymphoblastic lymphoma associated with t(8;9)(p11.2;q33): A case report and review of the literature. Acta Haematol. 2018; 139(3): 176–82.CrossRefGoogle Scholar
Wong, WS, Cheng, KC, Lau, KM, Chan, NP, Shing, MM, Cheng, SH, et al. Clonal evolution of 8p11 stem cell syndrome in a 14-year-old Chinese boy: A review of literature of t(8;13) associated myeloproliferative diseases. Leuk Res. 2007; 31(2): 235–8.CrossRefGoogle Scholar
Macdonald, D, Reiter, A, Cross, NC. The 8p11 myeloproliferative syndrome: A distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol. 2002; 107(2): 101–7.CrossRefGoogle ScholarPubMed
Murati, A, Gelsi-Boyer, V, Adelaide, J, Perot, C, Talmant, P, Giraudier, S, et al. PCM1-JAK2 fusion in myeloproliferative disorders and acute erythroid leukemia with t(8;9) translocation. Leukemia. 2005; 19(9): 1692–6.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×