Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T20:21:10.321Z Has data issue: false hasContentIssue false

Section I - Peripheral Blood

Published online by Cambridge University Press:  25 November 2023

Silvia Tse Bunting
Affiliation:
Cleveland Clinic Florida Weston
Xiayuan Liang
Affiliation:
University of Colorado
Michele E. Paessler
Affiliation:
University of Pennsylvania School of Medicine
Satheesh Chonat
Affiliation:
Emory University, Atlanta
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Gulati, G, Song, J, Florea, AD, Gong, J. Purpose and criteria for blood smear scan, blood smear examination, and blood smear review. Ann Lab Med. 2013; 33(1): 17.CrossRefGoogle ScholarPubMed
Bain, BJ. Diagnosis from the blood smear. N Engl J Med. 2005; 353: 498507.CrossRefGoogle ScholarPubMed
Steiner, LA, Gallagher, PG. Erythrocyte disorders in the perinatal period. Semin Perinatol. 2007; 31(4): 254–61.CrossRefGoogle ScholarPubMed
Lawrence, SM, Corriden, R, Nizet, V. Age-appropriate functions and dysfunctions of the neonatal neutrophil. Front Pediatr. 2017; 5: 23.CrossRefGoogle ScholarPubMed
Kühne, T, Imbach, P. Neonatal platelet physiology and pathophysiology. Eur J Pediatr. 1998; 157(2): 8794.CrossRefGoogle ScholarPubMed
Sakka, V, Tsiodras, S, Giamarellos-Bourboulis, EJ, Giamarellou, H. An update on the etiology and diagnostic evaluation of a leukemoid reaction. Eur J Intern Med. 2006; 17(6): 394–8.CrossRefGoogle ScholarPubMed
Aird, WC. The hematologic system as a marker of organ dysfunction in sepsis. Mayo Clin Proc. 2003; 78(7): 869–81.CrossRefGoogle ScholarPubMed
Chonat, S, Graciaa, S, Shin, HS, Newton, JG, Quarmyne, MO, Boudreaux, J, et al. Eculizumab for complement mediated thrombotic microangiopathy in sickle cell disease. Haematologica. 2020. Dec 1; 105(12): 2887–91.Google ScholarPubMed
Reykdal, S, Sham, R, Phatak, P, Kouides, P. Pseudoleukemia following the use of G-CSF. Am J Hematol. 1995; 49(3): 258–9.CrossRefGoogle ScholarPubMed
Nazarullah, A, Liang, C, Villarreal, A, Higgins, RA, Mais, DD. Peripheral blood examination findings in SARS-Co-V-2 infection. AM J Clin Pathol. 2020; 154(3): 319–29.CrossRefGoogle Scholar
Berber, I, Cagascar, O, Sarici, A, Berber, NK, Aydogdu, I, Ulutas, O, et al. Peripheral blood smear findings of COVID-19 patients provide information about the severity of the disease and the duration of the hospital stay. Mediterr J Hematol Infect Dis. 2021; 13(1): e2021009.CrossRefGoogle Scholar
Diorio, C, Henrickson, SE, Vella, LA, McNerney, KO, Chase, J, Burudpakdee, C, et al. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J Clin Invest. 2020; 130(11): 5967–75.CrossRefGoogle ScholarPubMed
Merino, A, Vlagea, A, Molina, A, Egri, N, Laguna, J, Barrera, K, et al. Atypical lymphoid cells circulating in blood in COVID-19 infection: Morphology, immunophenotype and prognosis value. J Clin Pathol. 2020; 75(2): 104–11.Google ScholarPubMed

References

Beutler, E. G6PD deficiency. Blood. 1994; 84(11): 3613–36.CrossRefGoogle ScholarPubMed
Beutler, E, Gelbart, T. Estimating the prevalence of pyruvate kinase deficiency from the gene frequency in the general white population. Blood. 2000; 95(11): 3585–8.CrossRefGoogle ScholarPubMed
Koralkova, P, Van Solinge, WW, Van Wijk, R. Rare hereditary red blood cell enzymopathies associated with hemolytic anemia: Pathophysiology, clinical aspects, and laboratory diagnosis. Int J Lab Hematol. 2014; 36(3): 388–97.CrossRefGoogle ScholarPubMed
Risinger, M, Kalfa, TA. Red cell membrane disorders: Structure meets function. Blood. 2020; 136(11): 1250–61.CrossRefGoogle ScholarPubMed
Caruso, C, Chonat, S. Immune and nonimmune hemolytic anemia. In Kamat, D, Frei-Jones, M, eds. Benign hematologic disorders in children. Cham: Springer; 2021: 5164. https://doi.org/10.1007/978-3-030-49980-8_4.CrossRefGoogle Scholar
Berentsen, S, Barcellini, W. Autoimmune hemolytic anemias. N Engl J Med. 2021 Oct 7; 385(15): 1407–19.CrossRefGoogle ScholarPubMed

References

Lisman, T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018; 371(3): 567–76.CrossRefGoogle ScholarPubMed
Kaplan, J, De Domenico, I, Ward, DM. Chediak-Higashi syndrome. Curr Opin Hematol. 2008; 15(1): 22–9.CrossRefGoogle ScholarPubMed
Jessen, B, Maul-Pavicic, A, Ufheil, H, Vraetz, T, Enders, A, Lehmberg, K, et al. Subtle differences in CTL cytotoxicity determine susceptibility to hemophagocytic lymphohistiocytosis in mice and humans with Chediak-Higashi syndrome. Blood. 2011; 118(17): 4620–9.CrossRefGoogle ScholarPubMed
Liu, Q, Pan, C, Lopez, L, Gao, J, Velez, D, Anaya-O’Brien, S, et al. WHIM syndrome caused by Waldenström’s macroglobulinemia-associated mutation CXCR4 (L329fs). J Clin Immunol. 2016; 36(4): 397405.CrossRefGoogle ScholarPubMed
Badolato, R, Donadieu, J. How I treat warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. Blood. 2017; 130(23): 2491–8.CrossRefGoogle Scholar
Badolato, R, Dotta, L, Tassone, L, Amendola, G, Porta, F, Locatelli, F, et al. Tetralogy of Fallot is an uncommon manifestation of warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. J Pediatr. 2012; 161(4): 763–5.CrossRefGoogle ScholarPubMed
McDermott, DH, Liu, Q, Ulrick, J, Kwatemaa, N, Anaya-O’Brien, S, Penzak, SR, et al. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood. 2011; 118(18): 4957–62.CrossRefGoogle ScholarPubMed
Kunishima, S. [May-Hegglin anomaly: Past and present: MNovel diagnostic test and new concept of the disease]. Rinsho Byori. 2009; 57(1): 54–9.Google ScholarPubMed
Barros Pinto, MP, Marques, G. MYH9 disorders (May-Hegglin anomaly): The role of the blood smear. J Pediatr Hematol Oncol. 2019; 41(3): 228.CrossRefGoogle ScholarPubMed
Clarke, SL, Bowron, A, Gonzalez, IL, Groves, SJ, Newbury-Ecob, R, Clayton, N, et al. Barth syndrome. Orphanet J Rare Dis. 2013; 8: 23.CrossRefGoogle ScholarPubMed
Ikon, N, Ryan, RO. Barth syndrome: Connecting cardiolipin to cardiomyopathy. Lipids. 2017; 52(2): 99108.CrossRefGoogle ScholarPubMed
Diz-Kücükkaya, R, López, JA. Inherited disorders of platelets: Membrane glycoprotein disorders. Hematol Oncol Clin North Am. 2013; 27(3): 613–27.CrossRefGoogle ScholarPubMed
Gunay-Aygun, M, Falik-Zaccai, TC, Vilboux, T, Zivony-Elboum, Y, Gumruk, F, Cetin, M, et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet α-granules. Nat Genet. 2011; 43(8): 732–4.CrossRefGoogle ScholarPubMed
De Jesus Rojas, W, Young, LR. Hermansky-Pudlak syndrome. Semin Respir Crit Care Med. 2020; 41(2): 238–46.Google ScholarPubMed
Huizing, M, Malicdan, MCV, Wang, JA, Pri-Chen, H, Hess, RA, Fischer, R, et al. Hermansky-Pudlak syndrome: Mutation update. Hum Mutat. 2020; 41(3):543–80.CrossRefGoogle ScholarPubMed
LeVine, DN, Brooks, MB. Immune thrombocytopenia (ITP): Pathophysiology update and diagnostic dilemmas. Vet Clin Pathol. 2019; 48 Suppl 1: 1728.CrossRefGoogle ScholarPubMed
Massaad, MJ, Ramesh, N, Geha, RS. Wiskott-Aldrich syndrome: A comprehensive review. Ann N Y Acad Sci. 2013; 1285: 2643.CrossRefGoogle ScholarPubMed
Chiasakul, T, Cuker, A. Clinical and laboratory diagnosis of TTP: An integrated approach. Hematology Am Soc Hematol Educ Program. 2018; 2018(1): 530–8.Google ScholarPubMed
George, JN. Congenital TTP: Toward a turning point. Blood. 2019; 133(15): 1615–17.CrossRefGoogle ScholarPubMed

References

Graciaa, S, Russell, R, Chonat, S. Complement mediated hemolytic anemia secondary to plasmodium ovale infection in a child. J Pediatr Hematol Oncol. 2019; 41(7): 557–8.CrossRefGoogle ScholarPubMed
Tsai, MH, Yu, SS, Chan, YK, Jen, CC. Blood smear image based malaria parasite and infected-erythrocyte detection and segmentation. J Med Syst. 2015; 39(10): 118.CrossRefGoogle ScholarPubMed
Pandey, S, Cetin, N. Peripheral smear clues for Bordetella pertussis. Blood. 2013; 122(25): 4012.CrossRefGoogle ScholarPubMed
Hamilton, KS, Standaert, SM, Kinney, MC. Characteristic peripheral blood findings in human ehrlichiosis. Mod Pathol. 2004; 17(5): 512–17.CrossRefGoogle ScholarPubMed
Dapul, H, Laraque, D. Lead poisoning in children. Adv Pediatr. 2014; 61(1): 313–33.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×