from Part III - Observing through the atmosphere
Published online by Cambridge University Press: 05 December 2012
Introduction
The construction of large ground-based optical and infrared telescopes is driven by the desire to obtain astronomical measurements of both higher sensitivity and higher angular resolution. With each increase in telescope diameter the former goal, that of increased sensitivity, has been achieved. In contrast, the angular resolution of large telescopes (D > 1m), using traditional imaging, is limited not by the diffraction limit (θ ∼ λ/D), but rather by turbulence in the atmosphere. This is typically 1″, a factor of 10–20 times worse than the theoretical limit of a 4-meter telescope at near-infrared wavelengths. This angular resolution handicap has led to both space-based and ground-based solutions. With the launching of the Hubble Space Telescope (HST), a 2.4-m telescope equipped with both optical and infrared detectors, the astronomical community has obtained diffraction-limited images. These optical images, which have an angular resolution of ˜0.″1, have led to exciting new discoveries, such as the detection of a black hole in M87 (Ford et al. 1994) and protostellar disks around young stars in Orion (O'Dell et al. 1993, O'Dell and Wen 1994). However, HST has a modest-sized mirror diameter compared to the 8–10 meter mirror diameters of the largest ground-based telescope facilities.
With the development of techniques to overcome the wavefront distortions introduced by the Earth's atmosphere, diffraction-limited observations from the ground have become possible. These techniques cover a wide range of complexity and hence expense. Speckle imaging, which provided the earliest and simplest approach, is described in Sections 10.1 and 23.3.1 and adaptive optics, which has more recently become scientifically productive and which is a much more powerful technique, is discussed in Section 10.2.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.