Integrating Predictive Analytics with Patient Decision Making
from Part I - Personalized Medicine
Published online by Cambridge University Press: 21 April 2022
To address the challenge of limited training data for machine learning models in the healthcare domain, we advocate for human-in-the-loop machine learning, which involves domain experts in an inter- active process of developing predictive models. Interpretability offers a promising way to facilitate this interaction. We describe an approach that offers a simple decision tree interpretation for any complex blackbox machine learning model. In a case study with physicians, we find that they were able to use the interpretation to discover an unexpected causal issue in a personalized patient risk score trained on electronic medical record data. To account for dynamics in disease progression, we advocate for building decision models that integrate predictions of the disease progression at the individual patient level with system models capturing the dynamic operational environments. We describe a case study on hospital inpatient management, showing how to build a Markov decision framework that leverages predictive analytics on patient readmission risk and prescribes the optimal set of patients to be discharged each day.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.