Book contents
- Frontmatter
- Preface
- Contents
- 1 Introduction
- 2 Linear Programming Relaxations of the Symmetric TSP
- 3 Linear Programming Relaxations of the Asymmetric TSP
- 4 Duality, Cuts, and Uncrossing
- 5 Thin Trees and Random Trees
- 6 Asymmetric Graph TSP
- 7 Constant-Factor Approximation for the Asymmetric TSP
- 8 Algorithms for Subtour Cover
- 9 Asymmetric Path TSP
- 10 Parity Correction of Random Trees
- 11 Proving the Main Payment Theorem for Hierarchies
- 12 Removable Pairings
- 13 Ear-Decompositions, Matchings, and Matroids
- 14 Symmetric Path TSP and T-Tours
- 15 Best-of-Many Christofides and Variants
- 16 Path TSP by Dynamic Programming
- 17 Further Results, Related Problems
- 18 State of the Art, Open Problems
- Bibliography
- Index
1 - Introduction
Published online by Cambridge University Press: 14 November 2024
- Frontmatter
- Preface
- Contents
- 1 Introduction
- 2 Linear Programming Relaxations of the Symmetric TSP
- 3 Linear Programming Relaxations of the Asymmetric TSP
- 4 Duality, Cuts, and Uncrossing
- 5 Thin Trees and Random Trees
- 6 Asymmetric Graph TSP
- 7 Constant-Factor Approximation for the Asymmetric TSP
- 8 Algorithms for Subtour Cover
- 9 Asymmetric Path TSP
- 10 Parity Correction of Random Trees
- 11 Proving the Main Payment Theorem for Hierarchies
- 12 Removable Pairings
- 13 Ear-Decompositions, Matchings, and Matroids
- 14 Symmetric Path TSP and T-Tours
- 15 Best-of-Many Christofides and Variants
- 16 Path TSP by Dynamic Programming
- 17 Further Results, Related Problems
- 18 State of the Art, Open Problems
- Bibliography
- Index
Summary
In this introductory chapter, we will formally introduce the main variants of the traveling salesman problem, symmetric and asymmetric, explain a very useful graph-theoretic view based on Euler’s theorem, and describe the classical simple approximation algorithms: Christofides’ algorithm and the cycle cover algorithm.
We also introduce basic notation, in particular from graph theory, and some fundamental combinatorial optimization problems.
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2024