Book contents
- Frontmatter
- Preface
- Contents
- 1 Introduction
- 2 Linear Programming Relaxations of the Symmetric TSP
- 3 Linear Programming Relaxations of the Asymmetric TSP
- 4 Duality, Cuts, and Uncrossing
- 5 Thin Trees and Random Trees
- 6 Asymmetric Graph TSP
- 7 Constant-Factor Approximation for the Asymmetric TSP
- 8 Algorithms for Subtour Cover
- 9 Asymmetric Path TSP
- 10 Parity Correction of Random Trees
- 11 Proving the Main Payment Theorem for Hierarchies
- 12 Removable Pairings
- 13 Ear-Decompositions, Matchings, and Matroids
- 14 Symmetric Path TSP and T-Tours
- 15 Best-of-Many Christofides and Variants
- 16 Path TSP by Dynamic Programming
- 17 Further Results, Related Problems
- 18 State of the Art, Open Problems
- Bibliography
- Index
4 - Duality, Cuts, and Uncrossing
Published online by Cambridge University Press: 14 November 2024
- Frontmatter
- Preface
- Contents
- 1 Introduction
- 2 Linear Programming Relaxations of the Symmetric TSP
- 3 Linear Programming Relaxations of the Asymmetric TSP
- 4 Duality, Cuts, and Uncrossing
- 5 Thin Trees and Random Trees
- 6 Asymmetric Graph TSP
- 7 Constant-Factor Approximation for the Asymmetric TSP
- 8 Algorithms for Subtour Cover
- 9 Asymmetric Path TSP
- 10 Parity Correction of Random Trees
- 11 Proving the Main Payment Theorem for Hierarchies
- 12 Removable Pairings
- 13 Ear-Decompositions, Matchings, and Matroids
- 14 Symmetric Path TSP and T-Tours
- 15 Best-of-Many Christofides and Variants
- 16 Path TSP by Dynamic Programming
- 17 Further Results, Related Problems
- 18 State of the Art, Open Problems
- Bibliography
- Index
Summary
While many exact and approximation algorithms work with a linear programming formulation (often a relaxation), the dual LP often plays a key role in the algorithms and their analysis. In this chapter, we analyze the structure of optimum dual solutions for the classical LP relaxations of the TSP, but also for T-joins, and deduce properties like laminarity.
By an efficient uncrossing algorithm and by analyzing extreme point solutions, we obtain optimum primal and dual solutions with linear-size support. Since the primal constraints and dual variables correspond to cuts, enumerating all cuts with a small value is a useful tool in several algorithms.
- Type
- Chapter
- Information
- Approximation Algorithms for Traveling Salesman Problems , pp. 66 - 86Publisher: Cambridge University PressPrint publication year: 2024