Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T20:57:44.546Z Has data issue: false hasContentIssue false

Nonlinear elasticity

Published online by Cambridge University Press:  02 February 2010

Peter Howell
Affiliation:
University of Oxford
Gregory Kozyreff
Affiliation:
University of Oxford
John Ockendon
Affiliation:
University of Oxford
Get access

Summary

Introduction

In Chapters 2 and 3, we have analysed solutions of the steady and unsteady Navier equations, which were derived in Chapter 1 under the two assumptions that underpin linear elasticity.

First, we assumed that we could discard the nonlinear terms in the relation (1.4.5) between strain and displacement. Geometrically nonlinear elasticity concerns large deformations in which these terms are not negligible, so the strain is a nonlinear function of the displacement gradients. This inevitably leads to the further complication that the Lagrangian and Eulerian variables may no longer be approximated as equal.

The second assumption behind linear elasticity is that the stress is a linear function of the strain. This is a reasonable approximation for small strains, but it does not work well for materials such as rubber, which can suffer large strain and still remain elastic (see Treloar, 2005). Models for such materials require mechanically nonlinear elasticity, in which the stress is a nonlinear function of the strain.

As indicated in Section 1.6, the fundamental difficulty to be confronted is that the balance of stresses is performed in the deformed state, while the constitutive relation must be imposed relative to the reference configuration. As a first step in addressing this difficulty, we will revisit the concepts of stress and strain. We will show how they may both be expressed in a Lagrangian frame of reference, allowing a self-consistent constitutive law to be imposed between them. For mechanically nonlinear materials, such laws are far less easy to specify than (1.7.6), and we will see that great care has to be taken to avoid models that allow unphysical behaviour.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×