Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T12:32:05.206Z Has data issue: false hasContentIssue false

8 - Lighting with nanostructures

from Part II - Advances and challenges

Published online by Cambridge University Press:  23 November 2018

Sergey V. Gaponenko
Affiliation:
National Academy of Sciences of Belarus
Hilmi Volkan Demir
Affiliation:
Nanyang Technological University, Singapore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Applied Nanophotonics , pp. 229 - 277
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

Dimitrov, S., and Haas, H. (2015). Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge University Press.Google Scholar
Docampo, P., and Bein, T. (2016). A long-term view on perovskite optoelectronics. Acc Chem Res, 49, 339346.Google Scholar
Erdem, T., and Demir, H. V. (2013). Color science of nanocrystal quantum dots for lighting and displays. Nanophotonics, 2, 5781.CrossRefGoogle Scholar
Gaponenko, S. V. (1998). Optical Properties of Semiconductor Nanocrystals. Cambridge University Press.Google Scholar
Gaponenko, S. V. (2010). Introduction to Nanophotonics. Cambridge University Press.Google Scholar
Khan, T. Q., and Bodrogi, P. (eds.) (2015). LED Lighting: Technology and Perception. John Wiley & Sons.Google Scholar
Klimov, V. I. (ed.) (2010). Nanocrystal Quantum Dots. CRC Press.Google Scholar
Pietryga, J. M., Park, Y. S., Lim, J., et al. (2016). Spectroscopic and device aspects of nanocrystal quantum dots. Chem Rev, 116, 1051310622.Google Scholar
Schubert, E. F. (2006). Light-Emitting Diodes. Cambridge University Press.Google Scholar
Su, L., Zhang, X., Zhang, Y., and Rogach, A. L., (2016). Recent progress in quantum dot based white light-emitting devices. Top Curr Chem, 374, 125.Google Scholar
Wood, V., and Bulović, V. (2010). Colloidal quantum dot light-emitting devices. Nano Rev, 1, 52025210.Google Scholar
Wood, V., and Bulović, V. (2013). Colloidal quantum dot light-emitting devices. In Konstantatos, G. and Sargent, E. H. (eds.), Colloidal Quantum Dot Optoelectronics and Photovoltaics. Cambridge University Press.Google Scholar
Yang, X., Zhao, D., Leck, K. S., et al. (2012). Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Adv Mater, 24, 41804185.Google Scholar

References

Anc, M. J., Pickett, N. L., Gresty, N. C., Harris, J. A., and Mishra, K. C. (2013). Progress in non-Cd quantum dot development for lighting applications. ECS J Solid State Sci Technol, 2, R3071R3082.Google Scholar
Bae, W. K., Kwak, J., Park, J. W., et al. (2009). Highly efficient green-light-emitting diodes based on CdSe@ZnS quantum dots with a chemical-composition gradient. Adv Mater, 21, 16901694.Google Scholar
Bae, W. K., Lim, J., Lee, D., et al. (2014). R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices. Adv Mater, 26, 63876393.CrossRefGoogle ScholarPubMed
Chen, Y., Vela, J., Htoon, H., et al. (2008). “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J Amer Chem Soc, 130, 50265027.Google Scholar
Chepic, D. I., Efros, Al. L., Ekimov, A. I., et al. (1990). Auger ionization of semiconductor quantum drops in a glass matrix. J Lumin, 47, 113127.Google Scholar
CIE (1931). Commission Internationale de l’Eclairage Proceedings, 1931. Cambridge University Press.Google Scholar
CIE (2016). The Use of Terms and Units in Photometry: Implementation of the CIE System for Mesopic Photometry. CIE. Available at http://files.cie.co.at/841_CIE_TN_004-2016.pdf (accessed December 20, 2016).Google Scholar
Cragg, G. E., and Efros, A. L. (2010). Suppression of Auger processes in confined structures. Nano Letters, 10, 313317.CrossRefGoogle ScholarPubMed
Docampo, P., and Bein, T. (2016). A long-term view on perovskite optoelectronics. Acc Chem Res, 49, 339346.Google Scholar
Erchak, A. A., Ripin, D. J., Fan, S., et al. (2001). Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode. Appl Phys Lett, 78, 563565.CrossRefGoogle Scholar
Gonzalez-Carrero, S., Galian, R. E., and Pérez-Prieto, J. (2016). Organic–inorganic and all-inorganic lead halide nanoparticles [Invited]. Opt Expr, 24, A285A301.CrossRefGoogle ScholarPubMed
Guzatov, D. V., Gaponenko, S. V., and Demir, H. V. (2018). Plasmonic enhancement of electroluminescence. AIP Advances, 8, 015324.CrossRefGoogle Scholar
Hines, M. A., and Guyot-Sionnest, P. (1996). Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J Phys Chem, 100, 468471.Google Scholar
Jang, E., Jun, S., Jang, H., et al. (2010). White-light-emitting diodes with quantum dot color converters for display backlights. Adv Mater, 22, 30763080.Google Scholar
Khurgin, J. B., Sun, G., and Soref, R. A. (2008). Electroluminescence enhancement using metal nanoparticles. Appl Phys Lett, 93, 021120.CrossRefGoogle Scholar
Lim, J., Bae, W. K., Lee, D., et al. (2011). InP–ZnSeS core–composition gradient shell quantum dots with enhanced stability. Chem Mater, 23, 44594463.CrossRefGoogle Scholar
Mahler, B., Spinicelli, P., Buil, S., et al. (2008). Towards non-blinking colloidal quantum dots. Nature Mater, 7, 659664.CrossRefGoogle ScholarPubMed
Priolo, F., Gregorkiewicz, T., Galli, M., and Krauss, T. F. (2014). Silicon nanostructures for photonics and photovoltaics. Nature Nanotechn, 9, 1926.CrossRefGoogle ScholarPubMed
Reckmeier, C. J., Schneider, J., Susha, A. S., and Rogach, A. L. (2016). Luminescent colloidal carbon dots: optical properties and effects of doping [Invited]. Opt Expr, 24, A312A340.Google Scholar
Robel, I., Gresback, R., Kortshagen, U., Schaller, R. D., and Klimov, V. I. (2009). Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys Rev Lett, 102, 177404.Google Scholar
Shi, H., Zhu, C., Huang, J., et al. (2014). Luminescence properties of YAG:Ce, Gd phosphors synthesized under vacuum condition and their white LED performances. Opt Mater Expr, 4, 649655.Google Scholar
Shirasaki, Y., Supran, G. J., Bawendi, M. G., and Bulović, V. (2013). Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 7, 1323.Google Scholar
Song, W. S., and Yang, H. (2012). Fabrication of white light-emitting diodes based on solvothermally synthesized copper indium sulfide quantum dots as color converters. Appl Phys Lett, 100, 183104.CrossRefGoogle Scholar
Talapin, D. V., Mekis, I., Götzinger, S., et al. (2004). CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core–shell–shell nanocrystals. J Phys Chem B, 108, 1882618831.Google Scholar
Xing, J., Yan, F., Zhao, Y., et al. (2016). High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano, 10, 66236630.Google Scholar
Yang, X., Hernandez-Martinez, P. L., Dang, C., et al. (2015). Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer. Adv Opt Mater, 3, 14391445.Google Scholar
Zan, F., and Ren, J. (2012). Gas–liquid phase synthesis of highly luminescent InP/ZnS core/shell quantum dots using zinc phosphide as a new phosphorus source. J Mater Chem, 22, 17941799.Google Scholar
Zhang, F., Zhong, H., Chen, C., et al. (2015). Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 9, 45334542.Google Scholar
Zhmakin, A. I. (2011). Enhancement of light extraction from light emitting diodes. Phys Rep, 498, 189241.Google Scholar
Zhou, J., and Xia, Zh (2015). Luminescence color tuning of Ce3+, Tb3+ and Eu3+ codoped and tri-doped BaY2Si3O10 phosphors via energy transfer. J Mater Chem, C3, 75527560.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×