Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T16:46:57.305Z Has data issue: false hasContentIssue false

Chapter 4 - Statistical Natural Language Processing

Published online by Cambridge University Press:  05 June 2013

Get access

Summary

Introduction

The application of statistical methods to natural language processing has been remarkably successful over the past two decades. The wide availability of text and speech corpora has played a critical role in their success since, as for all learning techniques, these methods rely heavily on data. Many of the components of complex natural language processing systems, for example, text normalizers, morphological or phonological analyzers, part-of-speech taggers, grammars or language models, pronunciation models, context-dependency models, acoustic Hidden-Markov Models (HMMs), are statistical models derived from large data sets using modern learning techniques. These models are often given as weighted automata or weighted finite-state transducers either directly or as a result of the approximation of more complex models.

Weighted automata and transducers are the finite automata and finite-state transducers described in Chapter 1 Section 1.5 with the addition of some weight to each transition. Thus, weighted finite-state transducers are automata in which each transition, in addition to its usual input label, is augmented with an output label from a possibly different alphabet, and carries some weight. The weights may correspond to probabilities or log-likelihoods or they may be some other costs used to rank alternatives. More generally, as we shall see in the next section, they are elements of a semiring set. Transducers can be used to define a mapping between two different types of information sources, for example, word and phoneme sequences.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×