from Part III - ‘Solid’ Earth Applications: From the Surface to the Core
Published online by Cambridge University Press: 20 June 2023
Abstract: Although many geophysical observations and models are available for the Tibetan Plateau (TP) and its surroundings regions, our knowledge and understanding of the uplift and deformation in the TP caused by the India–Asia collision is still incomplete. Due to the environmental complexity, the gravity method is indispensable to investigate the evolution of the TP. This study concentrates on the Moho depth and crustal density structure in the TP from gravity inversion of Bouguer anomalies. The results show Moho deeper than 60 km in the regions of the TP, suggesting thickening of the crust. Two sinking Moho belts in the southern and northern plateau regions and the linearly increasing Moho depth from the Indian Plate (IP) to the Indus-Yalu suture can be used to infer the crustal fold that has resulted from the India–Asia collision. On the other hand, the density structures show the lower density is commonly found in the crust and the underlying lithospheric mantle beneath the TP, contrasting with the high density in the surrounding blocks. Notably, the high density of the IP is observed underneath the Himalayas, suggesting that the Indian lithosphere extends northward, at least reaching the Indus-Yalu suture. Corresponding to the sinking Moho belts, the crustal densities in these regions present relatively low, which may be evidence for the absence of the eclogites in the lower crust beneath the Himalayas and the Lhasa terrane. In contrast, the relatively high densities underneath the Bangong-Nujiang suture are potentially contributions to the interpretation of the eclogitised lower crust.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.