Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-02T20:42:49.787Z Has data issue: false hasContentIssue false

17 - Evidence for camouflage involving senses other than vision

Published online by Cambridge University Press:  05 June 2012

Graeme D. Ruxton
Affiliation:
University of Glasgow
Martin Stevens
Affiliation:
University of Cambridge
Sami Merilaita
Affiliation:
Åbo Akademi University, Finland
Get access

Summary

The aim of this chapter is to review the evidence that organisms have adaptations that have been selected because they confer difficulty of detection by enemies (principally predators and parasites) that primarily detect their prey using sensory systems other than vision. That is, I will review the empirical evidence for non-visual crypsis and explore how our understanding of visual crypsis can be expanded to non-visual sensory systems. The review is arranged in terms of different sensory modalities.

Type
Chapter
Information
Animal Camouflage
Mechanisms and Function
, pp. 330 - 350
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlborn, B. K. 2004. Zoological Physics. Berlin: Springer.Google Scholar
Akino, T., Knapp, J. J., Thomas, J. A. & Elmes, G. W. 1999. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proceedings of the Royal Society, Series B, 266, 1419–1426.CrossRefGoogle Scholar
Akino, T., Nakamura, K. I. & Wakamura, S. 2004. Diet-induced chemical phytomimesis by twig-like caterpillars of Biston robustumButler (Lepidoptera: Geometridae). Chemoecology, 14, 165–174.Google Scholar
Arch, V. S. & Narins, P. M. 2008. ‘Silent’ signals: selective forces acting on ultrasound communication in terrestrial vertebrates. Animal Behaviour, 76, 1423–1428.CrossRefGoogle Scholar
Barber, J. R. & Conner, W.E. 2006. Tiger moth responses to a simulated bat attack: timing and duty cycle. Journal of Experimental Biology, 209, 2637–2650.CrossRefGoogle ScholarPubMed
Barrett-Lennard, L. G, Ford, J. K. B. & Heise, K. A. 1996. The mixed blessing of echolocation: differences in sonar use by fishing-eating and mammal-eating killer whales. Animal Behaviour, 51, 553–565.CrossRefGoogle Scholar
Bayly, K. L. & Evans, C.S. 2003. Dynamic changes in alarm call structure: a strategy for reducing conspicuousness to avian predators? Behaviour, 140, 353–369.CrossRefGoogle Scholar
Belwood, J. J. & Morris, G. K. 1987. Bat predation and its influence on calling behaviour in neotropical katydids. Science, 238, 64–67.CrossRefGoogle ScholarPubMed
Briskie, J. V., Martin, P. R. & Martin, T. E. 1999. Nest predation and the evolution of nestling begging calls. Proceedings of the Royal Society, Series B, 266, 2153–2159.CrossRefGoogle Scholar
Brown, C.H. 1982. Ventroloquial and locatable vocalisation in birds. Zeitschrift für Tierpsychologie, 59, 338–350.CrossRefGoogle Scholar
Brownell, P. & Farley, R.D. 1979. Orientation to vibrations in sand by the nocturnal scorpion Parusoctonus mesaenis: mechanism of target location. Journal of Comparative Physiology A, 131, 31–38.CrossRefGoogle Scholar
Cervo, R., Dani, F. R., Cotoneschi, C.et al. 2008. Why are the larvae of the social parasite wasp Polistes sulcifer not removed from the host nest? Behavioral Ecology and Sociobiology, 62, 1319–1331.CrossRefGoogle Scholar
Coles, R. B., Lewis, D.B., Hill, K. G., Hutchings, M. E. & Gower, D. M 1980. Directional hearing in the Japanese quail (Coturnix coturnix japonica). II. Cochlear physiology. Journal of Experimental Biology, 86, 153–170.Google Scholar
Collins, S.P. & Whitehead, D. 2004. The functional roles of passive electroreception in non-electric fish. Animal Biology, 54, 1–25.CrossRefGoogle Scholar
Curio, E. 1976. The Ethology of Predation. Berlin: Springer.CrossRefGoogle Scholar
Deecke, V. B., Ford, J. K. B. & Slater, P.J.B. 2005. The vocal behaviour of mammal-eating killer whales: communication with costly signals. Animal Behaviour, 69, 395–405.CrossRefGoogle Scholar
Denny, M.W. 1993. Air and Water: The Biology and Physics of Life's Media. Princeton, NJ: Princeton University Press.Google Scholar
Dettner, K. & Liepert, C. 1994. Chemical mimicry and camouflage. Annual Reviews in Entomology, 39, 129–154.CrossRefGoogle Scholar
Devetak, I., Mencinger-Vračko, B., Devetak, M., Marhl, M. & Špernjak, A. 2007. Sand as a medium for transmission of vibratory signals of prey in antlions Euroleon nostras (Neuroptera: Myrmeleontidae). Physiological Entomology, 32, 268–274.CrossRefGoogle Scholar
Digweed, S. M., Fedigan, L. M. & Rendell, D. 2005. Variable specificity in the anti-predator vocalizations and behaviour of the white-faced capuchin Cebus capucinus. Behaviour, 142, 997–1021.CrossRefGoogle Scholar
Djemai, I., Casas, J. & Magal, C. 2001. Matching host reactions to parasitoid wasp vibrations. Proceedings of the Royal Society, Series B, 268, 2403–2408.CrossRefGoogle ScholarPubMed
Fishlyn, D. A. & Phillips, D. W. 1980. Chemical camouflaging and behavioral defenses against predatory seastar by three species of gastropods from the surfgrass Phyllospadix community. Biological Bulletin, 158, 34–48.CrossRefGoogle Scholar
Haine, O. S., Ridd, P.V. & Rowe, R.J. 2001. Range of electrosensory detection of prey by Caracharhinus melanopterus and Himantura granulata. Marine and Freshwater Research, 52, 291–296.CrossRefGoogle Scholar
Haskell, D.G. 1999. The effect of predation on begging-call evolution in nestling wood warblers. Animal Behaviour, 57, 893–901.CrossRefGoogle ScholarPubMed
Hill, K. G., Lewis, D. B., Hutchings, M. E. & Coles, R.B. 1980. Directional hearing in the Japanese quail (Coturnix coturnix japonica). I. Acoustic properties of the auditory system. Journal of Experimental Biology, 86, 135–151.Google Scholar
Hill, P. S. M. 2008. Vibrational Communication in Animals. Cambridge, MA: Harvard University Press.Google Scholar
Hill, P. S. M. 2009. How do animals use substrate-borne vibrations as an information source? Naturwissenschaften, 96, 1355–1371.CrossRefGoogle ScholarPubMed
Holt, D. E. & Johnston, C. E. 2009. Signalling without risk of illegitimate receivers: do predators respond to the acoustic signals of Cyrinella (Cyprinidae). Environmental Biology of Fishes, 84, 347–357.CrossRefGoogle Scholar
Holzman, R. & Wainwright, P. C. 2009. How to surprise a copepod: strike kinematics reduce hydrodynamic disturbance and increase steal in suction-feeding fish. Limnology and Oceanography, 2009, 2201–2212.CrossRefGoogle Scholar
Hopkins, C. D. 1973. Lightning as background noise for communication among electric fish. Nature, 242, 268–270.CrossRefGoogle Scholar
Hudson, P.J., Dobson, A.P. & Newborn, D. 1992. Do parasites make prey vumnerable to predation? Red grouse and parasites. Journal of Animal Ecology, 61, 681–692.CrossRefGoogle Scholar
Jefferson, T. A., Stacey, P. J. & Baird, R. W. 1991. A review of killer whale interactions with other marine mammals: predation to co-existence. Mammal Review, 21, 151–180.CrossRefGoogle Scholar
Jeral, J. M., Breed, M. D. & Hibbell, B. E. 1997. Thief ants have reduced quantities of cuticular compounds in a ponerine ant, Ectatomma ruidum. Physiological Entomology, 22, 207–211.CrossRefGoogle Scholar
Johnson, C.A., Phelan, L. & Herbers, J.M. 2008. Stealth and reproductive dominance in a rare parasitic ant. Animal Behaviour, 76, 1965–1976.CrossRefGoogle Scholar
Jones, K.J. & Hill, W. L. 2001. Auditory perception of hawks and owls for passerine bird calls. Ethology, 107, 717–726.CrossRefGoogle Scholar
Kalmijn, A. J. 1971. The electric senses of sharks and rays. Journal of Experimental Biology, 55, 371–383.Google Scholar
Kiørboe, T. 2008. A Mechanistic Approach to Plankton Ecology. Princeton, NJ: Princeton University Press.Google Scholar
Kiørboe, T. & Visser, A. W. 1999. Predator and prey perception in copepods due to hydromechanical signals. Marine Ecology Progress Series, 179, 81–95.CrossRefGoogle Scholar
Klump, G. M. & Shalter, M. D. 1984. Acoustic behaviour of birds and mammals in the predator context. Zeitschrift für Tierpsychologie, 66, 189–226.CrossRefGoogle Scholar
Klump, G. M., Kretzschmar, E. & Curio, E. 1986. The hearing of an avian predator and its prey. Behavioral Ecology and Sociobiology, 18, 317–323.CrossRefGoogle Scholar
Knudsen, E.I. 1975. Spatial aspects of the electric fields generated by weakly electric fish. Journal of Comparative Physiology, 99, 103–118.CrossRefGoogle Scholar
Krama, T., Krams, I. & Igaune, K. 2008. Effects of cover on loud trill-call and soft seet-call use in the crested tit Parus cristatus. Ethology, 114, 656–661.CrossRefGoogle Scholar
Krams, I. 2001. Communication in crested tits and the risk of predation. Animal Behaviour, 61, 1065–1068.CrossRefGoogle Scholar
Kroiss, J., Schmitt, T. & Strom, E. 2009. Low level of cuticular hydrocarbons in a parasitoid of a solitary digger wasp and its potential for concealment. Entomological Science, 12, 9–16.CrossRefGoogle Scholar
Lambardi, D., Dani, F. R., Turillazzi, S. & Boomsma, J. J. 2007. Chemical mimicry in an incipient leaf-cutting ant social parasite. Behavioural Ecology and Sociobiology, 61, 843–851.CrossRefGoogle Scholar
Lenoir, A., D'Ettorre, P., Errard, C. & Hefetz, A. 2001. Chemical ecology and social parasitism in ants. Annual Reviews in Entomology, 46, 573–599.CrossRefGoogle ScholarPubMed
Lorenzi, M. C., Cervo, R., Zacchi, F., Turillazzi, S. & Bagneres, A.-G. 2004. Dynamics of the chemical mimicry in the social parasitic wasp Polistes semenowi (Hymenoptera: Vespidae). Parasitology, 129, 643–651.CrossRefGoogle Scholar
Luczukovich, J. J., Daniel, H. J. III, Hutchinson, M.et al. 2000. Sounds of sex and death in the sea: bottlenose dolphin whistles suppress mating choruses of silver perch. Bioacoustics, 10, 323–334.CrossRefGoogle Scholar
Magrath, R. D., Pitcher, B. J. & Dalzill, A. H. 2007. How to be fed but not eaten: nestling responses to parental food calls and the sound of predator footsteps. Animal Behaviour, 74, 1117–1129.CrossRefGoogle Scholar
Manger, P.R. & Pettigrew, J.D. 1995. Electroreception and the feeding-behaviour of platypus (Ornithorynchus aanatinus, Monotremata, Mammalia). Philosophical Transactions of the Royal Society, Series B, 347, 359–381.CrossRefGoogle Scholar
Marler, P. 1955. Characteristics of some animal cells. Nature, 176, 6–8.CrossRefGoogle Scholar
Martin, S. J., Takahashi, J.-I., Masato, O. & Drijhout, F.P. 2008. Is the social parasite Vespa dybowskii using chemical transparency to get her eggs accepted? Journal of Insect Physiology, 54, 700–707.CrossRefGoogle ScholarPubMed
McDonald, P. G., Wilson, D. R. & Evans, C. S. 2009. Nestling begging increases predation risk, regardless of spectral characteristics or avian mobbing. Behavioral Ecology, 20, 821–829.CrossRefGoogle Scholar
McGowan, D. W. & Kajiura, S. M. 2009. Electroreception in the eurythaline stingray, Dasyatis sabina. Journal of Experimental Biology, 212, 1544–1552.CrossRefGoogle ScholarPubMed
Meyhöfer, R., Casas, J. & Dorn, S. 1994. Host location by a parasitoid using leafminer vibrations: characterising the vibrational signals produced by the leafmining host. Physiological Entomology, 19, 349–359.CrossRefGoogle Scholar
Miller, L.A. & Surlykke, A. 2001. How some insects detect and avoid being eaten by bats: tactics and countertactics of prey and predator. BioScience, 51, 570–581.CrossRefGoogle Scholar
Moreno-Rueda, G. 2007. Is there empirical evidence for the cost of begging? Journal of Ethology, 25, 215–222.CrossRefGoogle Scholar
Morisaka, T. & Connor, R. C. 2007. Predation by killer whales (Orcinus orca) and the evolution of whistle loss and narrow-band high-frequency clicks in odontocetes. Journal of Evolutionary Biology, 20, 1439–1458.CrossRefGoogle ScholarPubMed
Munk, P. 1992. Foraging behaviour and prey size spectra of larval herring Clupea harengus. Marine Ecology Progress Series, 80, 149–158.CrossRefGoogle Scholar
Munk, P. & Kiørboe, T. 1985. Feeding behaviour and swimming activity of larval herring (Clupea harengus) in relation to density of copepod nauplii. Marine Ecology Progress Series, 24, 15–21.CrossRefGoogle Scholar
Page, R. A. & Ryan, M. J. 2008. The effect of signal complexity on localisation performance in bats that localise frog calls. Animal Behaviour, 76, 761–769.CrossRefGoogle Scholar
Portugal, A.H.A. (1996). Defesa química em larvas de borboleta Mechanitis polymnia (Nymphalidae: Ithomiinae). MS thesis, Instituo de Biologia, Universidade Estadual de Campinas, Brazil.
Quinn, J.L., Whittingham, M.J., Butler, S.J. & Cresswell, W. 2006. Noise, predation risk compensation and vigilance in chaffinchFringilla coelebs. Journal of Avian Biology, 37, 601–608.CrossRefGoogle Scholar
Raffa, K. F. & Dahlsten, D.L. 1995. Differential responses among natural enemies and prey to bark beetle pheromones. Oecologia, 102, 17–23.CrossRefGoogle ScholarPubMed
Raffa, K. F., Hobson, K. R., LaFontaine, S. & Aukema, B. H. 2007. Can chemical communication be cryptic? Adaptations by herbivores to natural enemies exploiting prey semiochemistry. Oecologia, 153, 1009–1019.CrossRefGoogle ScholarPubMed
Ratcliffe, J. M. & Fullard, J. H. 2005. The adaptive function of moth clicks against echolocating bats: an experimental and synthetic approach. Journal of Experimental Biology, 208, 4689–4698.CrossRefGoogle ScholarPubMed
Redondo, T. & De Reyna, L. A. 1988. Locatability of begging calls in nesting altricial birds. Animal Behaviour, 36, 653–661.CrossRefGoogle Scholar
Reneerkens, J., Piersma, T. & Damste, J. S. 2005. Switch to diester preen waxes may reduce avian nest predation by mammalian predators using olfactory cues. Journal of Experimental Biology, 208, 4199–4202.CrossRefGoogle ScholarPubMed
Richardson, J.V., Borden, J.H. & Hollingdale, J. 1972. Morphology of unique sensillum placodeum on the antennae of Coeloides brunneri (Hymenoptera: Braconidae). Canadian Journal of Zoology, 50, 909–913.CrossRefGoogle Scholar
Ryan, M. J., Tuttle, M. D. & Rand, A. S. 1982. Bat predation and sexual advertisement in a neotropical anuran. American Naturalist, 119, 136–139.CrossRefGoogle Scholar
Schevill, W. E. 1964. Underwater sounds of cetaceans. In Marine Bioacoustics, ed. Tavolga, W.N.Oxford, UK: Pergamon Press, pp. 307–316.Google Scholar
Silveira, H. C. P., Oliveira, P. S. & Trigo, J. S. 2010. Attracting predators without falling prey: chemical camouflage protects honeydew-producing treehoppers from ant predation. American Naturalist, 175, 261–268.CrossRefGoogle ScholarPubMed
Spangler, H. G. 1984. Silence as a defence against predatory bats in two species of calling insects. Southwestern Naturalist, 29, 481–488.CrossRefGoogle Scholar
Stoddard, P. K. & Markham, M. R. 2008. Signal cloaking by electric fish. BioScience, 58, 415–425.CrossRefGoogle ScholarPubMed
Tarsitano, M., Jackson, R.R. & Kircher, W.H. 2000. Signals and signal choices made by the araneophagic jumping spider Portia fimbriata while hunting orb-weaving web spiders Zgiella x-notata and Zosis geniculatus. Ethology, 106, 595–615.CrossRefGoogle Scholar
Tillett, B.J., Tibbetts, I. R. & Whithead, D. L. 2008. Foraging behaviour and prey discrimination in the bluespotted maskray, Dasyatis kuhlii. Journal of Fish Biology, 73, 1554–1561.CrossRefGoogle Scholar
Viitasalo, M., Kiorboe, T., Flinkman, J.et al. 1998. Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities. Marine Ecology Progress Series, 175, 129–142.CrossRefGoogle Scholar
Wilson, D.R. & Hare, J. F. 2006. The adaptive utility of Richardson's ground squirrel (Spermophilus richardsonii) short-range ultrasonic alarm calls. Canadian Journal of Zoology, 84, 1322–1330.CrossRefGoogle Scholar
Witkin, S.R. 1977. The importance of directional sound radiation in avian vocalisation. Condor, 79, 490–493.CrossRefGoogle Scholar
Wood, S.R., Sanderson, K.J. & Evans, C. S. 2000. Perception of terrestrial and aerial alarm calls by honeyeaters and falcons. Australian Journal of Zoology, 48, 127–134.CrossRefGoogle Scholar
Zuk, M., Rotenberry, J. T. & Simmons, L. W. 1998. Calling songs of field crickets (Teleogryllus oceanicus) with and without phonotactic parasitoid infection. Evolution, 52, 166–171.Google ScholarPubMed
Zuk, M., Rotenberry, J. T. & Simmons, L. W. 2001. Geographical variation in calling song of the field cricket Teleogryllus oceanicus: the importance of spatial scale. Journal of Evolutionary Biology, 14, 731–741.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×