from Part VI - Classical statistics
Published online by Cambridge University Press: 05 June 2012
Individual atoms have magnetic moments due to the orbits and spins of the electrically charged particles within them. Interaction with imposed external magnetic fields tends to produce some ordering of these magnetic moments. But this ordering is opposed by thermal motion, which tends to randomize their orientations. It is the balance of these two opposing influences that determines the magnetization of most materials.
Diamagnetism, paramagnetism, and ferromagnetism
Consider what happens when we place a material in an external magnetic field. According to Lenz's law, any change in magnetic field through a current loop produces an electromotive force that opposes the intruding field. On an atomic level, each electron orbit is a tiny current loop. The external field places an extra force on the orbiting electrons, which causes small modifications of their orbits and a slight magnetization of the material in the direction opposite to the external field (homework). This response is called “diamagnetism” and is displayed by all materials.
In addition, there is a tendency for the tiny atomic magnets to change their orientations to line up with an imposed external field (Figure 17.1). This response is called “paramagnetism.” It gives the material a net magnetic moment in a direction parallel to the imposed external magnetic field. Not all materials are paramagnetic, because in some materials the atoms have no net magnetization to begin with and in others the atomic magnets cannot change their orientations. But most materials are paramagnetic, and their paramagnetism dominates over diamagnetism.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.