Book contents
- Frontmatter
- Contents
- Preface
- 1 A Brief Introduction to Special Relativity and Light
- 2 An Introduction to Relativistic Kinematics, Kinetics and Energy
- 3 Relativity and Electromagnetic Fields
- 4 Electromagnetic Wave Interactions with Plasma and Other Matter
- 5 Particle Motion and Radiation in Electric and Magnetic Fields
- 6 Photon and Particle Distribution Functions
- 7 Radiation Emission, Absorption, and Scatter in Plasmas
- 8 Collisional Processes
- 9 Relativistic Optics
- 10 Solutions to Selected Exercises
- Appendix A Lorentz Invariant Quantities
- Appendix B Modified Bessel Functions of the Second Kind
- Appendix C The Chemical Potential Variation with Density
- References
- Index
5 - Particle Motion and Radiation in Electric and Magnetic Fields
Published online by Cambridge University Press: 10 November 2022
- Frontmatter
- Contents
- Preface
- 1 A Brief Introduction to Special Relativity and Light
- 2 An Introduction to Relativistic Kinematics, Kinetics and Energy
- 3 Relativity and Electromagnetic Fields
- 4 Electromagnetic Wave Interactions with Plasma and Other Matter
- 5 Particle Motion and Radiation in Electric and Magnetic Fields
- 6 Photon and Particle Distribution Functions
- 7 Radiation Emission, Absorption, and Scatter in Plasmas
- 8 Collisional Processes
- 9 Relativistic Optics
- 10 Solutions to Selected Exercises
- Appendix A Lorentz Invariant Quantities
- Appendix B Modified Bessel Functions of the Second Kind
- Appendix C The Chemical Potential Variation with Density
- References
- Index
Summary
The Lagrangian for a charge in electric and magnetic fields is presented. The acceleration of charges in particle accelerators, in laser-produced plasmas and in the production of cosmic rays is described. Emission from charges in magnetic fields is treated in some detail. Synchrotron radiation, undulators, and free electron laser radiation output is examined.
- Type
- Chapter
- Information
- Publisher: Cambridge University PressPrint publication year: 2022