Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T18:24:04.504Z Has data issue: false hasContentIssue false

1 - Introduction – The Nature of High-Performance Computation

Published online by Cambridge University Press:  12 December 2009

Ronald W. Shonkwiler
Affiliation:
Georgia Institute of Technology
Lew Lefton
Affiliation:
Georgia Institute of Technology
Get access

Summary

The need for speed. Since the beginning of the era of the modern digital computer in the early 1940s, computing power has increased at an exponential rate (see Fig. 1). Such an exponential growth is predicted by the well-known “Moore's Law,” first advanced in 1965 by Gordon Moore of Intel, asserting that the number of transistors per inch on integrated circuits will double every 18 months. Clearly there has been a great need for ever more computation. This need continues today unabated. The calculations performed by those original computers were in the fields of ballistics, nuclear fission, and cryptography. And, today these fields, in the form of computational fluid dynamics, advanced simulation for nuclear testing, and cryptography, are among computing's Grand Challenges.

In 1991, the U.S. Congress passed the High Performance Computing Act, which authorized The Federal High Performance Computing and Communications (HPCC) Program. A class of problems developed in conjunction with the HPCC Program was designated “Grand Challenge Problems” by Dr. Ken Wilson of Cornell University. These problems were characterized as “fundamental problems in science and engineering that have broad economic or scientific impact and whose solution can be advanced by applying high performance computing techniques and resources.” Since then various scientific and engineering committees and governmental agencies have added problems to the original list. As a result, today there are many Grand Challenge problems in engineering, mathematics, and all the fundamental sciences. The ambitious goals of recent Grand Challenge efforts strive to

  • build more energy-efficient cars and airplanes,

  • design better drugs,

  • forecast weather and predict global climate change,

  • improve environmental modeling,

  • […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×