Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T23:08:17.107Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  08 December 2022

Alexander Schmeding
Affiliation:
Nord Universitet, Norway
HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the 'Save PDF' action button.

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC-ND 4.0 https://creativecommons.org/cclicenses/

References

Abbati, M. C., Cirelli, R., Mania’, A., and Michor, P. 1989. The Lie group of automorphisms of a principal bundle. J. Geom. Phys., 6(2), 215235.Google Scholar
Abraham, R., Marsden, J. E., and Ratiu, T. 1988. Manifolds, Tensor Analysis, and Applications. Second ed. Applied Mathematical Sciences, vol. 75. Springer, New York.Google Scholar
Agrachev, A. A., and Caponigro, M. 2009. Controllability on the group of diffeomorphisms. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 26(6), 25032509.Google Scholar
Alzaareer, H., and Schmeding, A. 2015. Differentiable mappings on products with different degrees of differentiability in the two factors. Expo. Math., 33(2), 184222.Google Scholar
Amiri, H., Glöckner, H., and Schmeding, A. 2020. Lie groupoids of mappings taking values in a Lie groupoid. Arch. Math., 56(5), 307356.Google Scholar
Amiri, H., and Schmeding, A. 2019. A differentiable monoid of smooth maps on Lie groupoids. J. Lie Theory, 29(4), 11671192.Google Scholar
Amiri, H., and Schmeding, A. 2019. Linking Lie groupoid representations and representations of infinite-dimensional Lie groups. Ann. Global Anal. Geom., 55(4), 749775.Google Scholar
Arnold, V. 1966. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble), 16(1), 319361.Google Scholar
Atkin, C. J. 1975. The Hopf-Rinow theorem is false in infinite dimensions. Bull. London Math. Soc., 7(3), 261266.Google Scholar
Atkin, C. J. 1997. Geodesic and metric completeness in infinite dimensions. Hokkaido Math. J., 26(1), 161.Google Scholar
Baez, J. C. 1997. An introduction to n-categories. Pages 1–33 of: Category Theory and Computer Science. 7th International Conference, CTCS ’97, Santa Margherita Ligure, Italy, September 4–6, 1997. Proceedings. Springer, Berlin.Google Scholar
Banyaga, A. 1988. On isomorphic classical diffeomorphism groups. II. J. Differ. Geom., 28(1), 2335.Google Scholar
Bastiani, A. 1964. Applications différentiables et variétés différentiables de dimension infinie. J. Analyse Math., 13, 1114.Google Scholar
Bauer, M., and Modin, K. 2020. Semi-invariant Riemannian metrics in hydrodynamics. Calc. Var. Partial Differ. Equ., 59(2), 25. Id/No 65.Google Scholar
Bauer, M., Bruveris, M., and Michor, P. W. 2014. Homogeneous Sobolev metric of order one on diffeomorphism groups on real line. J. Nonlinear Sci., 24(5), 769808.Google Scholar
Bauer, M., Bruveris, M., and Michor, P. W. 2014. Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vis., 50(1–2), 6097.Google Scholar
Baum, H. 2014. Eichfeldtheorie. Eine Einführung in die Differentialgeometrie auf Faserbündeln. Second revised ed. Springer Spektrum, Heidelberg.Google Scholar
Beggs, E. J. 1987. The de Rham complex on infinite-dimensional manifolds. Quart. J. Math. Oxford II Ser., 38(150), 131154.Google Scholar
Belti¸ta˘, D., Golin´ski, T., and Tumpach, A.-B. 2018. Queer Poisson brackets. J. Geom. Phys., 132, 358362.Google Scholar
Belti¸ta˘, D., Golin´ski, T., Jakimowicz, G., and Pelletier, F. 2019. Banach–Lie groupoids and generalized inversion. J. Funct. Anal., 276(5), 15281574.Google Scholar
Bertram, W., Glöckner, H., and Neeb, K.-H. 2004. Differential calculus over general base fields and rings. Expo. Math., 22(3), 213282.Google Scholar
Bogfjellmo, G., and Schmeding, A. 2017. The Lie group structure of the Butcher group. Found. Comput. Math., 17(1), 127159.Google Scholar
Bogfjellmo, G., and Schmeding, A. 2018. The geometry of characters of Hopf algebras. Pages 159185 of: Computation and Combinatorics in Dynamics, Stochastics and Control. The Abel Symposium, Rosendal, Norway, August 16–19, 2016. Selected papers. Springer, Cham.Google Scholar
Bogfjellmo, G., Dahmen, R., and Schmeding, A. 2016. Character groups of Hopf algebras as infinite-dimensional Lie groups. Ann. Inst. Fourier, 66(5), 21012155.Google Scholar
Boman, J. 1967. Differentiability of a function and of its compositions with functions of one variable. Math. Scand., 20, 249268.Google Scholar
Bonic, R., and Frampton, J. 1966. Smooth functions on Banach manifolds. J. Math. Mech., 15, 877898.Google Scholar
Bourbaki, N. 1998. Lie groups and Lie algebras. Chapters 1–3. Elements of Mathematics. Springer, Berlin. Translated from the French, reprint of the 1989 English translation.Google Scholar
Bridson, M. R., and Haefliger, A. 1999. Metric Spaces of Non-Positive Curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin.Google Scholar
Bröcker, T., and Tom Dieck, T. 1995. Representations of Compact Lie Groups. Graduate Texts in Mathematics, vol. 98. Springer, New York. Translated from the German manuscript, corrected reprint of the 1985 translation.Google Scholar
Bruveris, M. 2018. The L2-metric on C∞(M, N). arXiv:1804.00577Google Scholar
Bruveris, M. 2019. Riemannian Geometry for Shape Analysis and Computational Anatomy. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore. Pages 1544. www.worldscientific.com/doi/pdf/10.1142/9789811200137_0002Google Scholar
Celledoni, E., Eslitzbichler, M., and Schmeding, A. 2016. Shape analysis on Lie groups with applications in computer animation. J. Geom. Mech., 8(3), 273304.Google Scholar
Celledoni, E., Eidnes, S., and Schmeding, A. 2018. Shape analysis on homogeneous spaces: a generalised SRVT framework. Pages 187220 of: Computation and Combinatorics in Dynamics, Stochastics and Control. The Abel Symposium, Rosendal, Norway, August 16–19, 2016. Selected Papers. Springer, Cham.Google Scholar
Chevyrev, I., and Kormilitzin, A. 2016. A Primer on the Signature Method in Machine Learning. arXiv:1603.03788Google Scholar
Curry, C., Ebrahimi-Fard, K., Manchon, D., and Munthe-Kaas, H. Z. 2020. Planarly branched rough paths and rough differential equations on homogeneous spaces. J. Differ. Equations, 269(11), 97409782.Google Scholar
Dahmen, R., and Schmeding, A. 2020. Lie groups of controlled characters of combinatorial Hopf algebras. Ann. Inst. Henri Poincaré D, Comb. Phys. Interact. (AIHPD), 7(3), 395456.Google Scholar
del Hoyo, M., and Fernandes, R. L. 2018. Riemannian metrics on Lie groupoids. J. Reine Angew. Math., 735, 143173.Google Scholar
do Carmo, M. P. 1992. Riemannian Geometry. Translated from the Portuguese by Francis Flaherty. Birkhäuser, Boston, MA.Google Scholar
Dobrowolski, T. 1995. Every infinite-dimensional Hilbert space is real-analytically isomorphic with its unit sphere. J. Funct. Anal., 134(2), 350362.Google Scholar
Duistermaat, J. J., and Kolk, J. A. C. 2000. Lie Groups. Springer, Berlin.Google Scholar
Ebin, D. G. 2015. Groups of diffeomorphisms and fluid motion: reprise. Pages 99– 105 of: Geometry, Mechanics, and Dynamics. The Legacy of Jerry Marsden. Selected papers presented at a focus program, Fields Institute for Research in Mathematical Sciences, Toronto, Canada, July 2012. Springer, New York.Google Scholar
Ebin, D. G., and Marsden, J. 1970. Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math., 92(2), 102163.Google Scholar
Eells, Jr., J. 1966. A setting for global analysis. Bull. Amer. Math. Soc., 72, 751807.Google Scholar
Eftekharinasab, K., and Petrusenko, V. 2020. Finslerian geodesics on Fréchet manifolds. Bull. Transilv. Univ. Bras. III: Math. Inform. Phys., 13(62), 129152. doi:10.31926/but.mif.2020.13.62.1.11Google Scholar
Engelking, R. 1989. General Topology. Second ed. Sigma Series in Pure Mathematics, vol. 6. Heldermann Verlag, Berlin. Translated from the Polish by the author.Google Scholar
Filipkiewicz, R. P. 1982. Isomorphisms between diffeomorphism groups. Ergodic Theory Dynam. Systems, 2(2), 159171 (1983).Google Scholar
Folland, G. B., and Stein, E. M. 1982. Hardy Spaces on Homogeneous Groups. Vol. 28. Princeton University Press, Princeton, NJ.Google Scholar
Friz, P. K., and Hairer, M. 2020. A Course on Rough Paths. With an Introduction to Regularity Structures. Second ed. Springer, Cham.Google Scholar
Friz, P. K., and Victoir, N. B. 2010. Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Vol. 120. Cambridge University Press, Cambridge.Google Scholar
Frölicher, A., and Kriegl, A. 1988. Linear Spaces and Differentiation Theory. Pure and Applied Mathematics (New York). John Wiley & Sons, Chichester.Google Scholar
Gallot, S., Hulin, D., and Lafontaine, J. 2004. Riemannian Geometry. Third ed. Springer, Berlin.Google Scholar
Glöckner, H., and Neeb, K.-H. Infinite-Dimensional Lie Groups. in preparation.Google Scholar
Glöckner, H. 2002. Infinite-dimensional Lie groups without completeness restrictions. Pages 4359 of: Geometry and Analysis on Finiteand Infinite-Dimensional Lie Groups (Bedlewo, 2000). Banach Center Publications, vol. 55. Polish Acad. Sci. Inst. Math., Warsaw.Google Scholar
Glöckner, H. 2006. Discontinuous non-linear mappings on locally convex direct limits. Publ. Math. Debrecen, 68(1–2), 113.Google Scholar
Glöckner, H. 2006. Implicit functions from topological vector spaces to Banach spaces. Israel J. Math., 155, 205252.Google Scholar
Glöckner, H. 2007. Implicit Functions from Topological Vector Spaces to Fréchet Spaces in the Presence of Metric Estimates. arXiv:math/0612673v5Google Scholar
Glöckner, H. 2016. Fundamentals of Submersions and Immersions between Infinite-Dimensional Manifolds. arXiv:1502.05795v4Google Scholar
Glöckner, H., and Neeb, K.-H. 2012. When unit groups of continuous inverse algebras are regular Lie groups. Studia Math., 211(2), 95109.Google Scholar
Glöckner, H., and Schmeding, A. 2022. Manifolds of Mappings on Cartesian Products. Ann Glob Anal Geom 61, 359398. doi:10.1007/s10455-021-09816-yGoogle Scholar
Gray, W. S., Palmstrøm, M., and Schmeding, A. 2022. Continuity of Formal Power Series Products in Nonlinear Control Theory. Foundations of Computational Mathematics, doi:10.1007/s10208-022-09560-0Google Scholar
Grong, E., Markina, I., and Vasil’ev, A. 2015. Sub-Riemannian geometry on infinitedimensional manifolds. J. Geom. Anal., 25(4), 24742515.Google Scholar
Gubinelli, M. 2010. Ramification of rough paths. J. Differ. Equations, 248(4), 693721.Google Scholar
Hamilton, R. S. 1982. The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.), 7(1), 65222.Google Scholar
Hilgert, J., and Neeb, K.-H. 2012. Structure and Geometry of Lie Groups. Springer Monographs in Mathematics. Springer, New York.Google Scholar
Hirsch, M. W. 1994. Differential Topology. Graduate Texts in Mathematics. Vol. 33. Springer, New York. Corrected reprint of the 1976 original.Google Scholar
Hjelle, E. O., and Schmeding, A. 2017. Strong topologies for spaces of smooth maps with infinite-dimensional target. Expo. Math., 35(1), 1353.Google Scholar
Hofmann, K. H., and Neeb, K.-H. 2009. Pro-Lie groups which are infinite-dimensional Lie groups. Math. Proc. Camb. Philos. Soc., 146(2), 351378.Google Scholar
Hofmann, K. H., and Morris, S. A. 2007. The Lie Theory of Connected Pro-Lie Groups. A Structure Theory for Pro-Lie Algebras, Pro-Lie Groups, and Connected Locally Compact Groups. Vol. 2. European Mathematical Society (EMS), Zürich.Google Scholar
Husemoller, D. H. 1993. Fibre Bundles. Third ed. Springer, Berlin.Google Scholar
Iglesias-Zemmour, P. 2013. Diffeology. Mathematical Surveys and Monographs, vol. 185. American Mathematical Society, Providence, RI.Google Scholar
Inci, H., Kappeler, T., and Topalov, P. 2013. On the Regularity of the Composition of Diffeomorphisms. American Mathematical Society, Providence, RI.Google Scholar
Jarchow, H. 1981. Locally Convex Spaces. B. G. Teubner, Stuttgart.Google Scholar
Keller, H. H. 1974. Differential Calculus in Locally Convex Spaces. Lecture Notes in Mathematics, vol. 417. Springer, Berlin, New York.Google Scholar
Khesin, B., and Wendt, R. 2009. The Geometry of Infinite-Dimensional Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. Third Series. A Series of Modern Surveys in Mathematics], vol. 51. Springer, Berlin.Google Scholar
Klingenberg, W. P. A. 1995. Riemannian Geometry. Second ed. De Gruyter Studies in Mathematics, vol. 1. Walter de Gruyter & Co., Berlin.Google Scholar
Kolev, B. 2008. Geometric differences between the Burgers and the Camassa–Holm equations. J. Nonlinear Math. Phys., 15(suppl. 2), 116132.Google Scholar
Kriegl, A., and Michor, P. W. 1997. The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence, RI.Google Scholar
Lang, S. 1999. Fundamentals of Differential Geometry. Graduate Texts in Mathematics, vol. 191. Springer, New York.Google Scholar
Larotonda, G. 2019. Metric geometry of infinite-dimensional Lie groups and their homogeneous spaces. Forum Math., 31(6), 15671605.Google Scholar
Le Donne, E., and Züst, R. 2021. Space of signatures as inverse limits of Carnot groups. ESAIM, Control Optim. Calc. Var., 27, 14. Id/No 37.Google Scholar
Lee, J. M. 2013. Introduction to Smooth Manifolds. Second ed. Graduate Texts in Mathematics, vol. 218. Springer, New York.Google Scholar
Lenells, J. 2007. The Hunter–Saxton equation describes the geodesic flow on a sphere. J. Geom. Phys., 57(10), 20492064.Google Scholar
Lenells, J. 2008. The Hunter–Saxton equation: a geometric approach. SIAM J. Math. Anal., 40(1), 266277.Google Scholar
Lindenstrauss, J., and Tzafriri, L. 1971. On the complemented subspaces problem. Isr. J. Math., 9, 263269.Google Scholar
Lyons, T., and Victoir, N. 2007. An extension theorem to rough paths. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 24(5), 835847.Google Scholar
Lyons, T. J. 1998. Differential equations driven by rough signals. Rev. Mat. Iberoam., 14(2), 215310.Google Scholar
Mackenzie, K. C. H. 2005. General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press, Cambridge.Google Scholar
Maeda, Y., Rosenberg, S., and Torres-Ardila, F. 2015. The geometry of loop spaces. I: H s-Riemannian metrics. Int. J. Math., 26(4), 26. Id/No 1540002.Google Scholar
Magnani, V., and Tiberio, D. 2020. A remark on vanishing geodesic distances in infinite dimensions. Proc. Am. Math. Soc., 148(8), 36533656.Google Scholar
Manchon, D. 2008. Hopf algebras in renormalisation. Pages 365427 of: Handbook of Algebra. Volume 5. Elsevier/North-Holland, Amsterdam.Google Scholar
Margalef-Roig, J., and Outerelo Domínguez, E. 1992. Differential Topology. North-Holland Publishing Co., Amsterdam.Google Scholar
Marquis, T., and Neeb, K.-H. 2018. Half-Lie groups. Transform. Groups, 23(3), 801840.Google Scholar
Maurelli, M., Modin, K., and Schmeding, A. 2019. Incompressible Euler Equations with Stochastic Forcing: A Geometric Approach. arXiv:1909.09982Google Scholar
McAlpin, J. 1965. Infinite-Dimensional Manifolds and Morse Theory. PhD thesis, Columbia University.Google Scholar
Meinrencken, E. 2017. Lie Groupoids and Lie Algebroids. www.math.toronto.edu/mein/teaching/MAT1341_LieGroupoids/Groupoids.pdfGoogle Scholar
Meise, R., and Vogt, D. 1997. Introduction to Functional Analysis. Oxford Graduate Texts in Mathematics, vol. 2. The Clarendon Press, Oxford University Press, New York. Translated from the German by M. S. Ramanujan and revised by the authors.Google Scholar
Meyer, R., and Zhu, C. 2015. Groupoids in categories with pretopology. Theory Appl. Categ., 30, 19061998.Google Scholar
Micheli, M., Michor, P. W., and Mumford, D. 2013. Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds. Izv. Ross. Akad. Nauk Ser. Mat., 77(3), 109138.Google Scholar
Michor, P. W., and Vizman, C. 1994. n-transitivity of certain diffeomorphism groups. Acta Math. Univ. Comenian. (N.S.), 63(2), 221225.Google Scholar
Michor, P. W. 1980. Manifolds of Differentiable Mappings. Shiva Mathematics Series, vol. 3. Shiva Publishing, Nantwich.Google Scholar
Michor, P. W. 2020. Manifolds of mappings for continuum mechanics. Pages 375 of: Geometric Continuum Mechanics, Segev, Reuven and Epstein, Marcelo (eds). Advances in Continuum Mechanics, vol. 42. Birkhäuser, Boston, MA.Google Scholar
Michor, P. W., and Mumford, D. 2006. Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS), 8(1), 148.Google Scholar
Milnor, J. 1982. On Infinite-Dimensional Lie Groups. Preprint, Institute for Advanced Study, Princeton.Google Scholar
Milnor, J. 1984. Remarks on infinite-dimensional Lie groups. Pages 10071057 of: Relativity, Groups and Topology, II (Les Houches, 1983). North-Holland, Amsterdam.Google Scholar
Mio, W., Srivastava, A., and Joshi, S. 2007. On shape of plane elastic curves. Int. J. Comput. Vis., 73, 307324.Google Scholar
Modin, K. 2019. Geometric hydrodynamics: from Euler, to Poincaré, to Arnold. Pages 71–91 of: 13th Young Researchers Workshop on Geometry, Mechanics and Control. Three Mini-Courses, Coimbra, Portugal, December 6–13, 2018. Universidade de Coimbra, Departamento de Matemática, Coimbra.Google Scholar
Moerdijk, I., and Pronk, D. A. 1997. Orbifolds, sheaves and groupoids. K-Theory, 12(1), 321.Google Scholar
Moerdijk, I., and Mrcˇun, J. 2003. Introduction to Foliations and Lie Groupoids. Cambridge University Press, Cambridge.Google Scholar
Müller, O. 2008. A metric approach to Fréchet geometry. J. Geom. Phys., 58(11), 14771500.Google Scholar
Murua, A., and Sanz-Serna, J. M. 2017. Word series for dynamical systems and their numerical integrators. Found. Comput. Math., 17(3), 675712.Google Scholar
Neeb, K.-H. 2005. Monastir Summer School: Infinite-Dimensional Lie Groups. Third cycle. Monastir (Tunisie).Google Scholar
Neeb, K.-H. 2006. Towards a Lie theory of locally convex groups. Jpn. J. Math., 1(2), 291468.Google Scholar
Neeb, K.-H. 2010. On differentiable vectors for representations of infinite dimensional Lie groups. J. Funct. Anal., 259(11), 28142855.Google Scholar
Omori, H. 1974. Infinite Dimensional Lie Transformation Groups. Springer, Cham.Google Scholar
Omori, H. 1978. On Banach–Lie groups acting on finite-dimensional manifolds. Tôhoku Math. J. II Ser., 30, 223250.Google Scholar
Omori, H. 1981. A remark on non-enlargeable Lie algebras. J. Math. Soc. Japan, 33(4), 707710.Google Scholar
Palais, R. S. 1957. A Global Formulation of the Lie Theory of Transformation Groups. American Mathematical Society (AMS), Providence, RI.Google Scholar
Palais, R. S. 1968. Foundations of Global Non-linear Analysis. Mathematics Lecture Note Series. W. A. Benjamin, New York, Amsterdam.Google Scholar
Poincaré, H. 1901. Sur une forme nouvelle des équations de la mécanique. C. R. Acad. Sci., Paris, 132, 369371.Google Scholar
Pressley, A., and Segal, G. 1986. Loop Groups. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford.Google Scholar
Qian, Z., and Tudor, J. 2011. Differential structure and flow equations on rough path space. Bull. Sci. Math., 135(6–7), 695732.Google Scholar
Ree, R. 1958. Lie elements and an algebra associated with shuffles. Ann. Math. (2), 68, 210220.Google Scholar
Reutenauer, C. 1993. Free Lie Algebras. The Clarendon Press, Oxford University Press, Oxford.Google Scholar
Rudin, W. 1991. Functional Analysis. Second ed. McGraw-Hill, Inc., New York.Google Scholar
Rybicki, T. 1995. Isomorphisms between groups of diffeomorphisms. Proc. Am. Math. Soc., 123(1), 303310.Google Scholar
Rybicki, T. 2002. A Lie group structure on strict groups. Publ. Math., 61(3–4), 533– 548.Google Scholar
Schmeding, A. 2020. The Lie group of vertical bisections of a regular Lie groupoid. Forum Math., 32(2), 479489.Google Scholar
Schmeding, A, and Wockel, C. 2015. The Lie group of bisections of a Lie groupoid. Ann. Global Anal. Geom., 48(1), 87123.Google Scholar
Schmeding, A., and Wockel, C. 2016. (Re)constructing Lie groupoids from their bisections and applications to prequantisation. Differential Geom. Appl., 49, 227276.Google Scholar
Schmid, R. 2010. Infinite-dimensional Lie groups and algebras in mathematical physics. Advances in Mathematical Physics. Vol. 2010, Article ID 280362. https://doi.org/10.1155/2010/280362Google Scholar
Sergeev, A. G. 2020. In search of infinite-dimensional Kähler geometry. Russ. Math. Surv., 75(2), 321367.Google Scholar
Sharpe, R. W. 1997. Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Springer, Berlin.Google Scholar
Smolentsev, N. K. 2007. Diffeomorphism groups of compact manifolds. J. Math. Sci., New York, 146(6), 62136312.Google Scholar
Stacey, A. 2008. How to Construct a Dirac Operator in Infinite Dimensions. arXiv:0809.3104Google Scholar
Steenrod, N. E. 1967. A convenient category of topological spaces. Michigan Math. J., 14, 133152.Google Scholar
Takens, F. 1979. Characterization of a differentiable structure by its group of diffeomorphisms. Bol. Soc. Bras. Mat., 10(1), 1725.Google Scholar
Tapia, N., and Zambotti, L. 2020. The geometry of the space of branched rough paths. Proc. Lond. Math. Soc. (3), 121(2), 220251.Google Scholar
Taylor, M. E. 2011. Partial Differential Equations I. Basic Theory. Second ed. Applied Mathematical Sciences, vol. 115. Springer, New York.Google Scholar
Thompson, D. W. 1942. On Growth and Form. New edition. Cambridge University Press, Cambridge.Google Scholar
Treves, F. 2006. Topological Vector Spaces, Distributions and Kernels. Dover Publications, Inc., Mineola, NY. Unabridged republication of the 1967 original.Google Scholar
Vizman, C. 2008. Geodesic equations on diffeomorphism groups. SIGMA, Symmetry Integrability Geom. Methods Appl., 4, paper 030, 22.Google Scholar
Voigt, J. 1992. On the convex compactness property for the strong operator topology. Note Mat., 12, 259269.Google Scholar
Walter, B. 2012. Weighted diffeomorphism groups of Banach spaces and weighted mapping groups. Dissertationes Math., 484, 128.Google Scholar
Werner, D. 2000. Funktionalanalysis. Extended ed. Springer, Berlin.Google Scholar
Whitney, H. 1934. Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc., 36(1), 6389.Google Scholar
Wockel, C. 2006. Infinite-Dimensional Lie Theory for Gauge Groups. PhD thesis, TU Darmstadt.Google Scholar
Wockel, C. 2014. Infinite-Dimensional and Higher Structures in Differential Geometry. unpublished lecture notes.Google Scholar
Wockel, C. 2007. Lie group structures on symmetry groups of principal bundles. J. Funct. Anal., 251(1), 254288.Google Scholar
Wurzbacher, T. 1995. Symplectic geometry of the loop space of a Riemannian manifold. J. Geom. Phys., 16(4), 345384.Google Scholar
Young, L. C. 1936. An inequality of the Hölder type, connected with Stieltjes integration. Acta Math., 67, 251282.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Alexander Schmeding, Nord Universitet, Norway
  • Book: An Introduction to Infinite-Dimensional Differential Geometry
  • Online publication: 08 December 2022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Alexander Schmeding, Nord Universitet, Norway
  • Book: An Introduction to Infinite-Dimensional Differential Geometry
  • Online publication: 08 December 2022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Alexander Schmeding, Nord Universitet, Norway
  • Book: An Introduction to Infinite-Dimensional Differential Geometry
  • Online publication: 08 December 2022
Available formats
×