Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T22:16:24.234Z Has data issue: false hasContentIssue false

Postscript

Published online by Cambridge University Press:  01 June 2011

J. Adámek
Affiliation:
Technische Universität Carolo Wilhelmina zu Braunschweig, Germany
J. Rosický
Affiliation:
Masarykova Univerzita v Brně, Czech Republic
E. M. Vitale
Affiliation:
Université Catholique de Louvain, Belgium
Get access

Summary

In this postscript, we intend to explain somewhat the position our book has in the literature on algebra and category theory, and we want to mention some of the important topics that we decided not to deal with in our book.

One-sorted algebraic theories provide a very convenient formalization, based on the concept of finite product, of the classical concept of “the collection of all algebraic operations” present in a given kind of algebras, for example, in groups or boolean algebras. These theories lead to concrete categories A of algebras, that is, to categories equipped with a faithful functor U: ASet. They can also be used to find an algebraic information present in a given concrete category A: we can form the algebraic theory whose n-ary operations are precisely the natural transformations UnU. In the case of groups (and in any one-sorted algebraic category), these “implicit” operations are explicit; that is, they correspond to operations of the theory of groups. But on finite algebras (e.g., finite semigroups), there exist implicit operations that are not explicit, and they are important in the theory of automata (see Almeida, 1994). The passages from one-sorted algebraic theories to one-sorted algebraic categories and back form a duality that is a biequivalence in general. And, as we will see in Appendix C, this passage is an equivalence if we restrict one-sorted algebraic categories to uniquely transportable ones.

Type
Chapter
Information
Algebraic Theories
A Categorical Introduction to General Algebra
, pp. 204 - 206
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Postscript
  • J. Adámek, Technische Universität Carolo Wilhelmina zu Braunschweig, Germany, J. Rosický, Masarykova Univerzita v Brně, Czech Republic, E. M. Vitale, Université Catholique de Louvain, Belgium
  • Foreword by F. W. Lawvere
  • Book: Algebraic Theories
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511760754.025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Postscript
  • J. Adámek, Technische Universität Carolo Wilhelmina zu Braunschweig, Germany, J. Rosický, Masarykova Univerzita v Brně, Czech Republic, E. M. Vitale, Université Catholique de Louvain, Belgium
  • Foreword by F. W. Lawvere
  • Book: Algebraic Theories
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511760754.025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Postscript
  • J. Adámek, Technische Universität Carolo Wilhelmina zu Braunschweig, Germany, J. Rosický, Masarykova Univerzita v Brně, Czech Republic, E. M. Vitale, Université Catholique de Louvain, Belgium
  • Foreword by F. W. Lawvere
  • Book: Algebraic Theories
  • Online publication: 01 June 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511760754.025
Available formats
×