Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T16:46:28.660Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  28 July 2022

John Stillwell
Affiliation:
University of San Francisco
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Algebraic Number Theory for Beginners
Following a Path From Euclid to Noether
, pp. 211 - 216
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, N. H. (1826a). Démonstration de l’impossibilité delarésolution algébrique des equations générales qui passent le quatrième degré. Journal für die reine und angewandte Mathematik 1, 6584. Oeuvres Complètes 1: 66–87.Google Scholar
Abel, N. H. (1826b). Mémoire sur une propiété générale d’une classe très étendue de fonctions transcendantes. Mémoire des Savants Étrangers, 1841 7, 176264. Oeuvres Complètes 2: 145–211.Google Scholar
Artin, E. (1942). Galois Theory, Notre Dame Mathematical Lectures, no. 2. University of Notre Dame, Notre Dame, IN. Edited and supplemented with a section on applications by Arthur N. Milgram.Google Scholar
Bashmakova, I. G. and Smirnova, G. S. (2000). The Beginnings and Evolution of Algebra, Volume 23 of The Dolciani Mathematical Expositions. Mathematical Association of America, Washington, DC. Translated from the Russian by Abe Shenitzer with the editorial assistance of David A. Cox.Google Scholar
Bernoulli, J. (1704). Positionum de seriebus infinitis …pars quinta. In his Werke, 4, 127147.Google Scholar
Blass, A. (1984). Existence of bases implies the axiom of choice. In Axiomatic Set Theory (Boulder, Colorado, 1983), Volume 31 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 3133.Google Scholar
Cantor, G. (1874). Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. Journal für reine und angewandte Mathematik 77, 258262. English translation by W. Ewald in Ewald (1996), Vol. II, 840–843.Google Scholar
Cantor, G. (1883). Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Teubner, Leipzig. In his Gesammelte Abhandlungen, Springer, Berlin, 165204. English translation by W. Ewald in Ewald (1996), Vol. II, 878–919.Google Scholar
Cantor, G. (1891). Über eine elementare Frage der Mannigfaltigkeitslehre. Jahresbericht deutschen Mathematiker-Vereinigung 1, 7578. English translation by W. Ewald in Ewald (1996), Vol. II, 920–922.Google Scholar
Cardano, G. (1545). Ars Magna or The Rules of Algebra. Dover Publications, Inc., New York, 1993. Translated from the Latin and edited by Witmer, T. Richard, With a foreword by Oystein Ore.Google Scholar
Cauchy, A.-L. (1847). Mémoire sur la théorie des équivalences algébriques, substituée à lathéorie des imaginaires. In Exercises d’analyse et de physique mathématique, Tome 4, Bachelier, Paris, 87110.Google Scholar
Cayley, A. (1855). Remarques sur la notation des fonctions algébriques. Journal für die reine und angewandte Mathematik 50, 282285.Google Scholar
Chevalley, C. (1943). On the theory of local rings. Annals of Mathematics. Second Series 44, 690708.CrossRefGoogle Scholar
Cohen, P. (1963). The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences of the United States of America 50, 11431148.Google Scholar
Cramer, G. (1750). Introduction à l’analyse des lignes courbes algébriques. Geneva.Google Scholar
Dedekind, R. (1871). Supplement X. In Dirichlet’s Vorlesungen uber Zahlentheorie, 2nd ed., Vieweg 1871.Google Scholar
Dedekind, R. (1894). Supplement XI. In Dirichlet’s Vorlesungen über Zahlentheorie, 4th ed., Vieweg 1894.Google Scholar
Dedekind, R. (1996). Theory of Algebraic Integers. Cambridge Mathematical Library. Cambridge University Press, Cambridge. Translated from the 1877 French original and with an introduction by John Stillwell.CrossRefGoogle Scholar
Dedekind, R. and Weber, H. (1882). Theorie der algebraischen Functionen einer Veränderlichen. Journal für die reine und angewandte Mathematik 92, 181291.Google Scholar
Dedekind, R. and Weber, H. (2012). Theory of Algebraic Functions of One Variable, Volume 39 of History of Mathematics. American Mathematical Society, Providence, RI; London Mathematical Society, London. Translated from the 1882 German original and with an introduction, bibliography and index by John Stillwell.Google Scholar
Descartes, R. (1637). The Geometry of René Descartes. (With a Facsimile of the First edition, 1637.). Dover Publications Inc., New York. Translated by David Eugene Smith and Marcia L. Latham, 1954.Google Scholar
Dieudonné, J. (1985). History of Algebraic Geometry: An Outline of the History and Development of Algebraic Geometry. Wadsworth Mathematics Series. Wadsworth International Group, Belmont, CA. Translated from the French by Judith D. Sally.Google Scholar
Dirichlet, P. G. L. (1863). Vorlesungen über Zahlentheorie. F. Vieweg und Sohn, Braunschweig. English translation Lectures on Number Theory, with Supplements by R. Dedekind, translated from the German and with an introduction by John Stillwell, American Mathematical Society, Providence, RI, 1999.Google Scholar
Eisenstein, G. (1850). Über einige allgemeine Eigenschaften der Gleichung, von welcher die Theorie der ganzen Lemniscate abhängt. Journal für die reine und angewandte Mathematik 39, 556619.Google Scholar
Euler, L. (1747). Theoremata circa divisors numerorum. Novi commentarii academiae scientiarum Petropolitanae 1, 2048.Google Scholar
Euler, L. (1748). Letter to Goldbach, 4 May 1748. In Fuss (1968), 1, 450455.Google Scholar
Euler, L. (1770). Elements of Algebra. Springer-Verlag, New York, 1984. Translated from the German by John Hewlett. Reprint of the 1840 edition, with an introduction by C. Truesdell.Google Scholar
Ewald, W. (1996). From Kant to Hilbert: A Source Book in the Foundations of Mathematics. Vols. I, II. The Clarendon Press, Oxford University Press, New York.Google Scholar
Fermat, P. (1640). Letter to Mersenne, 25 December 1640. Œuvres 2: 212.Google Scholar
Fermat, P. (1654). Letter to Pascal, 25 September 1654. Œuvres 2: 310314.Google Scholar
Fermat, P. (1657). Letter to Frenicle, February 1657. Œuvres 2: 333334.Google Scholar
Fermat, P. (1670). Observations sur Diophante. Œuvres 3: 241276.Google Scholar
Fibonacci, L. P. (1225). Liber quadratorum. Academic Press, Inc., Boston, MA, 1987. Translated from the Latin as The Book of Squares and with a preface, introduction and commentaries by L. E. Sigler.Google Scholar
Friedman, H. M., Simpson, S. G., and Smith, R. L. (1983). Countable algebra and set existence axioms. Annals of Pure and Applied Logic 25(2), 141181.Google Scholar
Fuss, P.-H. (1968). Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIème siècle. Tomes I, II. Johnson Reprint Corp., New York. Reprint of the Euler correspondence originally published by l’Académie Impériale des Sciences de Saint-Pétersbourg. The Sources of Science, No. 35.Google Scholar
Gauss, C. F. (1801). Disquisitiones Arithmeticae. Springer-Verlag, New York, 1986. Translated and with a preface by Arthur A. Clarke. Revised by William C. Water-house, Cornelius Greither and A. W. Grootendorst and with a preface by Waterhouse.Google Scholar
Gauss, C. F. (1816). Demonstratio nova altera theorematis omnem functionem algebraicum rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse. Commentationes Societatis Regiae Scientiarum Gottingensis recentiores 3, 107142. In his Werke 3: 31–56.Google Scholar
Gödel, K. (1938). The consistency of the axiom of choice and of the generalized continuum-hypothesis. Proceedings of the National Academy of Sciences of the United States of America 24, 556557.Google Scholar
Grassmann, H. (1844). Die lineale Ausdehnungslehre. Otto Wigand, Leipzig. English translation in Grassmann (1995), 1312.Google Scholar
Grassmann, H. (1861). Lehrbuch der Arithmetic. Enslin, Berlin.Google Scholar
Grassmann, H. (1862). Die Ausdehnungslehre. Enslin, Berlin. English translation of 1896 edition in Grassmann (2000).Google Scholar
Grassmann, H. (1995). A New Branch of Mathematics. Open Court Publishing Co., Chicago, IL. The Ausdehnungslehre of 1844 and other works, Translated from the German and with a note by Lloyd C. Kannenberg. With a foreword by Albert C. Lewis.Google Scholar
Grassmann, H. (2000). Extension Theory. American Mathematical Society, Providence, RI; London Mathematical Society, London. Translated from the 1896 German original and with a foreword, editorial notes and supplementary notes by Lloyd C. Kannenberg.CrossRefGoogle Scholar
Gray, J. (2018). A History of Abstract Algebra. Springer, Cham, Switzerland.Google Scholar
Halmos, P. R. (1942). Finite Dimensional Vector Spaces. Annals of Mathematics Studies, no. 7. Princeton University Press, Princeton, NJ.Google Scholar
Hamel, G. (1905). Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung f(x + y) = f(x) + f(y). Mathematische Annalen 60, 459462.CrossRefGoogle Scholar
Heath, T. L. (1964). Diophantus of Alexandria: A Study in the History of Greek Algebra. Second edition. With a supplement containing an account of Fermat’s theorems and problems connected with Diophantine analysis and some solutions of Diophantine problems by Euler. Dover Publications, Inc., New York.Google Scholar
Hilbert, D. (1890). Über die Theorie der algebraischen formen. Mathematische Annalen 36, 473534.Google Scholar
Hilbert, D. (1897). Zahlbericht. Springer-Verlag, Berlin, 1998. Translated from the German as The Theory of Algebraic Number Fields and with a preface by Iain T. Adamson, With an introduction by Franz Lemmermeyer and Norbert Schappacher.Google Scholar
Hodges, W. (1979). Krull implies Zorn. The Journal of the London Mathematical Society. Second Series 19(2), 285287.Google Scholar
Jacobson, N. (1985). Basic Algebra I (Second ed.). W. H. Freeman and Company, New York.Google Scholar
Kaplansky, I. (1991). Reminiscences. In Paul Halmos. Celebrating 50 Years of Mathematics, 297304. New York: Springer-Verlag.Google Scholar
Katz, V. J. and Parshall, K. H. (2014). Taming the Unknown: A History of Algebra from Antiquity to the Early Twentieth Century. Princeton University Press, Princeton, NJ.Google Scholar
Knobloch, E. (2013). Leibniz’s theory of elimination and determinants. In Seki, Founder of Modern Mathematics in Japan, Volume 39 of Springer Proceedings in Mathematics & Statistics, 229244. Springer, Tokyo.Google Scholar
Kolmogorov, A. N. and Yushkevich, A. P. (Eds.) (2001). Mathematics of the 19th Century (revised ed.). Birkhäuser Verlag, Basel. Mathematical logic. Algebra. Number theory. Probability theory, Translated from the 1978 Russian original by A. Shenitzer, H. Grant and O. B. Sheinin, Translation edited by Shenitzer.CrossRefGoogle Scholar
Kronecker, L. (1870). Auseinandersetzung einige Eigenschaften der Klassenzahl idealer complexer Zahlen. Monatsbericht der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 881889. In his Werke 1, 271–282.Google Scholar
Kronecker, L. (1887). Ein Fundamentalsatz der allgemeinen Arithmetik. Journal für die reine und angewandte Mathematik 100, 490510.Google Scholar
Krull, W. (1928). Zur Theorie der allgemeinen Zahlringe. Mathematischen Annalen 99, 5170.Google Scholar
Krull, W. (1929). Idealtheorie in Ringen ohne Endlichkeitsbedingungen. Mathematischen Annalen 101, 729744.Google Scholar
Krull, W. (1935). Idealtheorie. Springer, Berlin.Google Scholar
Kummer, E. E. (1844). De numeris complexis, qui radicibus unitatis et numeris realibus constant. Gratulationschrift der Universität Breslau zur Jubelfeier der Universität Königsberg. Also in Kummer (1975), vol. 1, 165192.Google Scholar
Kummer, E. E. (1975). Collected Papers. Volume 1, Contributions to Number Theory. Springer-Verlag, Berlin-New York. Edited and with an introduction by André Weil.Google Scholar
Kuratowski, C. (1922). Une méthode d’elimination des nombres transfinis des raisonnements mathématiques. Fundamenta Mathematicae 3, 76108.Google Scholar
Lagrange, J. L. (1768). Solution d’un problème d’arithmétique. Miscellanea Taurinensia 4, 19ff. In his Œuvres 1: 671–731.Google Scholar
Lagrange, J. L. (1773). Recherches d’arithmétique. Nouveaux mémoires de l’Académie royale des sciences et belles-lettres de Berlin, 265ff. In his Œuvres 3: 695795.Google Scholar
Laplace, P.-S. (1772). Researches sur le calcul intégral et sur le systéme du monde. Histoire de l’Académie Royale des Sciences, Paris, 267376.Google Scholar
Muir, T. (1960). The Theory of Determinants in the Historical Order of Development. Dover Publications, Inc., New York. Four volumes bound as two.Google Scholar
Neumann, C. (1865). Vorlesungen über Riemann’s Theorie der Abelschen Integralen. Leipzig: Teubner.Google Scholar
Noether, E. (1921). Idealtheorie in Ringbereichen. Mathematischen Annalen 83, 2466.Google Scholar
Noether, E. (1926). Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern. Mathematischen Annalen 96, 2661.Google Scholar
Pascal, B. (1654). Traité dutrianglearithmétique, avec quelques autres petits traités sur la même manière. English translation in Great Books of the Western World, Encyclopedia Britannica, London, 1952, 447473.Google Scholar
Peano, G. (1888). Calcolo Geometrico secondo l’Ausdehnungslehre di H. Grassmann, preceduto dalle operazioni della logica deduttiva. Bocca, Turin. English translation in Peano (2000).Google Scholar
Peano, G. (2000). Geometric Calculus: According to the Ausdehnungslehre of H. Grassmann. Birkhäuser Boston, Inc., Boston, MA. Translated from the Italian by Lloyd C. Kannenberg.Google Scholar
Rothe, H. A. (1800). Ueber Permutationen, in Beziehung auf die Stellen ihrer Elemente. Anwendung der daraus abgeleiteten Sätze auf das Eliminationsproblem. In Hindenburg, Carl, ed., Sammlung Combinatorisch-Analytischer Abhandlungen, 263305, Bey G. Fleischer dem jüngern, 1800.Google Scholar
Rotman, J. J. (2015). Advanced Modern Algebra, Part 1 (Third ed.), Volume 165 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI.Google Scholar
Samuel, P. (1970). Algebraic Theory of Numbers. Houghton Mifflin Co., Boston, MA. Translated from the French by Allan J. Silberger.Google Scholar
Simpson, S. G. (2009). Subsystems of Second Order Arithmetic (Second ed.). Perspectives in Logic. Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY.Google Scholar
Smith, D. E. (1959). A Source Book in Mathematics. 2 vols. Dover Publications Inc., New YorkGoogle Scholar
Solovay, R. M. (1970). A model of set-theory in which every set of reals is Lebesgue measurable. Annals of Mathematics. Second Series 92, 156.Google Scholar
Steinitz, E. (1910). Algebraische Theorie der Körper. Journal für die reine und angewandte Mathematik 137, 167302.Google Scholar
Stillwell, J. (1994). Elements of Algebra: Geometry, Numbers, Equations. Undergraduate Texts in Mathematics. Springer-Verlag, New York.Google Scholar
Stillwell, J. (2018). Reverse Mathematics. Princeton University Press, Princeton, NJ.Google Scholar
van der Waerden, B. L. (1931). Moderne Algebra II Teil. Unter Benutzung von Vorlesungen von E. Artin und E. Noether. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Bd. 34. Julius Springer, Berlin, vii, 216 S. (1931).Google Scholar
van Heijenoort, J. (1967). From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, Cambridge, MA.Google Scholar
Vandermonde, A.-T. (1771). Memoire sur la résolution des équations. Mémoires de l’Academie royale des sciences à Paris, 365416.Google Scholar
Viète, F. (1591). De aequationum recognitione et emendatione. In his Opera, 82162. English translation in Viète (1983).Google Scholar
Viète, F. (1615). Ad angularium sectionum analyticen theoremata. In his Opera, 287304.Google Scholar
Viète, F. (1983). The Analytic Art: Nine studies in algebra, geometry and trigonometry from the Opus restitutae mathematicae analyseos, seu algebrâ novâ. Kent State University Press, Kent, OH. Translated from the Latin and with an introduction by T. Richard Witmer.Google Scholar
Vitali, G. (1905). Sul problema della misura dei gruppi di punti di una retta. Bologna.Google Scholar
Weil, A. (1974). Two lectures on number theory, past and present. L’Enseignement Mathématique. Revue Internationale. Ile Série 20, 87110.Google Scholar
Weil, A. (1975). Introduction to Kummer (1975).Google Scholar
Weil, A. (1984). Number Theory: An Approach through History, from Hammurapi to Legendre. Birkhäuser Boston, Inc., Boston, MA.Google Scholar
Wessel, C. (1797). Om Directionens analytiske Betegning, et Forsøg anvendt fornemmelig til plane og sphæriske Polygoners Opløsning. Danske Selsk. Skr. N. Samml. 5. English translation in Smith (1959), vol. 1, 5566.Google Scholar
Wiles, A. (1995). Modular elliptic curves and Fermat’s last theorem. Annals of Mathematics (2) 141(3), 443551.Google Scholar
Ycart, B. (2013). A case of mathematical eponymy: The Vandermonde determinant. Revue d’Histoire des Mathématiques 19(1), 4377.Google Scholar
Zariski, O. and Samuel, P. (1958). Commutative Algebra, Volume I. The University Series in Higher Mathematics. D. Van Nostrand Company, Inc., Princeton, NJ. With the cooperation of I. S. Cohen.Google Scholar
Zermelo, E. (1904). Beweis dass jede Menge wohlgeordnet werden kann. Mathematische Annalen 59, 514516. English translation in van Heijenoort (1967).Google Scholar
Zorn, M. (1935). A remark on method in transfinite algebra. Bulletin of the American Mathematical Society 41, 667670.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • John Stillwell, University of San Francisco
  • Book: Algebraic Number Theory for Beginners
  • Online publication: 28 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781009004138.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • John Stillwell, University of San Francisco
  • Book: Algebraic Number Theory for Beginners
  • Online publication: 28 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781009004138.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • John Stillwell, University of San Francisco
  • Book: Algebraic Number Theory for Beginners
  • Online publication: 28 July 2022
  • Chapter DOI: https://doi.org/10.1017/9781009004138.012
Available formats
×