Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T07:44:43.923Z Has data issue: false hasContentIssue false

5 - Markov chains, quotient ideals and connectivity with positive margins

from Part I - Contingency tables

Published online by Cambridge University Press:  27 May 2010

Paolo Gibilisco
Affiliation:
Università degli Studi di Roma 'Tor Vergata'
Eva Riccomagno
Affiliation:
Università degli Studi di Genova
Maria Piera Rogantin
Affiliation:
Università degli Studi di Genova
Henry P. Wynn
Affiliation:
London School of Economics and Political Science
Get access

Summary

Abstract

We present algebraic methods for studying connectivity of Markov moves with margin positivity. The purpose is to develop Markov sampling methods for exact conditional inference in statistical models where a Markov basis is hard to compute. In some cases positive margins are shown to allow a set of Markov connecting moves that are much simpler than the full Markov basis.

Introduction

Advances in algebra have impacted in a fundamental way the study of exponential families of probability distributions. In the 1990s, computational methods of commutative algebra were brought into statistics to solve both classical and new problems in the framework of exponential family models. In some cases, the computations are of an algebraic nature or could be made algebraic with some work, as in the cumulant methods of (Pistone and Wynn 1999). In other cases, the computations are ultimately Monte Carlo averages and the algebra plays a secondary role in designing algorithms. This is the nature of the work of (Diaconis and Sturmfels 1998). Commutative algebra is also used in statistics for experimental design (Pistone et al. 2001) where exponential families are not the focus.

(Diaconis and Sturmfels 1998) showed how computing a generating set for a toric ideal is fundamental to irreducibility of a Markov chain on a set of constrained tables. This theory gives a method for obtaining Markov chain moves, such as the genotype sampling method of (Guo and Thompson 1992), extensions to graphical models (Geiger et al. 2006) and beyond (Hosten and Sullivant 2004).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×