Published online by Cambridge University Press: 19 January 2010
The specification of the algebraic properties of action notation in this Appendix is divided into modules as shown on the next page.
The body of each module introduces symbols, highlights their principal properties, and lists their secondary properties.
The properties specified are sufficient to reduce the full action notation to a kernel, whose abstract syntax and structural operational semantics are defined in Appendix C.
The specified properties of the kernel action notation hold for the notion of action equivalence defined at the end of Appendix C. The algebraic theory of action notation is not yet fully developed, although it may already be adequate for verifying the semantic correctness of simple program optimizations.
Action notation supports concurrency, but without introducing a combinator for it, so there are no algebraic properties concerning the sending and receipt of messages, or the fulfilment of contracts.
The moduleFacetsdeserves special mention. It defines a moderately expressive notation for subsorts of actions, with reference to outcomes and incomes, and similarly for yielders. This notation is specified axiomatically; the expected correspondence with the operational semantics of action notation has not yet been proved. Nevertheless, the axiomatic specification of the subsort notation provides useful documentation of the sorts of yielders to be used in primitive actions, and of the various facets of the action combinators.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.