Published online by Cambridge University Press: 20 August 2009
It is not an easy task to trace precisely the history of the idea of abstract regular polytopes. While it is clear that the concept has its roots in the classical theory, and notably in Coxeter's work [120], more recently there have been several parallel developments which have influenced the theory of abstract regular polytopes.
From the point of view of discrete geometry, it appears that combinatorial regularity was first studied in McMullen [277] in the context of combinatorially regular convex polytopes (see Section 1B). In its generality, the notion of an abstract regular polytope was largely anticipated in Grünbaum's paper [199] on structures which he called regular polystromata. Then, in 1977, Danzer introduced the more restrictive concept, based on Grünbaum's work, of a regular incidence complex; see Danzer and Schulte [141], although the definitions adopted were anticipated by McMullen (in a geometric context) in [280, p. 578]. Among these regular incidence complexes, the abstract regular polytopes, or regular incidence polytopes as they were first called, are particularly close to the traditional polytopes, and form a special class of polytope-like structures with a distinctive geometric and topological appeal. It seems that a more systematic study of these objects was begun by Schulte [362–364].
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.