Published online by Cambridge University Press: 14 May 2010
It is well–known that a compact metrizable space X is homeomorphic to {0, 1}ℕ if and only if X is nonempty, perfect and totally disconnected (hence, zero–dimensional). The classical Cantor ternary set in ℝ is one such, thus the name Cantor spaces. There are many other classical examples. A useful one is the product space kℕ, where k is a finite space endowed with the discrete topology and with card(k) > 1. It will be necessary that Cantor spaces be investigated not only as topological spaces but also as metric spaces with suitably assigned metrics.
The development presented in this appendix is based on E. Akin [2], R. Dougherty, R. D. Mauldin and A. Yingst [47], and O. Zindulka [162, 161]. There are two goals. The first is to present specific metrics on Cantor spaces which are used in the computations of Hausdorff measure and Hausdorff dimension in Chapter 5. The second is to discuss homeomorphic measures on Cantor spaces. The lack of an analogue of the Oxtoby–Ulam theorem for Cantor spaces motivates this goal.
Topologically characterizing homeomorphic, continuous, complete, finite Borel measures on Cantor spaces is a very complex task which has not been achieved yet. Simple topological invariants do not seem to characterize the homeomorphism classes of such measures. By introducing a linearly ordered topology consistent with the given topology of a Cantor space, which is always possible, a linear topological invariant has been discovered by Akin in [2].
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.