from Part II - General Topics
Published online by Cambridge University Press: 18 May 2017
The question of whether Bose-Einstein condensation involves spontaneous symmetry breaking is surprisingly controversial. We review the theory of spontaneous symmetry breaking in ferromagnets, compare it with the theory of symmetry breaking in condensates, and discuss the different viewpoints on the correspondence to experiments. These viewpoints include alternative perspectives in which we can treat condensates with fixed particle numbers, and where coherence arises from measurements. This question relates to whether condensates of quasiparticles such as polaritons can be viewed as “real” condensates.
Introduction
Spontaneous symmetry breaking is a deep subject in physics with long historical roots. At the most basic level, it arises in the field of cosmology. Physicists have long had an aesthetic principle that leads us to expect symmetry in the all of the basic equations of physical law. Yet the universe is manifestly full of asymmetries. How does a symmetric system acquire asymmetry merely by evolving in time? Starting in the 1950s, cosmologists began to borrow the ideas of spontaneous symmetry breaking from condensed matter physics, which were originally developed to explain spontaneous magnetization in ferromagnetic systems.
Spontaneous coherence in all its forms (e.g., Bose-Einstein condensation [BEC], superconductivity, and lasing) can be viewed as another type of symmetry breaking. The Hamiltonian of the system is symmetric, yet under some conditions, the energy of the system can be reduced by putting the system into a state with asymmetry, namely, a state with a common phase for a macroscopic number of particles. The symmetry of the system implies that it does not matter what the exact choice of that phase is, as long as it is the same for all the particles.
It is not obvious, however, whether the symmetry breaking which occurs in spontaneous coherence of the type seen in lasers or in Bose-Einstein condensation is the same as that seen in ferromagnetic systems. There are similarities in the systems which encourage the same view of all types of symmetry breaking, but there are also differences. In fact, there is a substantial school of thought that symmetry breaking in Bose-Einstein condensates with ultracold atoms is a “convenient fiction” (a term applied to optical coherence by Mølmer [1]).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.