Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T05:16:55.275Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  05 July 2014

Shai Shalev-Shwartz
Affiliation:
Hebrew University of Jerusalem
Shai Ben-David
Affiliation:
University of Waterloo, Ontario
Get access

Summary

The term machine learning refers to the automated detection of meaningful patterns in data. In the past couple of decades it has become a common tool in almost any task that requires information extraction from large data sets. We are surrounded by a machine learning–based technology: Search engines learn how to bring us the best results (while placing profitable ads), antispam software learns to filter our email messages, and credit card transactions are secured by a software that learns how to detect frauds. Digital cameras learn to detect faces and intelligent personal assistance applications on smart-phones learn to recognize voice commands. Cars are equipped with accident-prevention systems that are built using machine learning algorithms. Machine learning is also widely used in scientific applications such as bioinformatics, medicine, and astronomy.

One common feature of all of these applications is that, in contrast to more traditional uses of computers, in these cases, due to the complexity of the patterns that need to be detected, a human programmer cannot provide an explicit, fine-detailed specification of how such tasks should be executed. Taking examples from intelligent beings, many of our skills are acquired or refined through learning from our experience (rather than following explicit instructions given to us). Machine learning tools are concerned with endowing programs with the ability to “learn” and adapt.

The first goal of this book is to provide a rigorous, yet easy-to-follow, introduction to the main concepts underlying machine learning: What is learning?

Type
Chapter
Information
Understanding Machine Learning
From Theory to Algorithms
, pp. xv - xvi
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Shai Shalev-Shwartz, Hebrew University of Jerusalem, Shai Ben-David, University of Waterloo, Ontario
  • Book: Understanding Machine Learning
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107298019.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Shai Shalev-Shwartz, Hebrew University of Jerusalem, Shai Ben-David, University of Waterloo, Ontario
  • Book: Understanding Machine Learning
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107298019.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Shai Shalev-Shwartz, Hebrew University of Jerusalem, Shai Ben-David, University of Waterloo, Ontario
  • Book: Understanding Machine Learning
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107298019.001
Available formats
×