Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-02-12T03:52:40.121Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 February 2025

Wolfgang Bietenholz
Affiliation:
Universidad Nacional Autónoma de México
Uwe-Jens Wiese
Affiliation:
Universität Bern, Switzerland
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaij, R., et al. 2013. First observation of CP violation in the decays of mesons. Phys. Rev. Lett., 110, 221601.Google Scholar
Aaij, R., et al. 2019. Observation of CP violation in charm decays. Phys. Rev. Lett., 122, 21180.CrossRefGoogle ScholarPubMed
Abbas, A. 1990. Anomalies and charge quantization in the standard model with arbitrary number of colours. Phys. Lett. B, 238, 344347.CrossRefGoogle Scholar
Abbas, A. 2000. On the number of colours in Quantum Chromodynamics. Preprint arXiv:hep-ph/0009242.Google Scholar
Abbott, L. F., and Farhi, E. 1981. Are the weak interactions strong? Phys. Lett. B, 101, 6972.CrossRefGoogle Scholar
Abbott, L. F., and Sikivie, P. 1983. A cosmological bound on the invisible axion. Phys. Lett. B, 120, 133136.CrossRefGoogle Scholar
Abe, K. et al. (Belle Collaboration). 2001. Observation of large CP violation in the neutral B meson system. Phys. Rev. Lett., 87, 091802.CrossRefGoogle ScholarPubMed
Abe, K. et al. (Super-Kamiokande Collaboration). 2017. Search for proton decay via pe+π 0 and p μ+π 0 in 0.31 megaton years exposure of the Super-Kamiokande water Cherenkov detector. Phys. Rev. D, 95, 012004.CrossRefGoogle Scholar
Abe, Y. et al. (Double Chooz Collaboration). 2012. Reactor ν̄e disappearance in the Double Chooz experiment. Phys. Rev. D, 86, 052008.CrossRefGoogle Scholar
Abel, S. et al. 2020. Measurement of the permanent electric dipole moment of the neutron. Phys. Rev. Lett., 124, 081803.CrossRefGoogle ScholarPubMed
Adkins, G. S., Nappi, C. R., and Witten, E. 1983. Static properties of nucleons in the Skyrme model. Nucl. Phys. B, 228, 552566.CrossRefGoogle Scholar
Adler, S. 1969. Axial-vector vertex in spinor electrodynamics. Phys. Rev., 177, 24262438.CrossRefGoogle Scholar
Adler, S. L., and Bardeen, W. A. 1969. Absence of higher-order corrections in the anomalous axial-vector divergence equation. Phys. Rev., 182, 15171536.CrossRefGoogle Scholar
Affleck, I. 1985. The quantum Hall effects, σ-models at θ = π and quantum spin chains. Nucl. Phys. B, 257, 397406.CrossRefGoogle Scholar
Affleck, I. 1988. Field theory methods and quantum critical phenomena. Pages 563–640 of: Brézin, E., and Zinn-Justin, J. (eds), Fields, Strings and Critical Phenomena. Proceedings of the Les Houches Summer School, Session XLIX.Google Scholar
Affleck, I., and Haldane, F. D. M. 1987. Critical theory of quantum spin chains. Phys. Rev. B, 36, 52915300.CrossRefGoogle ScholarPubMed
Aguilar-Arévalo, A. and Bietenholz, W., Neutrinos: Mysterious Particles with Fascinating Features, which led to the Physics Nobel Prize 2015, Rev. Cubana Fis. 32 (2015) 127–136.Google Scholar
Aharonov, Y., and Bohm, B. 1959. Significance of electromagnetic potentials in the quantum theory. Phys. Rev., 115, 485491.CrossRefGoogle Scholar
Aharonov, Y., and Bohm, B. 1961. Further considerations on electromagnetic potentials in the quantum theory. Phys. Rev., 123, 15111524.CrossRefGoogle Scholar
Ahmad, Q. R. et al. (SNO Collaboration). 2001. Measurements of the rate of νe + dp + p + e interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett., 87, 071301.CrossRefGoogle Scholar
Ahn, J. K. et al. (RENO Collaboration). 2012. Observation of reactor electron antineutrinos disappearance in the RENO experiment. Phys. Rev. Lett., 108, 191802.CrossRefGoogle ScholarPubMed
Aizenman, M. 1981. Proof of the triviality of field theory and some mean field features of Ising models for d > 4. Phys. Rev. Lett., 47, 14.CrossRefGoogle Scholar
Aizenman, M., and Duminil-Copin, H. 2021. Marginal triviality of the scaling limits of critical 4D Ising and φ4 models. Ann. Math., 194, 163235.CrossRefGoogle Scholar
Aker, M. et al. (KATRIN Collaboration). 2019. Improved upper limit on the neutrino mass from a direct kinematic method by KATRIN. Phys. Rev. Lett., 123, 221802.CrossRefGoogle ScholarPubMed
Akiba, T., Kikuchi, H., and Yanagida, T. 1988. Static minimum-energy path from a vacuum to a sphaleron in the Weinberg–Salam model. Phys. Rev. D, 38, 19371941.CrossRefGoogle ScholarPubMed
Albrecht, A., and Steinhardt, P. J. 1982. Cosmology for Grand Unified Theories with radiatively induced symmetry breaking. Phys. Rev. Lett., 48, 12201223.CrossRefGoogle Scholar
Alekseev, A. Y., Cheianov, V. V., and Fröhlich, J. 1998. Universality of transport properties in equilibrium, the Goldstone theorem, and chiral anomaly. Phys. Rev. Lett., 81, 35033506.CrossRefGoogle Scholar
Altarelli, G., and Parisi, G. 1977. Asymptotic freedom in parton language. Nucl. Phys. B, 126, 298318.CrossRefGoogle Scholar
Alvarez-Gaumé, L., and Witten, E. 1984. Gravitational anomalies. Nucl. Phys. B, 234, 269330.CrossRefGoogle Scholar
Amit, D. J. 1978. Field Theory, the Renormalization Group and Critical Phenomena. McGraw-Hill.Google Scholar
An, F. P. et al. (Daya Bay Collaboration). 2012. Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett., 108, 171803.CrossRefGoogle ScholarPubMed
Anderson, C. D. 1933. The positive electron. Phys. Rev., 43, 491498.CrossRefGoogle Scholar
Anderson, P. W. 1963. Plasmons, gauge invariance, and mass. Phys. Rev., 130, 439442.CrossRefGoogle Scholar
Antoine, J.-P., and Speiser, D. 1964a. Characters of irreducible representations of the sim-ple groups. I. General theory. J. Math. Phys., 5, 12261234.CrossRefGoogle Scholar
Antoine, J.-P., and Speiser, D. 1964b. Characters of irreducible representations of the simple groups. II. Application to classical groups. J. Math. Phys., 5, 15601572.CrossRefGoogle Scholar
Aoki, S. et al. (Flavour Lattice Averaging Group, FLAG). 2020. FLAG Review 2019. Eur. Phys. J. C, 80, 113.Google Scholar
Aoki, Y. et al. (Flavor Lattice Averaging Group, FLAG), 2022, FLAG Review 2021, Eur. Phys. J. C., 82, 869.CrossRefGoogle Scholar
Arnold, P. B., and McLerran, L. D. 1987. Sphalerons, small fluctuations and baryon number violation in electroweak theory. Phys. Rev. D, 36, 581595.CrossRefGoogle ScholarPubMed
Arnold, V. I. 1978. Methods of Classical Mechanics. Springer.CrossRefGoogle Scholar
Asaka, T., Buchmüller, W., and Covi, L. 2001. Gauge unification in six dimensions. Phys. Lett. B, 523, 199204.CrossRefGoogle Scholar
Ashman, J. et al. (European Muon Collaboration). 1988. A measurement of the spin asymmetry and determination of the structure function g1 in deep inelastic muon-proton scattering. Phys. Lett. B, 206, 364370.CrossRefGoogle Scholar
Atiyah, M. F., and Singer, I. M. 1963. The index of elliptic operators on compact manifolds. Bull. Amer. Math. Soc., 69, 442433.CrossRefGoogle Scholar
Aubert, B., et al. 2001. Observation of CP violation in the B0 meson system. Phys. Rev. Lett., 87, 091801.CrossRefGoogle ScholarPubMed
Bañuls, M. C., et al. 2020. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D, 74, 165.CrossRefGoogle Scholar
Bailey, S., Cridge, T., Harland-Lang, L. A., Martin, A. D., and Thorne, R. S. 2021. Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs. Eur. Phys. J. C, 81, 341.CrossRefGoogle Scholar
Baker, C. A. et al. 2006. Improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett., 97, 131801.CrossRefGoogle ScholarPubMed
Banks, T., and Zaks, A. 1982. On the phase structure of vector-like gauge theories with massless fermions. Nucl. Phys. B, 196, 189204.CrossRefGoogle Scholar
Bär, O. 2003. On Witten’s global anomaly for higher SU(2) representations. Nucl. Phys. B, 650, 522542.CrossRefGoogle Scholar
Bär, O., and Campos, I. 2000. Global anomalies in chiral gauge theories on the lattice. Nucl. Phys. B, 581, 499519.CrossRefGoogle Scholar
Bär, O., and Wiese, U.-J. 2001. Can one see the number of colors? Nucl. Phys. B, 609, 225246.CrossRefGoogle Scholar
Bär, O., Imboden, M., and Wiese, U.-J. 2004. Pions versus magnons: From QCD to antiferromagnets and quantum Hall ferromagnets. Nucl. Phys. B, 686, 347376.CrossRefGoogle Scholar
Bardeen, J., Cooper, L. N., and Schrieffer, J. R. 1957. Theory of superconductivity. Phys. Rev., 108, 11751204.CrossRefGoogle Scholar
Bazavov, A. et al. (HotQCD Collaboration). 2019. Chiral crossover in QCD at zero and non-zero chemical potentials. Phys. Lett. B, 795, 1521.CrossRefGoogle Scholar
Becchi, C., Rouet, A., and Stora, R. 1974. The Abelian Higgs-Kibble model. Unitarity of the S operator. Phys. Lett. B, 52, 344346.CrossRefGoogle Scholar
Becchi, C., Rouet, A., and Stora, R. 1975. Renormalization of the Abelian Higgs-Kibble model. Commun. Math. Phys., 42, 127162.CrossRefGoogle Scholar
Becchi, C., Rouet, A., and Stora, R. 1976. Renormalization of gauge theories. Ann. Phys., 98, 287321.CrossRefGoogle Scholar
Becher, P., Böhm, M., and Joos, H. 1983. Eichtheorien der starken und elektroschwachen Wechselwirkung. Teubner.Google Scholar
Becher, T., and Leutwyler, H. 1999. Baryon chiral perturbation theory in manifestly Lorentz invariant form. Eur. Phys. J. C, 9, 643671.CrossRefGoogle Scholar
Belavin, A. A., Polyakov, A. M., Schwartz, A. S., and Tyupkin, Yu. S. 1975. Pseudoparticle solutions of the Yang–Mills equations. Phys. Lett. B, 59, 8587.CrossRefGoogle Scholar
Bell, J. S. 1955. Time reversal in field theory. Proc. R. Soc. Lond., 231, 479495.Google Scholar
Bell, J. S., and Jackiw, R. 1969. A PCAC pule: π 0γγ in the σ-model. Nuovo Cimento A, 60, 4761.CrossRefGoogle Scholar
Bell, T. L., and Wilson, K. G. 1975. Finite-lattice approximations to renormalization groups. Phys. Rev. B, 11, 34313445.CrossRefGoogle Scholar
Benioff, P. 1980. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys., 22, 563591.CrossRefGoogle Scholar
Berezin, F. A. 1966. The Method of Second Quantization. Academic Press.Google Scholar
Berezinski˘ı, V. L. 1970. Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems. Zh. Eksp. Teor. Fiz., 59, 907–920 [Sov. Phys. JETP 32 (1971) 493–500].Google Scholar
Berezinski˘ı, V. L. 1971. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems. Zh. Eksp. Teor. Fiz., 61, 1144–1156 [Sov. Phys. JETP 34 (1972) 610–616].Google Scholar
Bernard, V., and Meißner, U.-G. 2007. Chiral perturbation theory. Annu. Rev. Nucl. Part. Sci., 57, 3360.CrossRefGoogle Scholar
Bernard, V., Kaiser, N., Kambor, J., and Meißner, U.-G. 1992. Chiral structure of the nucleon. Nucl. Phys. B, 388, 315345.CrossRefGoogle Scholar
Berry, M. V. 1980. Exact Aharonov–Bohm wavefunction obtained by applying Dirac’s magnetic phase factor. Eur. J. Phys., 1, 244248.CrossRefGoogle Scholar
Bethe, H. A. 1931. Zur Theorie der Metalle. Z. Phys., 71, 205226.CrossRefGoogle Scholar
Bhattacharya, T. et al. (HotQCD Collaboration). 2014. QCD phase transition with chiral quarks and physical quark masses. Phys. Rev. Lett., 113, 082001.CrossRefGoogle ScholarPubMed
Bietenholz, W. 1999. Solutions of the Ginsparg–Wilson relation and improved domain wall fermions. Eur. Phys. J. C, 6, 537547.CrossRefGoogle Scholar
Bietenholz, W. 2002. Convergence rate and locality of improved overlap fermions. Nucl. Phys. B, 644, 223247.CrossRefGoogle Scholar
Bietenholz, W. 2011. Cosmic rays and the search for a Lorentz invariance violation. Phys. Rep., 505, 145185.CrossRefGoogle Scholar
Bietenholz, W. 2021. From Ramanujan to renormalization: The art of doing away with divergences and arriving at physical results. Rev. Mex. Fís. E, 18, 020203.Google Scholar
Bietenholz, W., and Hip, I. 2000. The Scaling of exact and approximate Ginsparg–Wilson fermions. Nucl. Phys. B, 570, 423451.CrossRefGoogle Scholar
Bietenholz, W., and Prado, L. 2014. Revolutionary physics in reactionary Argentina. Physics Today, 67(2), 3842.CrossRefGoogle Scholar
Bietenholz, W., and Wiese, U.-J. 1996a. A perturbative construction of lattice chiral fermions. Phys. Lett. B, 378, 222226.CrossRefGoogle Scholar
Bietenholz, W., and Wiese, U.-J. 1996b. Perfect lattice actions for quarks and gluons. Nucl. Phys. B, 464, 319350.CrossRefGoogle Scholar
Bietenholz, W., Pochinsky, A., and Wiese, U.-J. 1995. Meron-cluster simulation of the θ vacuum in the 2D O(3) model. Phys. Rev. Lett., 75, 45244527.CrossRefGoogle Scholar
Bijnens, J. 1993. Chiral perturbation theory and anomalous processes. Int. J. Mod. Phys. A, 8, 30453105.CrossRefGoogle Scholar
Bjorken, J. D. 1969. Asymptotic sum rules at infinite momentum. Phys. Rev., 179, 15471553.CrossRefGoogle Scholar
Blatt, R., and Roos, C. F. 2012. Quantum simulations with trapped ions. Nature Phys., 8, 277284.CrossRefGoogle Scholar
Bloch, F., and Nordsieck, A. 1937. Note on the radiation field of the electron. Rev. Phys., 52, 5459.CrossRefGoogle Scholar
Bloom, E. D. et al. 1969. High-Energy inelastic ep scattering at 6 and 10. Phys. Rev. Lett., 23, 930934.CrossRefGoogle Scholar
Blundell, S. J., and Blundell, K. M. 2008. Concepts in Thermal Physics. Oxford University Press.Google Scholar
Bödeker, D., and Buchmüller, W. 2021. Baryogenesis from the weak scale to the grand unification scale. Rev. Mod. Phys., 93, 035004.CrossRefGoogle Scholar
Bogoliubov, N. N., and Parasiuk, O. S. 1957. Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder. Acta Math., 97, 227266.CrossRefGoogle Scholar
Bogoliubov, N. N., Struminski, B. V., and Tavkhelidze, A. N. 1964. To the composite models (in Russian). Preprint JINR D-1968.Google Scholar
Bogoliubov, N. N., Tolmachov, V. V., and S˘ irkov, D. V. 1958. A new method in the theory of superconductivity. Fortschr. Phys., 6, 605–682.Google Scholar
Bollini, C. G., and Giambiagi, J. J. 1972a. Dimensional renormalization: The number of dimensions as a regularizing parameter. Nuovo Cimento B, 12, 2026.CrossRefGoogle Scholar
Bollini, C. G., and Giambiagi, J. J. 1972b. Lowest order “divergent” graphs in νdimensional space. Phys. Lett. B, 40, 566568.CrossRefGoogle Scholar
Borasoy, B. 2004. The number of colors in the decays π 0, η, η´ → γγ. Eur. Phys. J. C, 34, 317–326.Google Scholar
Borasoy, B., and Lipartia, E. 2005. Can one see the number of colors in η, η´ → π +π γ ? Phys. Rev. D, 71, 014027.CrossRefGoogle Scholar
Borgs, C., and Nill, F. 1987. The phase diagram of the Abelian lattice Higgs model. A review of rigorous results. J. Stat. Phys., 47, 877904.CrossRefGoogle Scholar
Borsanyi, S. et al. (Wuppertal-Budapest Collaboration). 2010. Is there still any Tc mystery in lattice QCD? Results with physical masses in the continuum limit III. JHEP, 1009, 073.CrossRefGoogle Scholar
Brandt, F., Dragon, N., and Kreuzer, M. 1989. All consistent Yang–Mills anomalies. Phys. Lett. B, 231, 263270.CrossRefGoogle Scholar
Brandt, F., Dragon, N., and Kreuzer, M. 1990a. Completeness and nontriviality of the solutions of the consistency conditions. Nucl. Phys. B, 332, 224249.CrossRefGoogle Scholar
Brandt, F., Dragon, N., and Kreuzer, M. 1990b. Lie algebra cohomology. Nucl. Phys. B, 332, 250260.CrossRefGoogle Scholar
Brandt, F., Barnich, G., and Henneaux, M. 2000. Local BRST cohomology in gauge theories. Phys. Rep., 338, 439569.Google Scholar
Breidenbach, M. et al. 1969. Observed behavior of highly inelastic electron-proton scattering. Phys. Rev. Lett., 23, 935939.CrossRefGoogle Scholar
Bressi, G., Carugno, G., Onofrio, R., and Ruoso, G. 2002. Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett., 88, 041804.CrossRefGoogle ScholarPubMed
Brézin, E., and Zinn-Justin, J. 1976. Spontaneous breakdown of continuous symmetries near two dimensions. Phys. Rev. B, 14, 31103120.CrossRefGoogle Scholar
Brock, R. et al. 1995. Handbook of perturbative QCD: Version 1.0. Rev. Mod. Phys., 67, 157248.Google Scholar
Brown, F. R., Christ, N. H., Deng, Y., Gao, M., and Woch, T. J. 1988. Nature of the deconfining phase transition in SU(3) lattice gauge theory. Phys. Rev. Lett., 61, 20582061.CrossRefGoogle Scholar
Bruno, M. et al. (ALPHA collaboration). 2016. The strong coupling from a nonperturbative determination of the Λ parameter in three-flavor QCD. Phys. Rev. Lett., 119, 102001.CrossRefGoogle Scholar
Buchbinder, I. L., and Shapiro, I. L. 2021. Introduction to Quantum Field Theory with Applications to Quantum Gravity. Oxford University Press.CrossRefGoogle Scholar
Buchbinder, I. L., Odintsov, S. D., and Shapiro, I. L. 1992. Effective Action in Quantum Gravity. Taylor & Francis Group.Google Scholar
Buchholz, D. 1982. The physical state space of Quantum Electrodynamics. Commun. Math. Phys., 85, 4971.CrossRefGoogle Scholar
Buchholz, D. 2013. Massless particles and arrow of time in relativistic quantum field theory. In: Raum und Materie. Ev. Studienwerk Villigst.Google Scholar
Buchholz, D., and Roberts, J. E. 2014. New light on infrared problems: Sectors, statistics, symmetries and spectrum. Commun. Math. Phys., 330, 935972.CrossRefGoogle Scholar
Buchmüller, W., and Wyler, D. 1986. Effective Lagrangian analysis of new interactions and flavour conservation. Nucl. Phys. B, 268, 621653.CrossRefGoogle Scholar
Buchmüller, W., Greub, C., and Minkowski, P. 1991. Neutrino masses, neutral vector bosons and the scale of BL breaking. Phys. Lett. B, 267, 395399.CrossRefGoogle Scholar
Buchmüller, W., Peccei, R. D., and Yanagida, T. 2005a. Leptogenesis as the origin of matter. Ann. Rev. Nucl. Part. Sci., 55, 311355.CrossRefGoogle Scholar
Buchmüller, W., Di Bari, P., and Plumacher, M. 2005b. Leptogenesis for pedestrians. Ann. Phys. (N. Y.), 315, 305351.CrossRefGoogle Scholar
Buras, A. J., Ellis, J., Gaillard, M. K., and Nanopoulos, D. V. 1978. Aspects of the grand unification of strong, weak and electromagnetic interactions. Nucl. Phys. B, 135, 6692.CrossRefGoogle Scholar
Cabibbo, N. 1963. Unitary symmetry and leptonic decays. Phys. Rev. Lett., 10, 531533.CrossRefGoogle Scholar
Callan, C. G. 1970. Broken scale invariance in scalar field theory. Phys. Rev. D, 2, 15411547.CrossRefGoogle Scholar
Callan, C. G. 1983. Monopole catalysis of baryon decay. Nucl. Phys. B, 212, 391400.CrossRefGoogle Scholar
Callan, C. G., and Gross, D. J. 1969. High-energy electroproduction and the constitution of the electric current. Phys. Rev. Lett., 22, 156159.CrossRefGoogle Scholar
Callan, C. G., and Harvey, J. A. 1985. Anomalies and fermion zero modes on strings and domain walls. Nucl. Phys. B, 250, 427436.CrossRefGoogle Scholar
Callan, C. G., and Witten, E. 1984. Monopole catalysis of skyrmion decay. Nucl. Phys. B, 239, 161176.CrossRefGoogle Scholar
Callan, C. G., Coleman, S., Wess, J., and Zumino, B. 1969. Structure of phenomenological Lagrangians. II. Phys. Rev., 177, 22472250.CrossRefGoogle Scholar
Callan, C. G., Dashen, R. F., and Gross, D. J. 1976. The structure of the gauge theory vacuum. Phys. Lett. B, 63, 334340.CrossRefGoogle Scholar
Callaway, D. J. E. 1988. Triviality pursuit: Can elementary scalar particles exist? Phys. Rep., 167, 241320.CrossRefGoogle Scholar
Campbell, J., Huston, J., and Krauss, F. 2018. The Black Book of Quantum Chromodynamics: A Primer for the LHC Era. Oxford University Press.Google Scholar
Campostrini, M., Hasenbusch, M., Pelissetto, A., Rossi, P., and Vicari, E. 2002. Critical exponents and equation of state of the three-dimensional Heisenberg universality class. Phys. Rev. B, 65, 144520.CrossRefGoogle Scholar
Campostrini, M., Hasenbusch, M., Pelissetto, A., and Vicari, E. 2006. Theoretical estimates of the critical exponents of the superfluid transition in 4He by lattice methods. Phys. Rev. B, 74, 144506.CrossRefGoogle Scholar
Capitani, S. 2003. Lattice perturbation theory. Phys. Rep., 382, 113302.CrossRefGoogle Scholar
Carroll, S. M. 2001. The cosmological constant. Living Rev. Rel., 4:1, 156.CrossRefGoogle ScholarPubMed
Casimir, H. B. G. 1948. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetensch. B, 51, 793795.Google Scholar
Casimir, H. B. G., and Polder, D. 1948. The influence of retardation on the London–van der Waals Forces. Phys. Rev., 73, 360372.CrossRefGoogle Scholar
Caswell, W. E. 1974. Asymptotic behavior of non-Abelian gauge theories to two loop order. Phys. Rev. Lett., 33, 244246.CrossRefGoogle Scholar
Catterall, S., Kaplan, D. B., and Ünsal, M. 2009. Exact lattice supersymmetry. Phys. Rep., 484, 71130.CrossRefGoogle Scholar
, M., Consonni, C., Engel, G. P., and Giusti, L. 2015. Non-Gaussianities in the topological charge distribution of the SU(3) Yang–Mills theory. Phys. Rev. D, 92, 074502.CrossRefGoogle Scholar
, M., García Vera, M., Giusti, L., and Schaefer, S. 2016. The topological susceptibility in the large-N limit of SU(N) Yang–Mills theory. Phys. Lett. B, 762, 232236.CrossRefGoogle Scholar
Chakravarty, S., Nelson, D. R., and Halperin, B. I. 1988. Low temperature behavior of two-dimensional quantum antiferromagnets. Phys. Rev. Lett., 60, 10571060.CrossRefGoogle ScholarPubMed
Chakravarty, S., Nelson, D. R., and Halperin, B. I. 1989. Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. Phys. Rev. B, 39, 23442371.CrossRefGoogle ScholarPubMed
Chandrasekharan, S., and Wiese, U.-J. 1999. Meron-cluster solution of fermion sign problems. Phys. Rev. Lett., 83, 31163119.CrossRefGoogle Scholar
Chin, C., Grimm, R., Julienne, P., and Tiesinga, E. 2010. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82, 12251286.CrossRefGoogle Scholar
Clerk Maxwell, J. 1865. A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London, 155, 459512.Google Scholar
Clowe, D. et al. 2006. A direct empirical proof of the existence of dark matter. Astrophys. J., 648, L109L113.CrossRefGoogle Scholar
Coleman, S. 1985. Aspects of Symmetry. Cambridge University Press.CrossRefGoogle Scholar
Coleman, S., Wess, J., and Zumino, B. 1969. Structure of phenomenological Lagrangians. I. Phys. Rev., 177, 22392247.CrossRefGoogle Scholar
Coleman, S. R. 1973. There are no Goldstone bosons in two dimensions. Commun. Math. Phys., 31, 259264.CrossRefGoogle Scholar
Collins, J. C., Soper, D. E., and Sterman, G. F. 1985. Factorization for short distance hadron-hadron scattering. Nucl. Phys. B, 261, 104142.CrossRefGoogle Scholar
Collins, J. C., Soper, D. E., and Sterman, G. F. 1989. Factorization of hard processes in QCD. Adv. Ser. Direct. High Energy Phys., 5, 191.CrossRefGoogle Scholar
Creutz, M. 1977. Gauge fixing, the transfer matrix, and confinement on a lattice. Phys. Rev. D, 15, 11281136.CrossRefGoogle Scholar
Creutz, M. 1983. Quarks, Gluons and Lattices. Cambridge University Press.Google Scholar
Creutz, M. 2011. Minimal doubling and point splitting. PoS LATTICE2010, 078.Google Scholar
Crewther, R. J. 1977. Chirality selection rules and the U(1) problem. Phys. Lett. B, 70, 349354.CrossRefGoogle Scholar
Crewther, R. J., Di Vecchia, P., Veneziano, G., and Witten, E. 1979. Chiral estimate of the electric dipole moment of the neutron in Quantum Chromodynamics. Phys. Lett. B, 88, 123127.CrossRefGoogle Scholar
Cunqueiro, L., and Sickles, A. M. 2022. Studying the QGP with jets at the LHC and RHIC. Prog. Part. Nucl. Phys., 124, 103940.CrossRefGoogle Scholar
Currie, D. G., Jordan, T. F., and Sudarshan, E.C.G. 1963. Relativistic invariance and Hamiltonian theories of interacting particles. Rev. Mod. Phys., 35, 350375.CrossRefGoogle Scholar
D’Ambrosio, G., Giudice, G. F., Isidori, G., and Strumia, A. 2002. Minimal flavour violation: an effective field theory approach. Nucl. Phys. B, 645, 155187.CrossRefGoogle Scholar
Dashen, R. 1969. Chiral SU(3) ⊗ SU(3) as a symmetry of the strong interactions. Phys. Rev., 183, 12451260.CrossRefGoogle Scholar
Dashen, R. 1971. Some features of chiral symmetry breaking. Phys. Rev. D, 3, 18791889.CrossRefGoogle Scholar
Davis, R., Harmer, D. S., and Hoffman, K. C. 1968. Search for neutrinos from the sun. Phys. Rev. Lett., 20, 12051209.CrossRefGoogle Scholar
de Gennes, P-G. 1999. Superconductivity of Metals and Alloys. Perseus Books.Google Scholar
Debye, P. 1912. Zur Theorie der spezifischen Wärme. Annalen der Physik, 39, 789839.CrossRefGoogle Scholar
DeGrand, T., and DeTar, C. 2006. Lattice Methods for Quantum Chromodynamics. World Scientific.CrossRefGoogle Scholar
Del Debbio, L., Giusti, L., and Pica, C. 2005. Topological susceptibility in the SU(3) gauge theory. Phys. Rev. Lett., 94, 032003.CrossRefGoogle ScholarPubMed
Deutsch, D. 1985. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A, 400, 97117.Google Scholar
D’Hoker, E., and Farhi, E. 1984a. The decay of the skyrmion. Phys. Lett. B, 134, 8690.CrossRefGoogle Scholar
D’Hoker, E., and Farhi, E. 1984b. Skyrmions and/in the weak interactions. Nucl. Phys. B, 241, 109128.CrossRefGoogle Scholar
Di Francesco, P., Mathieu, P., and Sénéchal, D. 1997. Conformal Field Theory. Springer.CrossRefGoogle Scholar
Dimopoulos, S., Raby, S. A., and Wilczek, F. 1981. Supersymmetry and the scale of unification. Phys. Rev. D, 24, 16811683.CrossRefGoogle Scholar
Dine, M., Fischler, W., and Srednicki, M. 1981. A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B, 104, 199202.CrossRefGoogle Scholar
Dirac, P. A. M. 1928. The quantum theory of the electron. Pages 610–624 of: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 117.Google Scholar
Dirac, P. A. M. 1930. A theory of electrons and protons. Proc. R. Soc. A, 126, 360365.Google Scholar
Dirac, P. A. M. 1931. Quantised singularities in the electromagnetic field. Proc. Roy. Soc. (London) A, 133, 6072.Google Scholar
Dirac, P. A. M. 1933. The Lagrangian in quantum mechanics. Phys. Zeitschrift der Sowjetunion, 3, 6472.Google Scholar
Dirac, P. A. M. 1964. Lectures on Quantum Mechanics. Belfer Graduate School of Science, Yeshiva University.Google Scholar
Dokshitzer, Y. L. 1977. Calculation of the structure functions for deep inelastic scattering and e+e annihilation by perturbation theory in Quantum Chromodynamics. Zh. Eksp. Teor. Fiz., 73, 12161240 [Sov. Phys. JETP 46 (1977) 641–653].Google Scholar
Donoghue, J. F. 2012. The effective field theory treatment of quantum gravity. AIP Conf. Proc., 1483, 73–94.Google Scholar
Donoghue, J. F., and Holstein, B. R. 2015. Low energy theorems of quantum gravity from effective field theory. J. Phys. G, 42, 103102.CrossRefGoogle Scholar
Drell, S. D., Weinstein, M., and Yankielowicz, S. 1976. Strong coupling field theories. 2. Fermions and gauge fields on a lattice. Phys. Rev. D, 14, 16271647.CrossRefGoogle Scholar
Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. 1987. Hybrid Monte Carlo. Phys. Lett. B, 195, 216222.CrossRefGoogle Scholar
Dürr, S., Fodor, Z., Hoelbling, C., and Kurth, T. 2007. Precision study of the SU(3) topological susceptibility in the continuum. JHEP, 04, 055.CrossRefGoogle Scholar
Dürr, S. et al. 2008. Ab initio determination of light hadron masses. Science, 322, 12241227.CrossRefGoogle ScholarPubMed
Dyson, F. 1949a. The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev., 75, 486502.CrossRefGoogle Scholar
Dyson, F. 1949b. The S matrix in Quantum Electrodynamics. Phys. Rev., 75, 17361755.CrossRefGoogle Scholar
Ehrenfest, P. 1933. Phasenumwandlungen im üblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitäten des thermodynamischen Potentiales. Verhandelingen der Koninklijke Akademie van Wetenschappen, 36, 153157.Google Scholar
Einstein, A. 1905. Zur Elektrodynamik bewegter Körper. Annalen der Physik, 17, 891921.CrossRefGoogle Scholar
Einstein, A. 1915. Die Feldgleichungen der Gravitation. Sitzungsberichte der Preußischen Akademie der Wissenschaften zu Berlin, 844847.Google Scholar
Einstein, A. 1916. Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 354, 769822.CrossRefGoogle Scholar
El-Showk, S., Paulos, M. F., Poland, D., Rychkov, S., Simmons-Duffin, D., and Vichi, A. 2012. Solving the 3D Ising model with the conformal bootstrap. Phys. Rev. D, 86, 025022.CrossRefGoogle Scholar
El-Showk, S., Paulos, M. F., Poland, D., Rychkov, S., Simmons-Duffin, D., and Vichi, A. 2014. Solving the 3d Ising model with the conformal bootstrap II. c-Minimization and precise critical exponents. J. Stat. Phys., 157, 869914.CrossRefGoogle Scholar
Elitzur, S. 1975. Impossibility of spontaneously breaking local symmetries. Phys. Rev. D, 12, 39783982.CrossRefGoogle Scholar
Engels, J., Karsch, F., Satz, H., and Montvay, I. 1982. Gauge field thermodynamics for the SU(2) Yang–Mills system. Nucl. Phys. B, 205, 545577.CrossRefGoogle Scholar
Englert, F., and Brout, R. 1964. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett., 13, 321323.CrossRefGoogle Scholar
Enz, C. P., and Meyenn, K. (editors). 1994. Wolfgang Pauli. Springer.Google Scholar
Faddeev, L. D., and Popov, V. 1967. Feynman diagrams for the Yang–Mills field. Phys. Lett. B, 25, 2930.CrossRefGoogle Scholar
Fermi, E. 1934. Versuch einer Theorie der β-Strahlen. I. Z. Phys., 88, 161177.Google Scholar
Fernández, R., Fröhlich, J., and Sokal, A. D. 1992. Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer.CrossRefGoogle Scholar
Feshbach, H. 1958. Unified theory of nuclear reactions. Ann. Phys. (NY), 5, 357390.CrossRefGoogle Scholar
Feynman, R. P. 1948. Space–time approach to non-relativistic quantum mechanics. Rev. Mod. Phys., 20, 367387.CrossRefGoogle Scholar
Feynman, R. P. 1949a. The theory of positrons. Phys. Rev., 76, 749759.CrossRefGoogle Scholar
Feynman, R. P. 1949b. Space–time approach to quantum electrodynamics. Phys. Rev., 76, 769789.CrossRefGoogle Scholar
Feynman, R. P. 1963. Quantum theory of gravitation. Acta Phys. Polon., 24, 697722.Google Scholar
Feynman, R. P. 1969. Very high-energy collisions of hadrons. Phys. Rev. Lett., 23, 14151417.CrossRefGoogle Scholar
Feynman, R. P. 1982. Simulating physics with computers. Int. J. Theor. Phys., 21, 467488.CrossRefGoogle Scholar
Feynman, R. P., and Hibbs, A. 1965. Quantum Physics and Path Integrals. Mc. Graw Hill.Google Scholar
Fierz, M. 1939. Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin. Helv. Phys. Acta, 12, 3–37.Google Scholar
Fisher, M. E., and Barber, M. N. 1972. Scaling theory for finite-size effects in the critical region. Phys. Rev. Lett., 28, 15161519.CrossRefGoogle Scholar
Fock, V. 1926. Über die invariante Form der Wellenund Bewegungsgleichungen für einen geladenen Massenpunkt. Z. Phys., 39, 226232.CrossRefGoogle Scholar
Fodor, Z., Holland, K., Kuti, J., Nogradi, D., and Schroeder, C. 2008. New Higgs physics from the lattice. PoS LATTICE2007, 056.Google Scholar
Fradkin, E., and Shenker, S. H. 1979. Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev. D, 19, 36823697.CrossRefGoogle Scholar
Fredenhagen, K., and Marcu, M. 1986. Confinement criterion for QCD with dynamical quarks. Phys. Rev. Lett., 56, 223224.CrossRefGoogle ScholarPubMed
Fritzsch, H., and Minkowski, P. 1975. Unified interactions of leptons and hadrons. Ann. Phys. (N. Y.), 93, 193266.CrossRefGoogle Scholar
Fritzsch, H., Gell-Mann, M., and Leutwyler, H. 1973. Advantages of the color octet gluon picture. Phys. Lett. B, 47, 365368.CrossRefGoogle Scholar
Fröhlich, J. 1973. On the infrared problem in a model of scalar electrons and massless, scalar bosons. Ann. Inst. Henri Poincaré, Section Physique Théorique, 19, 1–103.Google Scholar
Fröhlich, J. 1982. On the triviality of λφ4 theories and the approach to the critical point in d(‒) > 4 dimensions. Nucl. Phys. B, 200, 281296.CrossRefGoogle Scholar
Fröhlich, J., and Pedrini, B. 2000. New applications of the chiral anomaly. Pages 9–47 of: Fokas, A., Grigoryan, A., Kibble, T., and Zegarlinski, B. (eds), Mathematical Physics 2000. Imperial College Press.Google Scholar
Fröhlich, J., and Studer, U. M. 1993. Gauge invariance and current algebra in nonrelativistic many body theory. Rev. Mod. Phys., 65, 733802.CrossRefGoogle Scholar
Fröhlich, J., Morchio, G., and Strocchi, F. 1979. Charged sectors and scattering states in Quantum Electrodynamics. Ann. Phys. (NY), 119, 241284.CrossRefGoogle Scholar
Frolov, S. A., and Slavnov, A. A. 1994. Removing fermion doublers in chiral gauge theories on the lattice. Nucl. Phys. B, 411, 647664.CrossRefGoogle Scholar
Fujikawa, K., and Suzuki, H. 2004. Path Integrals and Quantum Anomalies. Clarendon Press.CrossRefGoogle Scholar
Fukuda, H., and Miyamoto, Y. 1949. On the γ-decay of neutral meson. Prog. Theor. Phys., 4, 347357.CrossRefGoogle Scholar
Fukuda, Y. et al. (Super-Kamiokande Collaboration). 1998. Measurements of the solar neutrino flux from Super-Kamiokande’s first 300 days [Erratum: Phys. Rev. Lett. 81 (1998) 4279]. Phys. Rev. Lett., 81, 1158.CrossRefGoogle Scholar
Fukugita, M., Okawa, M., and Ukawa, A. 1989. Order of the deconfining phase transition in SU(3) lattice gauge theory. Phys. Rev. Lett., 63, 17681771.CrossRefGoogle Scholar
Furry, W. H. 1939. On transition probabilities in double beta-disintegration. Phys. Rev., 56, 11841193.CrossRefGoogle Scholar
Gao, H., and Vanderhaeghen, M. 2022. The proton charge radius. Rev. Mod. Phys., 94, 015002.CrossRefGoogle Scholar
Gasser, J., and Leutwyler, H. 1984. Chiral perturbation theory to one loop. Ann. Phys. (NY), 158, 142210.CrossRefGoogle Scholar
Gasser, J., and Leutwyler, H. 1985. Chiral perturbation theory: Expansions in the mass of the strange quark. Nucl. Phys. B, 250, 465516.CrossRefGoogle Scholar
Gasser, J., Sainio, M. E., and Sˇvarc, A. 1988. Nucleons with chiral loops. Nucl. Phys. B, 307, 779853.CrossRefGoogle Scholar
Gasser, J., Leutwyler, H., and Rusetsky, A. 2021. On the mass difference between proton and neutron. Phys. Lett. B, 814, 136087.CrossRefGoogle Scholar
Gattringer, G., and Lang, C. B. 2009. Quantum Chromodynamics on the Lattice. Springer.Google Scholar
Gell-Mann, M. 1961. The Eightfold Way: A theory of strong interaction symmetry. Syn-chrotron Laboratory Report CTSL-20.CrossRefGoogle Scholar
Gell-Mann, M. 1964. A schematic model of baryons and mesons. Phys. Lett. B, 8, 214215.CrossRefGoogle Scholar
Gell-Mann, M., Oakes, R. J., and Renner, B. 1968. Behavior of current divergences under SU3 × SU3. Phys. Rev., 175, 21952199.CrossRefGoogle Scholar
Gell-Mann, M., Ramond, P., and Slansky, R. 1979. Complex spinors and unified theories. Pages 315–321 of: van Nieuwenhuizen, P., and Freedman, D. Z. (eds), Supergravity. North Holland Publishing Company.Google Scholar
Georgi, H. 1975. The state of the art – Gauge theories. AIP Conf. Proc., 23, 575–582.Google Scholar
Georgi, H., and Glashow, S. L. 1974. Unity of all elementary particle forces. Phys. Rev. Lett., 32, 438441.CrossRefGoogle Scholar
Georgi, H., Quinn, H.R., and Weinberg, S. 1974. Hierarchy of interactions in unified gauge theories. Phys. Rev. Lett., 33, 451454.CrossRefGoogle Scholar
Gerard, J. M., and Lahna, T. 1995. The asymptotic behavior of the π 0γ* γ* vertex. Phys. Lett. B, 356, 381385.CrossRefGoogle Scholar
Gervais, J. L., and Sakita, B. 1971. Field theory interpretation of supergauges in dual models. Nucl. Phys. B, 34, 632639.CrossRefGoogle Scholar
Ginsparg, P. H., and Wilson, K. G. 1982. A remnant of chiral symmetry on the lattice. Phys. Rev. D, 25, 26492657.CrossRefGoogle Scholar
Giuliani, A., and Poves, A. 2012. Neutrinoless double-beta decay. Adv. in High Energy Phys., 2012, 138.CrossRefGoogle Scholar
Giusti, L., Rossi, G. C., Testa, M., and Veneziano, G. 2002. The UA(1) problem on the lattice with Ginsparg–Wilson fermions. Nucl. Phys. B, 628, 234252.CrossRefGoogle Scholar
Giusti, L., Rossi, G. C., and Testa, M. 2004. Topological susceptibility in full QCD with Ginsparg–Wilson fermions. Phys. Lett. B, 587, 157166.CrossRefGoogle Scholar
Glashow, S. L. 1980. The future of elementary particle physics. NATO Sci. Ser. B, 61, 687713.Google Scholar
Glashow, S.L. 1961. Partial-symmetries of weak interactions. Nucl. Phys., 22, 579588.CrossRefGoogle Scholar
Glimm, J., and Jaffe, A. 1987. Quantum Physics: A Functional Integral Point of View. Springer.CrossRefGoogle Scholar
Göckeler, M., Laursen, M. L., Schierholz, G., and Wiese, U.-J. 1986. Topological charge of (lattice) gauge fields. Commun. Math. Phys., 107, 467481.CrossRefGoogle Scholar
Goldberger, M. L., and Treiman, S. B. 1958. Form factors in β decay and μ capture. Phys. Rev., 111, 354361.CrossRefGoogle Scholar
Goldstone, J. 1961. Field theories with “superconductor” solutions. Nuovo Cimento, 19, 154164.CrossRefGoogle Scholar
Goldstone, J., and Wilczek, F. 1981. Fractional quantum numbers on solitons. Phys. Rev. Lett, 47, 986989.CrossRefGoogle Scholar
Golfand, Yu. A., and Likhtman, E. P. 1971. Extension of the algebra of Poincaré group generators and violation of P invariance. JETP Lett., 13, 323326.Google Scholar
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W., and Bloch, I. 2002. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 415, 3944.CrossRefGoogle Scholar
Gribov, V. N. 1978. Quantization of non-Abelian gauge theories. Nucl. Phys. B, 139, 119.CrossRefGoogle Scholar
Gribov, V. N., and Lipatov, L. N. 1972. Deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys., 15, 438450.Google Scholar
Griffiths, R. B. 1967. Thermodynamic functions of fluids and ferromagnets near the critical point. Phys. Rev., 158, 176187.CrossRefGoogle Scholar
Gross, D. J., and Wilczek, F. 1973. Ultraviolet behavior of non-Abelian gauge theories. Phys. Rev. Lett., 30, 13231346.CrossRefGoogle Scholar
Grover, L. K. 1996. A fast quantum mechanical algorithm for database search. Pages 212–219 of: STOC ’96: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing. Association for Computing Machinery.Google Scholar
Grzadkowski, B., Iskrzyn’ski, M., Misiak, M, and Rosiek, J. 2010. Dimension-six terms in the Standard Model Lagrangian. JHEP, 85, 1–85.Google Scholar
Guralnik, G. S., Hagen, C R., and Kibble, T. W. B. 1964. Global conservation laws and massless particles. Phys. Rev. Lett., 13, 585587.CrossRefGoogle Scholar
Guth, A. H. 1981. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D, 23, 347356.CrossRefGoogle Scholar
Haag, R. 1958. Quantum field theories with composite particles and asymptotic conditions. Phys. Rev., 112, 669673.CrossRefGoogle Scholar
Haar, A. 1933. Der Massbegriff in der Theorie der kontinuierlichen Gruppen. Ann. Math., 2, 147169.CrossRefGoogle Scholar
Haldane, F. D. M. 1983. Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett., 50, 11531156.CrossRefGoogle Scholar
Han, M., and Nambu, Y. 1965. Three-triplet model with double SU(3) symmetry. Phys. Rev. B, 139, 10061010.CrossRefGoogle Scholar
Hasenfratz, A., and Hasenfratz, P. 1980. The connection between the Λ parameters of lattice and continuum QCD. Phys. Lett. B, 93, 165169.CrossRefGoogle Scholar
Hasenfratz, P. 1998. Lattice QCD without tuning, mixing and current renormalization. Nucl. Phys. B, 525, 401409.CrossRefGoogle Scholar
Hasenfratz, P., and Niedermayer, F. 1993. Finite size and temperature effects in the AF Heisenberg model. Z. Phys. B, 92, 91112.CrossRefGoogle Scholar
Hasenfratz, P., and Niedermayer, F. 1994. Perfect lattice action for asymptotically free theories. Nucl. Phys. B, 414, 785814.CrossRefGoogle Scholar
Hasenfratz, P., Laliena, V., and Niedermayer, F. 1998. The index theorem in QCD with a finite cut-off. Nucl. Lett. B, 427, 125131.CrossRefGoogle Scholar
Heisenberg, W. 1932. Über den Bau der Atomkerne. Z. Phys., 77, 111.CrossRefGoogle Scholar
Hepp, K. 1966. Proof of the Bogoliubov-Parasiuk theorem on renormalization. Commun. Math. Phys., 2, 301326.CrossRefGoogle Scholar
Herbut, I. 2007. A Modern Approach to Critical Phenomena. Cambridge University Press.CrossRefGoogle Scholar
Hernández, P., Jansen, K., and Lüscher, M. 1999. Locality properties of Neuberger’s lattice Dirac operator. Nucl. Phys. B, 552, 363378.CrossRefGoogle Scholar
Higgs, P. W. 1964a. Broken symmetries, massless particles and gauge fields. Phys. Lett., 12, 132133.CrossRefGoogle Scholar
Higgs, P. W. 1964b. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett., 13, 508509.CrossRefGoogle Scholar
Hilbert, D. 1915. Die Grundlagen der Physik. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 395407.Google Scholar
Hill, C. T., and Simmons, E. H. 2003. Strong dynamics and electroweak symmetry breaking. Phys. Rep., 381, 235402.CrossRefGoogle Scholar
Hohenberg, P. C. 1967. Existence of long-range order in one and two dimensions. Phys. Rev., 158, 383386.CrossRefGoogle Scholar
Holdom, B. 1981. Raising the sideways scale. Phys. Rev. D, 24, 14411444.CrossRefGoogle Scholar
Holland, K., and Wiese, U.-J. 2001. The center symmetry and its spontaneous breakdown at high temperatures. Pages 1909–1944 of: Shifman, M. (ed), Festschrift in honor of B.L. Ioffe. At the Frontier of Particle Physics. World Scientific.Google Scholar
Holland, K., Minkowski, P., Pepe, M., and Wiese, U.-J. 2003. Exceptional confinement in G(2) gauge theory. Nucl. Phys. B, 668, 207236.CrossRefGoogle Scholar
Hopf, H. 1931. Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Mathematische Annalen, 104, 637665.CrossRefGoogle Scholar
Hoyle, F. 1954. On nuclear reactions occurring in very hot stars. I. The synthesis of elements from carbon to nickel. Astrophys. J. Suppl. Series, 1, 121146.CrossRefGoogle Scholar
Hund, F. 1974. The History of Quantum Theory. Barnes & Noble Books.Google Scholar
Ioffe, B. L., Okun, L. B., and Rudik, A. P. 1957. The problem of parity non-conservation in weak interactions. JETP, 5, 328330.Google Scholar
Isgur, N., and Karl, G. 1977. Hyperfine interactions in negative parity baryons. Phys. Lett. B, 72, 109113.CrossRefGoogle Scholar
Isgur, N., and Karl, G. 1979. Ground-state baryons in a quark model with hyperfine interactions. Phys. Rev. D, 20, 11911194.CrossRefGoogle Scholar
Ising, E. 1925. Beitrag zur Theorie des Ferromagnetismus. Z. Phys., 31, 253258.CrossRefGoogle Scholar
Jackiw, R., and Rebbi, C. 1976. Vacuum periodicity in a Yang–Mills quantum theory. Phys. Rev. Lett., 37, 172175.CrossRefGoogle Scholar
Jaffe, R. 1995. Where does the proton really get its spin? Physics Today, 48, 2430.CrossRefGoogle Scholar
Jegerlehner, F. 2008. The Anomalous Magnetic Moment of the Muon. Springer.Google Scholar
Jenkins, E., and Manohar, A. V. 1991. Baryon chiral perturbation theory using a heavy fermion lagrangian. Phys. Lett. B, 255, 558562.CrossRefGoogle Scholar
Jenkins, E. E., Manohar, A. V., and Stoffer, P. 2018. Low-energy effective field theory below the electroweak scale: operators and matching. JHEP, 1803, 16.CrossRefGoogle Scholar
Jersák, J., Lang, C. B., Neuhaus, T., and Vones, G. 1985. Properties of phase transitions of the lattice SU(2) Higgs model. Phys. Rev. D, 32, 27612768.CrossRefGoogle ScholarPubMed
Ji, X., Yuan, F., and Zhao, Y. 2021. What we know and what we don’t know about the proton spin after 30 years. Nat. Rev. Phys., 3, 2738.CrossRefGoogle Scholar
Jones, D. R. T. 1974. Two loop diagrams in Yang–Mills theory. Nucl. Phys. B, 75, 531538.CrossRefGoogle Scholar
Josephson, B. D. 1967. Inequality for the specific heat: II. Application to critical phenomena. Proc. Phys. Soc., 92, 276–284.Google Scholar
Jost, R. 1957. Eine Bemerkung zum CTP-Theorem. Helv. Phys. Acta, 30, 409416.Google Scholar
Joyce, M., and Shaposhnikov, M. 1997. Primordial magnetic fields, right electrons, and theCrossRefGoogle Scholar
Abelian anomaly. Phys. Rev. Lett., 79, 11931196.Google Scholar
Juge, K. J., Kuti, J., and Morningstar, C. 2003. Fine structure of the QCD string spectrum. Phys. Rev. Lett., 90, 161601.CrossRefGoogle ScholarPubMed
Julia, B., and Zee, A. 1975. Poles with both magnetic and electric charges. Phys. Rev. D, 11, 22272232.CrossRefGoogle Scholar
Kadanoff, L. P. 1966. Scaling laws for Ising models near Tc. Physics, 2, 263272.CrossRefGoogle Scholar
Kaiser, R., and Leutwyler, H. 2000. Large Nc in chiral perturbation theory. Eur. Phys. J. C, 17, 623649.CrossRefGoogle Scholar
Kapec, D., Pate, M., and Strominger, A. 2017a. New symmetries of QED. Adv. Theor. Math. Phys., 21, 17691785.CrossRefGoogle Scholar
Kapec, D., Perry, M., Raclariu, A.-M., and Strominger, A. 2017b. Infrared divergences in QED, Revisited. Phys. Rev. D, 96, 085002.CrossRefGoogle Scholar
Kaplan, D. B. 1992. A method for simulating chiral fermions on the lattice. Phys. Lett. B, 288, 342347.CrossRefGoogle Scholar
Kaplan, D. B., Katz, E., and Ünsal, M. 2003. Supersymmetry on a spatial lattice. JHEP, 05, 037.CrossRefGoogle Scholar
Karsten, L. H., and Smit, J. 1978. Axial symmetry in lattice theories. Nucl. Phys. B, 144, 536546.CrossRefGoogle Scholar
Karsten, L. H., and Smit, J. 1979. The vacuum polarization with SLAC lattice fermions. Phys. Lett. B, 85, 100102.CrossRefGoogle Scholar
Kaul, S. N. 1985. Static critical phenomena in ferromagnets with quenched disorder. J. Magn. Magn. Mater., 53, 553.CrossRefGoogle Scholar
Kawamura, Y. 2000. Gauge symmetry reduction from the extra space S1/Z2. Prog. Theor. Phys., 103, 613619.CrossRefGoogle Scholar
Kawamura, Y. 2001. Split multiplets, coupling unification and an extra dimension. Prog. Theor. Phys., 105, 691696.CrossRefGoogle Scholar
Khriplovich, I. B. 1969. Green’s functions in theories with non-Abelian gauge group. Sov. J. Nucl. Phys., 10, 235242.Google Scholar
Kibble, T. W. B. 1976. Topology of cosmic domains and strings. J. Phys. A: Math. Gen., 9, 13871398.CrossRefGoogle Scholar
Kim, J. E. 1979. Weak-interaction singlet and strong CP invariance. Phys. Rev. Lett., 43, 103107.CrossRefGoogle Scholar
Kleinert, H. 1990. Path Integrals in Quantum Physics, Statistics and Polymer Physics. World Scientific.Google Scholar
Kleinert, H., and Schulte-Frohlinde, V. 2001. Critical Properties of φ4 Theories. World Scientific.CrossRefGoogle Scholar
Knechtli, F., Günther, M., and Peardon, M. 2017. Lattice Quantum Chromodynamics: Practical Essentials. Springer.CrossRefGoogle Scholar
Kobayashi, M., and Maskawa, T. 1973. CP-violation in the renormalizable theory of weak interaction. Prog. Theor. Phys., 49, 652657.CrossRefGoogle Scholar
Kogut, J. B., and Susskind, L. 1975. Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D, 11, 395408.CrossRefGoogle Scholar
Kogut, J. et al. 1983. Deconfinement and chiral symmetry restoration at finite temperatures in SU(2) and SU(3) gauge theories. Phys. Rev. Lett., 50, 393396.CrossRefGoogle Scholar
Kolb, E., and Turner, M. 1990. The Early Universe. Vol. 69. Front. Phys.Google Scholar
Kosmann-Schwarzbach, Y. 2011. The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century. Sources and Studies in the History of Mathematics and Physical Sciences. Springer.Google Scholar
Kosterlitz, J. M. 1974. The critical properties of the two-dimensional xy model. J. Phys. C, 7, 10461060.CrossRefGoogle Scholar
Kosterlitz, J. M., and Thouless, D. J. 1972. Long range order and metastability in two dimensional solids and superfluids. J. Phys. C, 5, L124L126.CrossRefGoogle Scholar
Kosterlitz, J. M., and Thouless, D. J. 1973. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C, 6, 11811203.CrossRefGoogle Scholar
Kronfeld, A. S., and Wiese, U.-J. 1991. SU(N) gauge theories with C-periodic boundary conditions (I). Topological structure. Nucl. Phys. B, 357, 521533.CrossRefGoogle Scholar
Kuti, J., Polónyi, J., and Szlachányi, K. 1981. Monte Carlo study of SU(2) gauge theory at finite temperature. Phys. Lett. B, 98, 199204.CrossRefGoogle Scholar
Kuzmin, V. A., Rubakov, V. A., and Shaposhnikov, M. E. 1985. On the anomalous electroweak baryon number non-conservation in the early Universe. Phys. Lett. B, 155, 3642.CrossRefGoogle Scholar
Lamoreaux, S. K. 1997. Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett., 78, 58.CrossRefGoogle Scholar
Landau, D. P., and Binder, K. 2014. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press.CrossRefGoogle Scholar
Landau, L. 1957. On the conservation laws for weak interactions. Nucl. Phys., 3, 127131.CrossRefGoogle Scholar
Lang, C. B., Rebbi, C., and Virasoro, M. 1981. The phase structure of a non-Abelian gauge Higgs field system. Phys. Lett. B, 104, 294300.CrossRefGoogle Scholar
Langacker, P. 2012. Grand unification. Scholarpedia, 7, 11419.CrossRefGoogle Scholar
Lee, B. W., and Zinn-Justin, J. 1972a. Spontaneously broken gauge symmetries I. Phys. Rev. D, 5, 31213137.CrossRefGoogle Scholar
Lee, B. W., and Zinn-Justin, J. 1972b. Spontaneously broken gauge symmetries II. Phys. Rev. D, 5, 31373155.CrossRefGoogle Scholar
Lee, B. W., and Zinn-Justin, J. 1972c. Spontaneously broken gauge symmetries III. Phys. Rev. D, 5, 31553160.CrossRefGoogle Scholar
Lee, B. W., and Zinn-Justin, J. 1973. Spontaneously broken gauge symmetries IV. Phys. Rev. D, 7, 10491056.CrossRefGoogle Scholar
Lee, T. D., and Yang, C. N. 1956a. Charge conjugation, a new quantum number G, and selection rules concerning a nucleon-antinucleon system. Nuovo Cimento, 3, 749–753.Google Scholar
Lee, T. D., and Yang, C. N. 1956b. Question of parity conservation in weak interactions. Phys. Rev., 104, 254258.CrossRefGoogle Scholar
Lehmann, H., Symanzik, K., and Zimmermann, W. 1955. Zur Formulierung quantisierter Feldtheorien. Nuovo Cimento, 1, 205225.CrossRefGoogle Scholar
Leinaas, J. M., and Myrheim, J. 1977. On the theory of identical particles. Nuovo Cimento B, 37, 123.CrossRefGoogle Scholar
Leutwyler, H. 1965. A no-interaction theorem in classical relativistic Hamiltonian particle mechanics. Nuovo Cimento, 37, 556567.CrossRefGoogle Scholar
Leutwyler, H. 1990. How about mu = 0 ? Nucl. Phys. B, 337, 108118.CrossRefGoogle Scholar
Leutwyler, H. 2012. Chiral perturbation theory. Scholarpedia, 7, 8708.CrossRefGoogle Scholar
Leutwyler, H. 2014. On the history of the strong interaction. Mod. Phys. Lett. A, 29, 1430023.CrossRefGoogle Scholar
Linde, A. D. 1986. Eternally existing self-reproducing chaotic inflationary Universe. Phys. Lett. B, 175, 395400.CrossRefGoogle Scholar
Lipa, J. A., Nissen, J. A., Stricker, D. A., Swanson, D. R., and Chui, T. C. P. 2003. Specific heat of liquid helium in zero gravity very near the lambda point. Phys. Rev. B, 68, 174518.CrossRefGoogle Scholar
Livio, M. 2013. Brilliant Blunders: From Darwin to Einstein – Colossal Mistakes by Great Scientists That Changed Our Understanding of Life and the Universe. Simon & Schuster.Google Scholar
London, F., and London, H. 1935. The electromagnetic equations of the supraconductor. Proc. of the Royal Society A: Mathematical, Physical and Engineering Sciences, 149, 7188.Google Scholar
Lüders, G. 1954. On the equivalence of invariance under time reversal and under particle– antiparticle conjugation for relativistic field theories. Kong. Dan. Vid. Sel. Mat. Fys. Med., 28, 117.Google Scholar
Lüders, G. 1957. Proof of the TCP theorem. Ann. Phys. (N. Y.), 2, 115.CrossRefGoogle Scholar
Lüscher, M. 1977. Construction of a selfadjoint, strictly positive transfer matrix for Euclidean lattice gauge theories. Commun. Math. Phys., 54, 283292.CrossRefGoogle Scholar
Lüscher, M. 1981. Symmetry-breaking aspects of the roughening transition in gauge theories. Nucl. Phys. B, 180, 317329.CrossRefGoogle Scholar
Lüscher, M. 1982. Topology of lattice gauge fields. Commun. Math. Phys., 85, 3948.CrossRefGoogle Scholar
Lüscher, M. 1986a. Volume dependence of the energy spectrum in massive quantum field theories I. Stable particle states. Commun. Math. Phys., 104, 177206.CrossRefGoogle Scholar
Lüscher, M. 1986b. Volume dependence of the energy spectrum in massive quantum field theories II. Scattering states. Commun. Math. Phys., 105, 153188.CrossRefGoogle Scholar
Lüscher, M. 1998. Exact chiral symmetry on the lattice and the Ginsparg–Wilson relation. Phys. Lett. B, 428, 342345.CrossRefGoogle Scholar
Lüscher, M. 1999. Abelian chiral gauge theories on the lattice with exact gauge invariance. Nucl. Phys. B, 549, 295334.CrossRefGoogle Scholar
Lüscher, M. 2000. Lattice regularization of chiral gauge theories to all orders of perturbation theory. JHEP, 0006, 028.CrossRefGoogle Scholar
Lüscher, M. 2002. Chiral gauge theories revisited. Subnucl. Ser., 38, 4189.Google Scholar
Lüscher, M. 2004. Topological effects in QCD and the problem of short distance singularities. Phys. Lett. B, 593, 296301.CrossRefGoogle Scholar
Lüscher, M. 2010. Properties and uses of the Wilson flow in lattice QCD. JHEP, 08, 071.CrossRefGoogle Scholar
Lüscher, M., and Weisz, P. 1985. On-shell improved lattice gauge theories. Commun. Math. Phys., 97, 5977.CrossRefGoogle Scholar
Lüscher, M., and Weisz, P. 1987. Scaling laws and triviality bounds in the lattice φ4 theory: (I). One component model in the symmetric phase. Nucl. Phys. B, 290, 2560.CrossRefGoogle Scholar
Lüscher, M., and Weisz, P. 1988. Scaling laws and triviality bounds in the lattice φ4 theory: (II). One component model in the phase with spontaneous symmetry breaking. Nucl. Phys. B, 295, 6592.CrossRefGoogle Scholar
Lüscher, M., and Weisz, P. 2004. String excitation energies in SU(N) gauge theories beyond the free-string approximation. JHEP, 07, 014.CrossRefGoogle Scholar
Lüscher, M., and Weisz, P. 2021. Renormalization of the topological charge density in QCD with dimensional regularization. Eur. Phys. J. C, 81, 519.CrossRefGoogle Scholar
Ma, S.-K. 1976. Modern Theory of Critical Phenomena. Addison-Wesley Publishing.Google Scholar
Madras, N., and Sokal, A. D. 1988. The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk. J. Stat. Phys., 50, 109186.CrossRefGoogle Scholar
Majorana, E. 1937. Teoria simmetrica dell’elettrone e del positrone. Nuovo Cimento, 14, 171184.CrossRefGoogle Scholar
Maki, Z., Nakagawa, M., and Sakata, S. 1962. Remarks on the unified model of elementary particles. Prog. Theor. Phys., 28, 870880.CrossRefGoogle Scholar
Manohar, A., and Georgi, H. 1984. Chiral quarks and the non-relativistic quark model. Nucl. Phys. B, 234, 189212.CrossRefGoogle Scholar
Manohar, A., and Moore, G. W. 1984. Anomalous inequivalence of phenomenological theories. Nucl. Phys. B, 243, 5564.CrossRefGoogle Scholar
Mermin, D., and Wagner, H. 1966. Absence of ferromagnetism or antiferromagnetism in oneor two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17, 11331136.CrossRefGoogle Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 10871092.CrossRefGoogle Scholar
Mikheyev, S. P., and Smirnov, A. Y. 1985. Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Sov. J. Nucl. Phys., 42, 913917.Google Scholar
Millikan, R. A. 1913. On the elementary electrical charge and the Avogadro constant. Phys. Rev., 2, 109143.CrossRefGoogle Scholar
Minkowski, H. 1908. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 53111.Google Scholar
Minkowski, P. 1977. μe γ at a rate of one out of 109 muon decays? Phys. Lett. B, 67, 421428.CrossRefGoogle Scholar
Minwalla, M., Van Raamsdonk, M., and Seiberg, N. 2000. Noncommutative perturbative dynamics. JHEP, 0002, 020.CrossRefGoogle Scholar
Misner, C. W., Thorne, K. S., and Wheeler, J. A. 1973. Gravitation. W. H. Freeman and Company.Google Scholar
Miyamoto, Y. 1965. Three kinds of triplet model. Prog. Theor. Phys. Suppl., E65, 187192.CrossRefGoogle Scholar
Mohapatra, R.N., and Senjanovic, G. 1980. Neutrino mass and spontaneous parity noncon-servation. Phys. Rev. Lett., 44, 912915.CrossRefGoogle Scholar
Mohideen, U., and Roy, A. 1998. Precision measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett., 81, 45494552.CrossRefGoogle Scholar
Montvay, I. 1985. Correlations in the SU(2) fundamental Higgs model. Phys. Lett. B, 150, 442446.CrossRefGoogle Scholar
Montvay, I., and Münster, G. 1994. Quantum Fields on a Lattice. Cambridge University Press.CrossRefGoogle Scholar
Moore, G., and Read, N. 1991. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B, 360, 362396.CrossRefGoogle Scholar
Morningstar, C. J., and Peardon, M. J. 1999. The glueball spectrum from an anisotropic lattice study. Phys. Rev. D, 60, 034509.CrossRefGoogle Scholar
Murayama, H., and Shu, J. 2010. Topological dark matter. Phys. Lett. B, 686, 162165.CrossRefGoogle Scholar
Nambu, Y., and Jona-Lasinio, G. 1961a. Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev., 122, 345358.CrossRefGoogle Scholar
Nambu, Y., and Jona-Lasinio, G. 1961b. Dynamical model of elementary particles based on an analogy with superconductivity. II. Phys. Rev., 124, 246254.CrossRefGoogle Scholar
Narayanan, R., and Neuberger, H. 1993a. Infinitely many regulator fields for chiral fermions. Phys. Lett. B, 302, 6269.CrossRefGoogle Scholar
Narayanan, R., and Neuberger, H. 1993b. Chiral fermions on the lattice. Phys. Rev. Lett., 71, 3251.CrossRefGoogle ScholarPubMed
Narayanan, R., and Neuberger, H. 1994. Chiral determinant as an overlap of two vacua. Nucl. Phys. B, 412, 574606.CrossRefGoogle Scholar
Narayanan, R., and Neuberger, H. 1995. A construction of lattice chiral gauge theories. Nucl. Phys. B, 443, 305385.CrossRefGoogle Scholar
Necco, S., and Sommer, R. 2002. The Nf = 0 heavy quark potential from short to intermediate distances. Nucl. Phys. B, 622, 328346.CrossRefGoogle Scholar
Neuberger, H. 1998. More about exactly massless quarks on the lattice. Phys. Lett. B, 427, 353355.CrossRefGoogle Scholar
Nielsen, H. B., and Chadha, S. 1976. On how to count Goldstone bosons. Nucl. Phys. B, 105, 445453.CrossRefGoogle Scholar
Nielsen, H. B., and Ninomiya, M. 1981a. Absence of neutrinos on a lattice. 1. Proof by homotopy theory [Erratum: Nucl. Phys. B195 (1982) 541–542]. Nucl. Phys. B, 185, 20–40.CrossRefGoogle Scholar
Nielsen, H. B., and Ninomiya, M. 1981b. Absence of neutrinos on a lattice. 2. Intuitive topological proof. Nucl. Phys. B, 193, 173194.CrossRefGoogle Scholar
Noether, E. 1918a. Invarianten beliebiger Differentialausdrücke. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 3744.Google Scholar
Noether, E. 1918b. Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 235257.Google Scholar
Novikov, S. P. 1981. Multivalued functions and functionals. An analogue of the Morse theory. Sov. Math. Dokl., 24, 222–226.Google Scholar
Novikov, S. P. 1982. The Hamiltonian formalism and a many-valued analogue of Morse theory. Usp. Math. Nauk., 37, 349.Google Scholar
Okubo, S. 1962a. Note on unitary symmetry in strong interactions. Prog. Theor. Phys., 27, 949966.CrossRefGoogle Scholar
Okubo, S. 1962b. Note on unitary symmetry in strong interactions. II: Excited states of baryons. Prog. Theor. Phys., 28, 2432.CrossRefGoogle Scholar
Okun, L. B. 1989. The concept of mass. Physics Today, 42, 3136.CrossRefGoogle Scholar
Onsager, L. 1944. Crystal statistics I. Phys. Rev., 65, 117149.CrossRefGoogle Scholar
O’Raifeartaigh, C., and Mitton, S. 2018. Interrogating the legend of Einstein’s “Biggest Blunder”. Physics in Perspective, 20, 318.CrossRefGoogle Scholar
Osterwalder, K., and Schrader, R. 1973. Axioms for Euclidean Green’s functions. Commun. Math. Phys., 31, 83112.CrossRefGoogle Scholar
Osterwalder, K., and Schrader, R. 1975. Axioms for Euclidean Green’s functions II. Commun. Math. Phys., 42, 281305.CrossRefGoogle Scholar
Padmanabhan, T. 2003. Cosmological constant: The weight of the vacuum. Phys. Rep., 380, 235320.CrossRefGoogle Scholar
Patella, A. 2017. QED corrections to hadronic observables. PoS LATTICE2016, 020.Google Scholar
Pati, J. C., and Salam, A. 1974. Lepton number as the fourth color. Phys. Rev. D, 10, 275289.CrossRefGoogle Scholar
Pauli, W. 1940. The connection between spin and statistics. Phys. Rev., 58, 716722.CrossRefGoogle Scholar
Pauli, W. 1957. On the conservation of the lepton charge. Nuovo Cimento, 6, 204215.CrossRefGoogle Scholar
Pauli, W., and Villars, F. 1949. On the invariant regularization in relativistic quantum theory. Rev. Mod. Phys., 21, 434444.CrossRefGoogle Scholar
Peccei, R. D., and Quinn, H. R. 1977a. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett., 38, 14401443.CrossRefGoogle Scholar
Peccei, R. D., and Quinn, H. R. 1977b. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D, 16, 17911797.CrossRefGoogle Scholar
Peebles, P. J. E., and Ratra, B. 2003. The cosmological constant and dark energy. Rev. Mod. Phys., 75, 559606.CrossRefGoogle Scholar
Peierls, R. 1936. On Ising’s model of ferromagnetism. Proc. Cambridge Phil. Soc., 32, 477481.CrossRefGoogle Scholar
Pendlebury, J. M. et al. 2015. Revised experimental upper limit on the electric dipole moment of the neutron. Phys. Rev. D, 92, 092003.CrossRefGoogle Scholar
Pepe, M., and Wiese, U.-J. 2007. Exceptional deconfinement in G(2) gauge theory. Nucl. Phys. B, 768, 2137.CrossRefGoogle Scholar
Perlmutter, S. et al. (Supernova Cosmology Project). 1999. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J., 517, 565586.CrossRefGoogle Scholar
Peshkin, M., and Tonomura, A. 1989. The Aharonov–Bohm Effect. Springer.CrossRefGoogle Scholar
Peskin, M. E., and Schroeder, D. V. 1997. An Introduction to Quantum Field Theory. Addison Wesley.Google Scholar
Pfeuty, P., and Toulouse, G. 1977. Introduction to the Renormalization Group and to Critical Phenomena. John Wiley and Sons.Google Scholar
Philipps, A., and Stone, D. 1986. Lattice gauge fields, principal bundles and the calculation of topological charge. Commun. Math. Phys., 103, 599636.CrossRefGoogle Scholar
Pich, A. 1995. Chiral perturbation theory. Rep. Prog. Phys., 58, 563609.CrossRefGoogle Scholar
Politzer, H. D. 1973. Reliable perturbative results for strong interactions. Phys. Rev. Lett., 30, 13461349.CrossRefGoogle Scholar
Polley, L., and Wiese, U.-J. 1991. Monopole condensate and monopole mass in U(1) lattice gauge theory. Nucl. Phys. B, 356, 629654.CrossRefGoogle Scholar
Polyakov, A. M. 1974. Particle spectrum in the quantum field theory. JETP Lett., 20, 194195.Google Scholar
Polyakov, A. M. 1975. Compact gauge fields and the infrared catastrophe. Phys. Lett. B, 59, 8284.CrossRefGoogle Scholar
Polyakov, A. M. 1987. Gauge Fields and Strings. Harwood Academic Publishers. Polyakov, A. M. 2005. Confinement and liberation. Pages 311–329 of: ’t Hooft, G. (ed), 50 Years of Yang–Mills Theory. Proc. Eighth Nobel Symposium. World Scientific.Google Scholar
Pontecorvo, B. 1957. Inverse beta processes and nonconservation of lepton charge. Zh. Eksp. Teor. Fiz., 34: 247 [Sov. Phys. JETP 7 (1958) 172–173].Google Scholar
Popov, V. 1983. Functional Integrals in Quantum Field Theory and Statistical Physics. Math. Phys. and Appl. Math., vol. 8. Reidel.Google Scholar
Preskill, J., Wise, M. B., and Wilczek, F. 1983. Cosmology of the invisible axion. Phys. Lett. B, 120, 127132.CrossRefGoogle Scholar
Privman, V., and Fisher, M. E. 1984. Universal critical amplitudes in finite-size scaling. Phys. Rev. B, 30, 322327.CrossRefGoogle Scholar
Raby, S. 2017. Supersymmetric Grand Unified Theories: From Quarks to Strings via SUSY GUTs. Springer, Lecture Notes in Physics, Volume 939.CrossRefGoogle Scholar
Rajagopal, K., and Wilczek, F. 1993a. Static and dynamic critical phenomena at a second order QCD phase transition. Nucl. Phys. B, 399, 395425.CrossRefGoogle Scholar
Rajagopal, K., and Wilczek, F. 1993b. Emergence of coherent long wavelength oscillations after a quench: Application to QCD. Nucl. Phys. B, 404, 577589.CrossRefGoogle Scholar
Ratra, P., and Peebles, P. J. E. 1988. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D, 37, 34063427.CrossRefGoogle ScholarPubMed
Reisz, T. 1988a. A power counting theorem for Feynman integrals on the lattice. Commun. Math. Phys., 116, 81126.CrossRefGoogle Scholar
Reisz, T. 1988b. Renormalization of Feynman integrals on the lattice. Commun. Math. Phys., 117, 79108.CrossRefGoogle Scholar
Reisz, T. 1989. Lattice gauge theory: Renormalization to all orders in the loop expansion. Nucl. Phys. B, 318, 417463.CrossRefGoogle Scholar
Riemann, B. 1859. Über die Anzahl der Primzahlen unter einer gegebenen Größe. Monatsberichte der Berliner Akademie.Google Scholar
Riess, A. G. et al. 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J., 116, 10091038.CrossRefGoogle Scholar
Roepstorff, G. 1994. Path Integral Approach to Quantum Physics. Springer.CrossRefGoogle Scholar
Ross, G. G. 1985. Grand Unified Theories. Westview Press.Google Scholar
Rothe, H. J. 1992. Lattice Gauge Theories: An Introduction. World Scientific.CrossRefGoogle Scholar
Rubakov, V. A. 1981. Superheavy magnetic monopoles and proton decay. JETP Lett., 33, 644646.Google Scholar
Rubakov, V. A. 1982. Adler–Bell–Jackiw anomaly and fermion-number breaking in the presence of a magnetic monopole. Nucl. Phys. B, 203, 311348.CrossRefGoogle Scholar
Rubakov, V. A., and Shaposhnikov, M. E. 1983. Do we live inside a domain wall? Phys. Lett. B, 125, 136138.CrossRefGoogle Scholar
Rubin, V. C., and Ford, W. K. 1970. Rotation of the Andromeda Nebula from a spectroscopic survey of emission regions. Astrophys. J., 159, 379403.CrossRefGoogle Scholar
Rudaz, S. 1990. Electric-charge quantization in the standard model. Phys. Rev. D, 41, 26192621.CrossRefGoogle ScholarPubMed
Ruelle, D. 1962. On the asymptotic condition in quantum field theory. Helv. Phys. Acta, 35, 147163.Google Scholar
Rushbrooke, G. S. 1963. On the thermodynamics of the critical region for the Ising problem. J. Chem. Phys., 39, 842843.CrossRefGoogle Scholar
Ryder, L. H. 1996. Quantum Field Theory. Second edn. Cambridge University Press.CrossRefGoogle Scholar
Sakharov, A. D. 1967. Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe. ZhETF Pis’ma, 5, 3235.Google Scholar
Salam, A. 1968. Weak and electromagnetic interactions. Pages 367–377 of: Svartholm, N. (ed), Elementary Particle Physics: Relativistic Groups and Analyticity. Proc. Eighth Nobel Symposium. Almquvist and Wiksell.Google Scholar
Sardanashvily, G. 2016. Noether’s Theorems. Applications in Mechanics and Field Theory. Springer.Google Scholar
Schechter, J., and Valle, J. W. F. 1980. Neutrino masses in SU(2) ⊗ U(1) theories. Phys. Rev., 22, 22272235.Google Scholar
Scherer, S. 2003. Introduction to chiral perturbation theory. Adv. Nucl. Phys., 27, 277538.Google Scholar
Schroer, B. 1963. Infrateilchen in der Quantenfeldtheorie. Fortschr. Phys., 11, 131.CrossRefGoogle Scholar
Schulman, L. 1981. Techniques and Applications of Path Integration. Wiley.CrossRefGoogle Scholar
Schwartz, M. D. 2014. Quantum Field Theory and the Standard Model. Cambridge University Press.Google Scholar
Schwinger, J. 1948. On Quantum Electrodynamics and the magnetic moment of the electron. Phys. Rev., 73, 416417.CrossRefGoogle Scholar
Schwinger, J. 1969. A magnetic model of matter: A speculation probes deep within the structure of nuclear particles and predicts a new form of matter. Science, 165, 757761.CrossRefGoogle Scholar
Seeger, M., Kaul, S. N., Kronmüller, H., and Reisser, R. 1995. Asymptotic critical behavior of Ni. Phys. Rev. B, 51, 12585.CrossRefGoogle ScholarPubMed
Serre, J.-P. 1951. Homologie singulière des espaces fibrés. Applications. Ann. Math., Second Series, 54, 425505.CrossRefGoogle Scholar
Shamir, J. 1993. Chiral fermions from lattice boundaries. Nucl. Phys. B, 406, 90106.CrossRefGoogle Scholar
Shapere, A. D., and Wilczek, F. 1987. Self-propulsion at low Reynolds number. Phys. Rev. Lett., 58, 20512054.CrossRefGoogle ScholarPubMed
Shapere, A. D., and Wilczek, F. 1989. Gauge kinematics of deformable bodies. Am. J. Phys., 57, 514518.CrossRefGoogle Scholar
Shifman, M. A., Vainshtein, A. I., and Zakharov, V. I. 1980. Can confinement ensure natural CP invariance of strong interactions? Nucl. Phys. B, 166, 493506.CrossRefGoogle Scholar
Shor, P. W. 1994. Algorithms for quantum computation: discrete logarithms and factoring. Pages 124–134 of: SFCS ’94: Proceedings 35th Annual Symposium on Foundations of Computer Science.CrossRefGoogle Scholar
Skyrme, T. H. R. 1961. Particle states of a quantized meson field. Proc. Roy. Soc. Lond. A, 262, 237245.Google Scholar
Skyrme, T. H. R. 1962. A unified field theory of mesons and baryons. Nucl. Phys. B, 31, 556569.CrossRefGoogle Scholar
Slavnov, A. A. 1972. Ward identities in gauge theories. Theor. Math. Phys., 10, 99104.CrossRefGoogle Scholar
Smit, J. 2002. Introduction to Quantum Fields on a Lattice. Cambridge Lecture Notes in Physics.CrossRefGoogle Scholar
Smoot, G. F. et al. 1992. Structure in the COBE differential microwave radiometer firstyear maps. Astrophys. J., Part 2 – Letters, 396, L1L5.Google Scholar
Snyder, H. S. 1947. Quantized space–time. Phys. Rev., 71, 3841.CrossRefGoogle Scholar
Sokal, A. D. 1997. Monte Carlo methods in statistical mechanics: Foundations and new algorithms. Pages 131–192 of: DeWitt-Morette, C., Cartier, P., and Folacci, A. (eds), Functional Integration: Basics and Applications. NATO ASI Series, vol. 361. Springer.Google Scholar
Sommer, R. 1994. A new way to set the energy scale in lattice gauge theories and its applications to the static force and αs in SU(2) Yang–Mills theory. Nucl. Phys. B, 411, 839–854.Google Scholar
Sommer, R. 2014. Scale setting in lattice QCD. PoS LATTICE2013, 015.Google Scholar
Sommerfeld, A. 1916. Zur Quantentheorie der Spektrallinien. Annalen der Physik, 51, 194.CrossRefGoogle Scholar
Srednicki, M. 2007. Quantum Field Theory. Cambridge University Press.CrossRefGoogle Scholar
Steinberger, J. 1949. On the use of subtraction fields and the lifetimes of some types of meson decay. Phys. Rev., 76, 11801186.CrossRefGoogle Scholar
Stern, A. 2010. Non-Abelian states of matter. Nature, 464, 187193.CrossRefGoogle ScholarPubMed
Straumann, N. 2002. On Pauli’s invention of non-Abelian Kaluza-Klein theory in 1953. Pages 1063–1066 of: Gurzadyan, V. G., Jantzen, R. T., and Ruffini, R. (eds), The Ninth Marcel Grossmann Meeting. World Scientific.Google Scholar
Stückelberg, E. C. G. 1938. Interaction energy in electrodynamics and in the field theory of nuclear forces. Helv. Phys. Acta, 11, 225244.Google Scholar
Susskind, L. 1979. Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory. Phys. Rev. D, 20, 26192625.CrossRefGoogle Scholar
Susskind, L. 2006. The Cosmic Landscape: String Theory and the Illusion of Intelligent Design. Little, Brown and Company.Google Scholar
Svetitsky, B., and Yaffe, L. 1982. Critical behavior at finite-temperature confinement transitions. Nucl. Phys. B, 210, 423447.CrossRefGoogle Scholar
Swanson, M. 1992. Path Integrals and Quantum Processes. Academic Press.Google Scholar
Swendsen, R. H., and Wang, J.-S. 1987. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett., 58, 8688.CrossRefGoogle ScholarPubMed
Symanzik, K. 1970. Small distance behaviour in field theory and power counting. Commun. Math. Phys., 18, 227246.CrossRefGoogle Scholar
Symanzik, K. 1983a. Continuum limit and improved action in lattice theories. 1. Principles and φ4 theory. Nucl.Phys. B, 226, 187–204.Google Scholar
Symanzik, K. 1983b. Continuum limit and improved action in lattice theories. 2. O(N) Nonlinear sigma model in perturbation theory. Nucl. Phys. B, 226, 205227.CrossRefGoogle Scholar
’t Hooft, G. 1971a. Renormalization of massless Yang–Mills fields. Nucl. Phys. B, 33, 173–199.Google Scholar
’t Hooft, G. 1971b. Renormalizable Lagrangians for massive Yang–Mills fields. Nucl. Phys. B, 35, 167188.CrossRefGoogle Scholar
’t Hooft, G. 1974. Magnetic monopoles in unified gauge theories. Nucl. Phys. B, 79, 276284.CrossRefGoogle Scholar
’t Hooft, G. 1976a. Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett., 37, 8–11.Google Scholar
’t Hooft, G. 1976b. Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D, 14, 34323450.CrossRefGoogle Scholar
’t Hooft, G. 1979. A property of electric and magnetic flux in non-Abelian gauge theories. Nucl. Phys. B, 153, 141160.CrossRefGoogle Scholar
’t Hooft, G. 1980. Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. Pages 135–157 of: Recent Developments in Gauge Theories. Springer.CrossRefGoogle Scholar
’t Hooft, G. 1986. How instantons solve the U(1) problem. Phys. Rep., 142, 357–387.Google Scholar
’t Hooft, G, and Veltman, M. 1972. Regularization and renormalization of gauge fields. Nucl. Phys. B, 44, 189–213.Google Scholar
Takahashi, Y. 1957. On the generalized Ward identity. Nuovo Cimento, 6, 371375.CrossRefGoogle Scholar
Taylor, J. C. 1971. Ward identities and charge renormalization of the Yang–Mills field. Nucl. Phys. B, 33, 436444.CrossRefGoogle Scholar
Tomboulis, E., and Woo, G. 1976. Soliton quantization in gauge theories. Nucl. Phys. B, 107, 221237.CrossRefGoogle Scholar
Tomonaga, S. 1946. On a relativistically invariant formulation of the quantum theory of wave fields. Prog. Theor. Phys., 1, 2742.CrossRefGoogle Scholar
Trotter, H. F. 1959. On the product of semi-groups of operators. Proc. Amer. Math. Soc., 10, 545551.CrossRefGoogle Scholar
Troyer, M., and Wiese, U.-J. 2005. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett., 94, 170201.CrossRefGoogle ScholarPubMed
Turner, M. S, and Widrow, L. M. 1988. Inflation-produced, large-scale magnetic fields. Phys. Rev. D, 37, 27432754.CrossRefGoogle ScholarPubMed
Tyutin, I. V. 1975. Gauge invariance in field theory and statistical physics in operator formalism. Lebedev Physics Institute preprint 39, arXiv:0812.0580.Google Scholar
Vanyashin, V. S., and Terentev, M. V. 1965. The vacuum polarization of a charged vector field. Zh. Eksp. Teor. Fiz., 48: 565–573 [Sov. Phys. JETP 21 (1965) 375–380].Google Scholar
Veneziano, G. 1979. U(1) without instantons. Nucl. Phys. B, 159, 213224.CrossRefGoogle Scholar
Vlasii, N. D., von Rütte, F., and Wiese, U.-J. 2016. Graphical tensor product reduction scheme for the Lie algebras so(5)=sp(2), su(3), and g(2). Ann. Phys. (NY), 371, 199227.CrossRefGoogle Scholar
Volkov, D. V., and Akulov, V. P. 1972. Possible universal neutrino interaction. JETP Lett., 16, 438440.Google Scholar
Ward, J. C. 1950. An identity in Quantum Electrodynamics. Phys. Rev., 78, 182182.CrossRefGoogle Scholar
Wegner, F. J. 1971. Duality in generalized Ising models and phase transitions without local order parameters. J. Math. Phys., 12, 22592272.CrossRefGoogle Scholar
Weinberg, S. 1967. A model of leptons. Phys. Rev. Lett., 19, 12641266.CrossRefGoogle Scholar
Weinberg, S. 1976. Implications of dynamical symmetry breaking. Phys. Rev. D, 13, 974996.CrossRefGoogle Scholar
Weinberg, S. 1978. A new light boson? Phys. Rev. Lett., 40, 223226.CrossRefGoogle Scholar
Weinberg, S. 1979a. Baryon- and lepton-nonconserving processes. Phys. Rev. Lett., 43, 15661570.CrossRefGoogle Scholar
Weinberg, S. 1979b. Implications of dynamical symmetry breaking: An addendum. Phys. Rev. D, 19, 12771280.CrossRefGoogle Scholar
Weinberg, S. 1979c. Phenomenological Lagrangians. Physica A, 96, 327340.CrossRefGoogle Scholar
Weinberg, S. 1987. Anthropic bound on the cosmological constant. Phys. Rev. Lett., 59, 26072610.CrossRefGoogle ScholarPubMed
Wen, X.-G. 1991. Non-Abelian statistics in the fractional quantum Hall states. Phys. Rev. Lett., 66, 802805.CrossRefGoogle ScholarPubMed
Wess, J., and Bagger, J. 1992. Supersymmetry and Supergravity. Princeton University Press.Google Scholar
Wess, J., and Zumino, B. 1971. Consequences of anomalous Ward identities. Phys. Lett. B, 37, 9597.CrossRefGoogle Scholar
Wess, J., and Zumino, B. 1974. Supergauge transformations in four-dimensions. Nucl. Phys. B, 70, 3950.CrossRefGoogle Scholar
Wetterich, C. 1988. Cosmology and the fate of dilatation symmetry. Nucl. Phys. B, 302, 668696.CrossRefGoogle Scholar
Wetterich, C. 2011. Spinors in Euclidean field theory, complex structures and discrete symmetries. Nucl. Phys. B, 852, 174234.CrossRefGoogle Scholar
Weyl, H. 1918. Gravitation und Elektrizität. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 465480.Google Scholar
Weyl, H. 1929. Elektron und Gravitation. I. Z. Phys., 56, 330352.Google Scholar
Wick, G. C. 1950. The evaluation of the collision matrix. Phys. Rev., 80, 268272.CrossRefGoogle Scholar
Wick, G. C., Wightman, A. S., and Wigner, E. P. 1952. The intrinsic parity of elementary particles. Phys. Rev., 88, 101105.CrossRefGoogle Scholar
Widom, B. 1964. Degree of the critical isotherm. J. Chem. Phys., 41, 16331634.CrossRefGoogle Scholar
Widom, B. 1975. Interfacial tensions of three fluid phases in equilibrium. J. Chem. Phys., 62, 13321336.CrossRefGoogle Scholar
Wiese, U.-J. 1993. Fixed point actions for Wilson fermions. Phys. Lett. B, 315, 417424.CrossRefGoogle Scholar
Wiese, U.-J. 2012. The confining string: Lattice results versus effective field theory. Prog. Part. Nucl. Phys., 67, 117121.CrossRefGoogle Scholar
Wiese, U.-J. 2013. Ultracold quantum gases and lattice systems: Quantum simulation of lattice gauge theories. Annalen der Physik, 525, 777796.CrossRefGoogle Scholar
Wiese, U.-J. 2014. Towards quantum simulating QCD. Nucl. Phys. A, 931, 246256.CrossRefGoogle Scholar
Wigner, E. P. 1960. The unreasonable effectiveness of mathematics in the natural sciences. Comm. Pure Appl. Math., 13, 114.CrossRefGoogle Scholar
Wilczek, F. 1978. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett., 40, 279282.CrossRefGoogle Scholar
Wilczek, F. 1982. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett., 49, 957959.CrossRefGoogle Scholar
Wilczek, F. 1987. Two applications of axion electrodynamics. Phys. Rev. Lett., 58, 17991802.CrossRefGoogle ScholarPubMed
Wilczek, F. 2004. Four big questions with pretty good answers. Pages 79–97 of: Buschhorn G.W., Wess J. (ed), Fundamental Physics – Heisenberg and Beyond. Springer.Google Scholar
Wilczek, F. 2012. Origins of mass. Cent. Eur. J. Phys., 10, 10211037.Google Scholar
Wilczek, F., and Zee, A. 1979. Operator analysis of nucleon decay. Phys. Rev. Lett., 43, 15711573.CrossRefGoogle Scholar
Wilczek, F., and Zee, A. 1984. Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett., 52, 21112114.CrossRefGoogle Scholar
Will, C. M. 2014. The confrontation between General Relativity and experiment. Living Rev. Relativity, 17, 4.CrossRefGoogle ScholarPubMed
Willenbrock, S. 2004. Symmetries of the standard model. Lectures given at Conference: C04-06-06.1, Proceedings, 338.Google Scholar
Wilson, K. G. 1974. Confinement of quarks. Phys. Rev. D, 10, 24452459.CrossRefGoogle Scholar
Wilson, K. G. 1975. The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys., 47, 773840.CrossRefGoogle Scholar
Wilson, K. G. 1976. Relativistically invariant lattice theories. Pages 243–264 of: Perlmutter, A. (ed), New Pathways in High Energy Physics II. Plenum Press.Google Scholar
Wilson, K. G. 1977. Quarks and strings on a lattice. Pages 69–142 of: Zichichi, A. (ed), Proceedings of the 1975 International School of Subnuclear Physics Erice, Sicily; 11 Jul 1975. Plenum Press.Google Scholar
Wilson, K. G. 2005. The origins of lattice gauge theory. Nucl. Phys. Proc. Suppl., 140, 319.CrossRefGoogle Scholar
Wilson, K. G., and Fisher, M. E. 1972. Critical exponents in 3.99 dimensions. Phys. Rev. Lett., 28, 240243.CrossRefGoogle Scholar
Wilson, K. G., and Kogut, J. 1974. The renormalization group and the epsilon-expansion. Phys. Rep., 12, 75199.CrossRefGoogle Scholar
Witten, E. 1979a. Baryons in the 1/N expansion. Nucl. Phys. B, 160, 57115.CrossRefGoogle Scholar
Witten, E. 1979b. Current algebra theorems for the U(1) “Goldstone boson”. Nucl. Phys. B, 156, 269283.CrossRefGoogle Scholar
Witten, E. 1979c. Dyons of charge eθ/2π. Phys. Lett. B, 86, 283287.CrossRefGoogle Scholar
Witten, E. 1982. An SU(2) anomaly. Phys. Lett. B, 117, 324328.CrossRefGoogle Scholar
Witten, E. 1983a. Global aspects of current algebra. Nucl. Phys. B, 223, 422432.CrossRefGoogle Scholar
Witten, E. 1983b. Current algebra, baryons, and quark confinement. Nucl. Phys. B, 223, 433444.CrossRefGoogle Scholar
Witten, E. 1984a. Non-Abelian bosonization in two dimensions. Commun. Math. Phys., 92, 455472.CrossRefGoogle Scholar
Witten, E. 1984b. Some properties of O(32) superstrings. Phys. Lett. B, 149, 351356.CrossRefGoogle Scholar
Wolfenstein, L. 1978. Neutrino oscillations in matter. Phys. Rev. D, 17, 23692374.CrossRefGoogle Scholar
Wolff, U. 1989. Collective Monte Carlo updating for spin systems. Phys. Rev. Lett., 62, 361364.CrossRefGoogle ScholarPubMed
Wolff, U. 1992. Dynamics of hybrid overrelaxation in the Gaussian model. Phys. Lett. B, 288, 166170.CrossRefGoogle Scholar
Wolff, U. 2004. Monte Carlo errors with less errors. Comput. Phys. Comm., 156, 143153.CrossRefGoogle Scholar
Workman, R. L., et al. 2022. The Review of Particle Physics (2022). Prog. Theor. Exp. Phys., 2022, 083C01.Google Scholar
Wu, C. S., Ambler, E., Hayward, R. W., Hoppes, D. D., and Hudson, R. P. 1957. Experimental test of parity conservation in beta decay. Phys. Rev., 105, 14131415.CrossRefGoogle Scholar
Yanagida, T. 1980. Horizontal symmetry and masses of neutrinos. Prog. Theor. Phys., 64, 11031105.CrossRefGoogle Scholar
Yang, C. N., and Mills, R. 1954. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev., 96, 191195.CrossRefGoogle Scholar
Yennie, D. R., Frautschi, S. C., and Suura, H. 1961. The infrared divergence phenomena and high-energy processes. Ann. Phys. (NY), 13, 379452.CrossRefGoogle Scholar
Yeomans, J. M. 1992. Statistical Mechanics of Phase Transitions. Clarendon Press.CrossRefGoogle Scholar
Yukawa, H. 1935. On the interaction of elementary particles. I. Proc. Phys. Math. Soc. Jpn., 17, 4857.Google Scholar
Zee, A. 2010. Quantum Field Theory in a Nutshell. Princeton University Press.Google Scholar
Zhitnitsky, A. R. 1980. On possible suppression of the axion hadron interactions. Yad. Fiz, 31: 497–504 [Sov. J. Nucl. Phys. 31 (1980) 260].Google Scholar
Zimmermann, W. 1969. Convergence of Bogoliubov’s method of renormalization in momentum space. Commun. Math. Phys., 15, 208234.CrossRefGoogle Scholar
Zinn-Justin, J. 1975. Renormalization of gauge theories. Pages 1–39 of: H. Rollnik, H., and Dietz, K. (eds), Trends in Elementary Particle Physics. Lecture Notes in Physics, Springer, 37.Google Scholar
Zinn-Justin, J. 2009. Zinn-Justin equation. Scholarpedia, 4, 7120.CrossRefGoogle Scholar
Zohar, E., Cirac, J. I., and Reznik, B. 2016. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys., 79, 014401.CrossRefGoogle ScholarPubMed
Zwanziger, D. 1968a. Exactly soluble nonrelativistic model of particles with both electric and magnetic charges. Phys. Rev., 176, 14801488.CrossRefGoogle Scholar
Zwanziger, D. 1968b. Quantum field theory of particles with both electric and magnetic charges. Phys. Rev., 176, 14891495.CrossRefGoogle Scholar
Zweig, G. 1964. An SU(3) model for strong interaction symmetry and its breaking. CERN Report No. 8182/TH.401.Google Scholar
Zwicky, F. 1933. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta, 6, 110127.Google Scholar
Zyla, P.A. et al. (Particle Data Group). 2020. Review of Particle Physics (2020) and 2021 update. Prog. Theor. Exp. Phys., 8, 030001.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Wolfgang Bietenholz, Universidad Nacional Autónoma de México, Uwe-Jens Wiese, Universität Bern, Switzerland
  • Book: Uncovering Quantum Field Theory and the Standard Model
  • Online publication: 06 February 2025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Wolfgang Bietenholz, Universidad Nacional Autónoma de México, Uwe-Jens Wiese, Universität Bern, Switzerland
  • Book: Uncovering Quantum Field Theory and the Standard Model
  • Online publication: 06 February 2025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Wolfgang Bietenholz, Universidad Nacional Autónoma de México, Uwe-Jens Wiese, Universität Bern, Switzerland
  • Book: Uncovering Quantum Field Theory and the Standard Model
  • Online publication: 06 February 2025
Available formats
×