Published online by Cambridge University Press: 06 November 2009
Classical mechanics
In nonequilibrium statistical mechanics we seek to model transport processes beginning with an understanding of the motion and interactions of individual atoms or molecules. The laws of classical mechanics govern the motion of atoms and molecules, so in this chapter we begin with a brief description of the mechanics of Newton, Lagrange, and Hamilton. It is often useful to be able to treat constrained mechanical systems. We will use a principle due to Gauss to treat many different types of constraint — from simple bond-length constraints, to constraints on kinetic energy. As we shall see, kinetic energy constraints are useful for constructing various constant temperature ensembles. We will then discuss the Liouville equation and its formal solution. This equation is the central vehicle of nonequilibrium statistical mechanics. We will then need to establish the link between the microscopic dynamics of individual atoms and molecules and the macroscopic hydrodynamical description discussed in the last chapter. We will discuss two procedures for making this connection. The Irving and Kirkwood procedure relates hydrodynamic variables to nonequilibrium ensemble averages of microscopic quantities. A more direct procedure, which we will describe, succeeds in deriving instantaneous expressions for the hydrodynamic field variables.
Newtonian mechanics
Classical mechanics (Goldstein, 1980) is based on Newton's three laws of motion.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.