Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T07:02:52.177Z Has data issue: false hasContentIssue false

17 - Spectral Analyses of Mercury

from Part IV - Applications to Planetary Surfaces

Published online by Cambridge University Press:  15 November 2019

Janice L. Bishop
Affiliation:
SETI Institute, California
James F. Bell III
Affiliation:
Arizona State University
Jeffrey E. Moersch
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

This chapter reviews key findings from analyses of spectral reflectance measurements of Mercury taken by the MESSENGER mission. Mercury’s crust lacks the 1-µm crystal field absorption due to ferrous iron that is common on other silicate bodies, yet is unusually low in reflectance. The most likely darkening phase is carbon as graphite. Variations in reflectance and color reveal that volcanic plains averaging >5 km in thickness overlie graphite-rich low-reflectance material, which may have originated as a graphite flotation crust from a magma ocean. The one unambiguous absorption due to an oxidized transition metal, an ultraviolet oxygen–metal charge transfer band in bright, pyroclastic deposits, may originate by oxidation of carbon and sulfides, reducing 0.3–1 wt.% ferrous iron in silicates to a metallic state, unsaturating the very strong oxygen–metal charge transfer band.

Type
Chapter
Information
Remote Compositional Analysis
Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces
, pp. 351 - 367
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.B. & McCord, T.B. (1970) Remote sensing of lunar surface mineralogy: Implications from visible and near-infrared reflectivity of Apollo 11 samples. Proceedings of the Apollo 11 Lunar Sci. Conf., 3, 19371945.Google Scholar
Blewett, D.T., Lucey, P.G., Hawke, B.R., & Jolliff, B.L. (1997a) Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. Journal of Geophysical Research, 102, 1631916325.CrossRefGoogle Scholar
Blewett, D.T., Lucey, P.G., Hawke, B.R., Ling, G.G., & Robinson, M.S. (1997b) A comparison of mercurian reflectance and spectral quantities with those of the Moon. Icarus, 129, 217231.Google Scholar
Blewett, D.T., Robinson, M.S., Denevi, B.W., et al. (2009) Multispectral images of Mercury from the first MESSENGER flyby: Analysis of global and regional color trends. Earth and Planetary Science Letters, 285, 272282.CrossRefGoogle Scholar
Blewett, D.T., Chabot, N.L., Denevi, B.W., et al. (2011) Hollows on Mercury: Evidence from MESSENGER for geologically recent volatile-related activity. Science, 333, 18561859.Google Scholar
Blewett, D.T., Vaughan, W.V., Xiao, Z., et al. (2013) Mercury’s hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance. Journal of Geophysical Research, 118, 10131032.Google Scholar
Braden, S.E. & Robinson, M.S. (2013) Relative rates of optical maturation of regolith on Mercury and the Moon. Journal of Geophysical Research, 118, 19031914.Google Scholar
Charette, M.P., McCord, T.B., Pieters, C.M., & Adams, J.B. (1974) Application of remote spectral reflectance measurements to lunar geology classification and determination of titanium content of lunar soils. Journal of Geophysical Research, 79, 16051613.CrossRefGoogle Scholar
Cloutis, E.A., McCormack, K.A., Bell, J.F., et al. (2008) Ultraviolet spectral reflectance properties of common planetary minerals. Icarus, 197, 321347.Google Scholar
Cloutis, E.A., Hudon, P., Hiroi, T., Gaffey, M.J., & Mann, P. (2011) Spectral reflectance properties of carbonaceous chondrites: 2. CM chondrites. Icarus, 216, 309346.Google Scholar
Denevi, B.W. & Robinson, M.S. (2008) Mercury’s albedo from Mariner 10: Implications for the presence of ferrous iron. Icarus, 197, 239246.CrossRefGoogle Scholar
Denevi, B.W., Robinson, M.S., Solomon, S.C., et al. (2009) The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618.Google Scholar
Denevi, B.W., Ernst, C.M., Meyer, H.M., et al. (2013a) The distribution and origin of smooth plains on Mercury. Journal of Geophysical Research, 118, 891907.CrossRefGoogle Scholar
Denevi, B.W., Ernst, C.M., Whitten, J.L., et al. (2013b) The volcanic origin of a region of intercrater plains on Mercury. 44th Lunar Planet. Sci. Conf., Abstract #1218.Google Scholar
Denevi, B.W., Chabot, N.L., Murchie, S.L., et al. (2018), Calibration, projection, and final image products of MESSENGER’s Mercury Dual Imaging System, Space Science Reviews, 214, 152.CrossRefGoogle Scholar
Denevi, B.W., Ernst, C.M., Prockter, L.M., & Robinson, M.S. (2019) The geologic history of Mercury. In: Mercury: The view after MESSENGER (Solomon, S.C., Nittler, L.R., & Anderson, B. J., eds.). Cambridge University Press, Cambridge.Google Scholar
Domingue, D.L., Chapman, C.R., Killen, R.M., et al. (2014) Mercury’s weather-beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Science Reviews, 181, 121214.Google Scholar
Domingue, D.L., Denevi, B.W., Murchie, S.L., & Hash, C. (2016) Application of multiple photometric models to disk-resolved measurements of Mercury’s surface: Insights into Mercury’s regolith characteristics. Icarus, 268, 172203.CrossRefGoogle Scholar
Emery, J.P., Sprague, A.L., Witteborn, F.C., Colwell, J.E., Kozlowski, R.W.H., & Wooden, D.H. (1998) Mercury: Thermal modeling and mid-infrared (5–12 µm) observations. Icarus, 136, 104123.CrossRefGoogle Scholar
Ernst, C.M., Murchie, S.L., Barnouin, O.S., et al. (2010) Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 209, 210223.CrossRefGoogle Scholar
Ernst, C.M., Denevi, B.W., Barnouin, O.S., et al. (2015) Stratigraphy of the Caloris basin, Mercury: Implications for volcanic history and basin impact melt. Icarus, 250, 413429.CrossRefGoogle Scholar
Evans, L.G., Peplowski, P.N., Rhodes, E.A., et al. (2012) Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Journal of Geophysical Research, 117, E00L07, DOI:10.1029/2012JE004178.CrossRefGoogle Scholar
Fassett, C.I., Head, J.W., Baker, D.M.H., et al. (2012) Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data. Journal of Geophysical Research, 117, E00L08, DOI:10.1029/2012JE004154.CrossRefGoogle Scholar
Fischer, E.M. & Pieters, C.M. (1994) Remote determination of exposure degree and iron concentration of lunar soils using VIS-NIR spectroscopic methods. Icarus, 111, 475488.CrossRefGoogle Scholar
Gaffey, M.J. (2010) Space weathering and the interpretation of asteroid reflectance spectra. Icarus, 209, 564574.CrossRefGoogle Scholar
Gillis-Davis, J.J., van Niekerk, D., Scott, E.R.D., McCubbin, F.M., & Blewett, D.T. (2013) Impact darkening: A possible mechanism to explain why Mercury is spectrally dark and featureless. Abstract P11A–07, presented at 2013 Fall Meeting, American Geophysical Union, San Francisco, December 9–13.Google Scholar
Goudge, T.A., Head, J.W., Kerber, L., et al. (2014) Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. Journal of Geophysical Research, 119, 635658.CrossRefGoogle Scholar
Hapke, B. (1977) Interpretations of optical observations of Mercury and the Moon. Physics of the Earth and Planetary Interiors, 15, 264274.Google Scholar
Hapke, B. (2001) Space weathering from Mercury to the asteroid belt. Journal of Geophysical Research, 106, 10,03910,073.Google Scholar
Hapke, B., Danielson, G.E., Klaasen, K., & Wilson, L. (1975) Photometric observations of Mercury from Mariner 10. Journal of Geophysical Research, 80, 24312443.Google Scholar
Hawkins, S.E. III, Boldt, J.D., Darlington, E.H., et al. (2007) The Mercury Dual Imaging System on the MESSENGER spacecraft. Space Science Reviews, 131, 247338.CrossRefGoogle Scholar
Head, J.W., Murchie, S.L., Prockter, L.M., et al. (2008) Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science, 321, 6972.CrossRefGoogle ScholarPubMed
Head, J.W., Murchie, S.L., Prockter, L.M., et al. (2009) Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains. Earth and Planetary Science Letters, 285, 227242.Google Scholar
Head, J.W., Chapman, C.R., Strom, R.G., et al. (2011) Flood volcanism in the high northern latitudes of Mercury revealed by MESSENGER. Science, 333, 1853–1856.Google Scholar
Hendrix, A.R. & Vilas, F. (2006) The effects of space weathering at UV wavelengths: S-class asteroids. Astronomical Journal, 132, 13961404.CrossRefGoogle Scholar
Hendrix, A.R., Retherford, K.D., Gladstone, G.R., et al. (2012) The lunar far-UV albedo: Indicator of hydration and weathering. Journal of Geophysical Research, 117, E12001, DOI:10.1029/2012JE004252.Google Scholar
Izenberg, N.R., Klima, R.L., Murchie, S.L., et al. (2014) The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus, 228, 364374.CrossRefGoogle Scholar
Izenberg, N.R., Thomas, R.J., Blewett, D.T., & Nittler, L.R. (2015) Are there compositionally different types of hollows on Mercury? 46th Lunar Planet. Sci. Conf., Abstract #1344.Google Scholar
Kerber, L., Head, J.W., Blewett, D.T., et al. (2011) The global distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1–3. Planetary and Space Science, 59, 18951909.Google Scholar
Klima, R.L., Dyar, M.D., & Pieters, C.M. (2011) Near-infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure. Meteoritics and Planetary Science, 42, 235253.CrossRefGoogle Scholar
Klima, R.L., Izenberg, N.R., Murchie, S.L., et al. (2013) Constraining the ferrous iron content of minerals in Mercury’s crust. 44th Lunar Planet. Sci. Conf., Abstract #1602.Google Scholar
Klima, R.L., Denevi, B.W., Ernst, C.M., Murchie, S.L., & Peplowski, P.N. (2018) Global distribution and spectral properties of low-reflectance material on Mercury. Geophysical Research Letters, 45, 29452953.Google Scholar
Lucey, P.G., Taylor, G.J., & Malaret, E. (1995) Abundance and distribution of iron on the Moon. Science, 268, 11501153.Google Scholar
Lucey, P.G., Blewett, D.T., & Hawke, B.R. (1998) Mapping the FeO and TiO2 content of the lunar surface with multispectral imaging. Journal of Geophysical Research, 103, 36793699.Google Scholar
Lucey, P.G., Blewett, D.T., Taylor, G.J., & Hawke, B.R. (2000) Imaging of lunar surface maturity. Journal of Geophysical Research, 105, 2037720386.CrossRefGoogle Scholar
Maxwell, R.E., Izenberg, N.R., & Holsclaw, G.M. (2016) Implications for iron and carbon in Mercury surface materials from ultraviolet reflectance. 47th Lunar Planet. Sci. Conf., Abstract #1606.Google Scholar
McClintock, W.E. & Lankton, M.R. (2007) The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER mission. Space Science Reviews, 131, 481522.Google Scholar
McClintock, W.E., Izenberg, N.R., Holsclaw, G.M., et al. (2008) Spectroscopic observations of Mercury’s surface reflectance during MESSENGER’s first Mercury flyby. Science, 321, 6265.CrossRefGoogle ScholarPubMed
McCord, T.B. & Adams, J.B. (1972a) Mercury: Surface composition from the reflection spectrum. Science, 178, 745747.CrossRefGoogle ScholarPubMed
McCord, T.B. & Adams, J.B. (1972b) Mercury: Interpretation of optical observations. Icarus, 17, 585588.Google Scholar
McCord, T.B. & Clark, R.N. (1979) The Mercury soil: Presence of Fe2+. Journal of Geophysical Research, 84, 76647668.CrossRefGoogle Scholar
Murchie, S.L., Watters, T.R., Robinson, M.S., et al. (2008) Geology of the Caloris basin, Mercury: A view from MESSENGER. Science, 321, 7377.Google Scholar
Murchie, S.L., Klima, R.L., Denevi, B.W., et al. (2015) Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305.Google Scholar
Murchie, S.L, Klima, R.L., Domingue, D.L., Izenberg, N.R., Blewett, D.T., & Helbert, J. (2019) Spectral reflectance constraints on the composition and evolution of Mercury’s surface. In: Mercury: The view after MESSENGER (Solomon, S.C., Nittler, L.R., & Anderson, B.J., eds.). Cambridge University Press, Cambridge.Google Scholar
Murray, B.C., Belton, M.J.S., Danielson, G.E., et al. (1974) Venus: Atmosphere motion and structure from Mariner 10 pictures. Science, 183, 13071315.CrossRefGoogle ScholarPubMed
Nittler, L.R., Starr, R.D., Weider, S.Z., et al. (2011) The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850.CrossRefGoogle ScholarPubMed
Peplowski, P.N., Klima, R.L., Lawrence, D.J., et al. (2016) Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geoscience, 9, 273276.Google Scholar
Pieters, C.M. (1993) Compositional diversity and stratigraphy of the lunar crust derived from reflectance spectroscopy. In: Remote geochemical analysis: Elemental and mineralogic composition (Pieters, C.M. & Englert, P.A.J., eds.). Cambridge University Press, Cambridge, 309340.Google Scholar
Rava, B. & Hapke, B. (1987) An analysis of the Mariner 10 color ratio map of Mercury. Icarus, 71, 397429.CrossRefGoogle Scholar
Rivera-Valentin, E.G. & Barr, A.C. (2014) Impact-induced compositional variations on Mercury. Earth and Planetary Science Letters, 391, 234242.CrossRefGoogle Scholar
Robinson, M.S. & Lucey, P.G. (1997) Recalibrated Mariner 10 color mosaics: Implications for mercurian volcanism. Science, 275, 197200.CrossRefGoogle ScholarPubMed
Robinson, M.S. & Taylor, G.J. (2001) Ferrous oxide in Mercury’s crust and mantle. Meteoritics and Planetary Science, 36, 841847.Google Scholar
Robinson, M.S., Murchie, S.L., Blewett, D.T., et al. (2008) Reflectance and color variations on Mercury: Regolith processes and compositional heterogeneity. Science, 321, 6669.CrossRefGoogle ScholarPubMed
Solomon, S.C., McNutt, R.L. Jr., Gold, R.E., et al. (2001) The MESSENGER mission to Mercury: Scientific objectives and implementation. Planetary and Space Science, 49, 14451465.Google Scholar
Sprague, A.L., Kozlowski, R.W.H., Witteborn, F.C., Cruikshank, D.P., & Wooden, D.H. (1994) Mercury: Evidence for anorthosite and basalt from mid-infrared (7.3–13.5 micrometers) spectroscopy. Icarus, 109, 156167.Google Scholar
Sprague, A.L., Hunten, D.M., & Lodders, K. (1995) Sulfur at Mercury, elemental at the poles and sulfides in the regolith. Icarus, 118, 211215.Google Scholar
Sprague, A.L., Emery, J.P., Donaldson, K.L., Russell, R.W., Lynch, D.K., & Mazuk, A.L. (2002) Mercury: Mid-infrared (3–13.5 µm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene. Meteoritics and Planetary Science, 37, 12551268.CrossRefGoogle Scholar
Thomas, R.J., Rothery, D.A., Conway, S.J., & Anand, M. (2014a) Hollows on Mercury: Materials and mechanisms involved in their formation. Icarus, 229, 221235.Google Scholar
Thomas, R.J., Rothery, D.A., Conway, S.J., & Anand, M. (2014b) Mechanisms of explosive volcanism on Mercury: Implications from its global distribution and morphology. Journal of Geophysical Research, 119, 22392254.CrossRefGoogle Scholar
Trang, D., Lucey, P.G., & Izenberg, N.R. (2016) Mapping of submicroscopic carbon and iron on Mercury with radiative transfer modeling of MESSENGER VIRS reflectance spectra. 47th Lunar Planet. Sci. Conf., Abstract #1396.Google Scholar
Trask, N.J. & Guest, J.E. (1975) Preliminary geologic terrain map of Mercury. Journal of Geophysical Research, 80, 24612477.CrossRefGoogle Scholar
Vander Kaaden, K.E., & McCubbin, F.M. (2015) Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. Journal of Geophysical Research, 120, 195209.CrossRefGoogle Scholar
Vilas, F. & McCord, T.B. (1976) Mercury: Spectral reflectance measurements (0.33–1.06 μm) 1974/75. Icarus, 28, 593599.CrossRefGoogle Scholar
Vilas, F., Leake, M.A., & Mendell, W.W. (1984) The dependence of reflectance spectra of Mercury on surface terrain. Icarus, 59, 6068.CrossRefGoogle Scholar
Vilas, F., Domingue, D.L., Helbert, J., et al. (2016) Mineralogical indicators of Mercury’s hollows composition in MESSENGER color observations. Geophysical Research Letters, 43, 14501456, DOI:10.1002/2015GL067515.CrossRefGoogle Scholar
Wänke, H. (1981) Constitution of terrestrial planets. Philosophical Transactions of the Royal Society of London A, 303, 287302.Google Scholar
Wänke, H. & Dreibus, G. (1994) Water abundance and accretion history of terrestrial planets. Conference on Deep Earth and Planetary Volatiles, Lunar and Planetary Institute, Houston, TX, 46.Google Scholar
Warell, J. & Blewett, D.T. (2004) Properties of the hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modeling. Icarus, 168, 257276.Google Scholar
Warell, J., Sprague, A.L., Emery, J.P., Kozlowski, R.W.H., & Long, A. (2006) The 0.7–5.3 μm spectra of Mercury and the Moon: Evidence for high-Ca pyroxene on Mercury. Icarus, 180, 281291.CrossRefGoogle Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., et al. (2012) Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. Journal of Geophysical Research, 117, E00L05, DOI:10.1029/2012JE004153.Google Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., McCoy, T.J., & Solomon, S.C. (2014) Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations. Icarus, 235, 170186.CrossRefGoogle Scholar
Weider, S.Z., Nittler, L.R., Starr, R.D., et al. (2015) Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth and Planetary Science Letters, 416, 109120.Google Scholar
Weider, S.Z., Nittler, L.R., Murchie, S.L., et al. (2016) Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophysical Research Letters, 43, 36533661, DOI:10.1002/2016GL068325.CrossRefGoogle Scholar
Whitten, J.L., Head, J.W., Denevi, B.W., & Solomon, S.C. (2014) Intercrater plains on Mercury: Insights into unit definition, characterization, and origin from MESSENGER datasets. Icarus, 241, 97113.Google Scholar
Zolotov, M. (2011) On the chemistry of mantle and magmatic volatiles on Mercury. Icarus, 212, 2441.CrossRefGoogle Scholar
Zolotov, M., Sprague, A.L., Hauck, S.A. II, Nittler, L.R., Solomon, S.C., & Weider, S.Z. (2013) The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. Journal of Geophysical Research, 118, 138146.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×